Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathieeesingtrans / ieeespsqrt.c
blob763b47b4d34f9610ccb5d693c227b441f1c55877
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
6 #include "mathieeesingtrans_intern.h"
8 /*
9 FUNCTION
10 Calculate square root of IEEE single precision number
12 RESULT
13 IEEE single precision number
15 flags:
16 zero : result is zero
17 negative : 0
18 overflow : square root could not be calculated
20 NOTES
22 EXAMPLE
24 BUGS
26 SEE ALSO
28 INTERNALS
29 ALGORITHM:
30 <code>
31 First check for a zero and a negative argument and take
32 appropriate action.
33 y = M * 2^E
35 Exponent is an odd number:
36 y = ( M*2 ) * 2^ (E-1)
37 Now E' = E-1 is an even number and
38 -> sqrt(y) = sqrt(M) * sqrt(2) * sqrt (2^E')
39 = sqrt(M) * sqrt(2) * 2^(E'/2)
40 (with sqrt(M*2)>1)
41 = sqrt(M) * sqrt(2) * 2^(E'/2)
42 = sqrt(M) * 1/sqrt(2) * 2^(1+(E'/2))
43 = sqrt(M/2) * 2^(1+(E'/2))
46 Exponent is an even number:
47 -> sqrt(y) = sqrt(M) * sqrt (2^E) =
48 = sqrt(M) * 2^(E/2)
50 Now calculate the square root of the mantisse.
51 The following algorithm calculates the square of a number + delta
52 and compares it to the mantisse. If the square of that number +
53 delta is less than the mantisse then keep that number + delta.
54 Otherwise calculate a lower offset and try again.
55 Start out with number = 0;
58 Exponent = -1;
59 Root = 0;
60 repeat
62 if ( (Root + 2^Exponent)^2 < Mantisse)
63 Root += 2^Exponent
64 Exponent --;
66 until you`re happy with the accuracy
67 </code>
69 HISTORY
72 AROS_LH1(float, IEEESPSqrt,
73 AROS_LHA(float, y, D0),
74 struct Library *, MathIeeeSingTransBase, 16, MathIeeeSingTrans
77 AROS_LIBFUNC_INIT
79 ULONG Res, ResSquared, Delta, X, TargetMantisse;
80 int z;
81 ULONG Exponent;
83 if (0 == y)
85 SetSR(Zero_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
86 return 0;
88 /* is fnum negative? */
89 if (y < 0)
91 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
92 return y;
95 /* we can calculate the square-root now! */
97 TargetMantisse = ((y & IEEESPMantisse_Mask) | 0x00800000) << 8;
99 if (y & 0x00800000)
101 /* TargetMantisse = TargetMantisse / 2; */
102 TargetMantisse >>= 1;
103 Exponent = ((y >> 1) & IEEESPExponent_Mask) + 0x20000000;
105 else
107 Exponent = ((y >> 1) & IEEESPExponent_Mask) + 0x1f800000;
110 Res = 0;
111 ResSquared = 0;
112 z = 0;
115 this calculates the sqrt of the mantisse. It`s short, isn`t it?
116 Delta starts out with 0.5, then 0.25, 0.125 etc.
118 while (ResSquared != TargetMantisse && z < 25)
120 Delta = (0x80000000 >> z);
122 X = (Res+Delta)^2 = Res^2 + 2*Res*Delta + Delta^2
124 X = ResSquared + (Res >> z) + (Delta >> ++z);
125 if (X <= TargetMantisse)
127 Res += Delta;
128 ResSquared = X;
132 /* an adjustment for precision
134 if ((char) Res < 0) Res += 0x100;
136 Res >>=8;
137 Res &= IEEESPMantisse_Mask;
138 Res |= Exponent;
140 return Res;
142 AROS_LIBFUNC_EXIT