Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathtrans / spasin.c
blobc357ba83880296796d51fcc0c42d1dce0907bd6a
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunSoft, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #include "mathtrans_intern.h"
19 FUNCTION
20 Calculate arcussin of the given number
22 RESULT
23 Motorola fast floating point number
25 flags:
26 zero : result is zero
27 negative : result is negative
28 overflow : fnum < -1 or fnum > 1
30 NOTES
32 EXAMPLE
34 BUGS
36 SEE ALSO
38 INTERNALS
40 HISTORY
43 AROS_LH1(float, SPAsin,
44 AROS_LHA(float, fnum1, D0),
45 struct Library *, MathTransBase, 19, MathTrans
48 AROS_LIBFUNC_INIT
50 /* 1> |x| >= 0.5 */
51 LONG t,w,p,q,c,r,s,ix;
52 ix = fnum1 & (FFPMantisse_Mask | FFPExponent_Mask); /* ix = |fnum| */
54 if ((LONG)one == ix) /* |fnum1| = 1 -> result = +-(pi/2) */
56 return (pio2 | (fnum1 & FFPSign_Mask ));
59 if (1 == SPCmp(ix,one)) /* |fnum1| > 1 */
61 SetSR(Overflow_Bit, Zero_Bit | Overflow_Bit | Negative_Bit);
62 return -1;
65 /* error: 1 ulp (unit in the last place)*/
66 if (-1 == SPCmp(ix,onehalf)) /* |fnum1| < 0.5 */
68 if (-1 == SPCmp(ix,0xb89b6736)) /* |fnum1| < 70422/10000000 */
70 return fnum1;
73 t = SPMul(fnum1, fnum1);
74 p = SPMul(t, SPAdd(pS0,
75 SPMul(t, SPAdd(pS1,
76 SPMul(t, SPAdd(pS2,
77 SPMul(t, SPAdd(pS3,
78 SPMul(t, SPAdd(pS4,
79 SPMul(t, pS5)))))))))));
80 q = SPAdd(one,
81 SPMul(t, SPAdd(qS1,
82 SPMul(t, SPAdd(qS2,
83 SPMul(t, SPAdd(qS3,
84 SPMul(t, qS4))))))));
85 w = SPDiv(q, p);
87 return SPAdd(fnum1, SPMul(fnum1, w));
91 w = SPSub(ix, one) ; /* w = 1 - fnum ; y = 1-x */
92 t = SPMul(w, onehalf); /* t = w / 2 ; z = y/2 */
93 p = SPMul(t,SPAdd(pS0,
94 SPMul(t,SPAdd(pS1,
95 SPMul(t,SPAdd(pS2,
96 SPMul(t,SPAdd(pS3,
97 SPMul(t,SPAdd(pS4,
98 SPMul(t,pS5)))))))))));
99 q = SPAdd(one,
100 SPMul(t,SPAdd(qS1,
101 SPMul(t,SPAdd(qS2,
102 SPMul(t,SPAdd(qS3,
103 SPMul(t,qS4))))))));
104 s = SPSqrt(t); /* s = sqrt(t) ; s = sqrt(z) */
106 if(1 == SPCmp(ix, 0xf9999a40 /*0.975*/ )) /* |fnum| > 0.975 */
108 /*error: 2 ulp (4 ulp when |fnum| close to 1) */
109 w = SPDiv(q,p); /* w = p / q; */
110 /* res = pi/2-(2*(s+s*w)) */
111 t = SPSub(SPMul(two,SPAdd(s,SPMul(s,w))),pio2);
112 t = SPAdd(t, 0x8000002b); /* for better accuracy */
114 else
116 /* error: 2 ulp */
117 w = s;
118 c = SPDiv(SPAdd(s,w),SPSub(SPMul(w,w),t)); /* c=(t-w*w)/(s+w) */
119 r = SPDiv(q,p);
120 p = SPAdd(SPAdd(c,c),SPMul(SPAdd(s,s),r));
121 q = SPSub(SPAdd(w,w) ,pio4);
122 t = SPSub(SPSub(q,p) ,pio4);
125 return (t | (fnum1 & FFPSign_Mask )) ;
127 AROS_LIBFUNC_EXIT