Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathtrans / spsqrt.c
blobffdd7689bbe94a4f9ecc1ddaee741f8294dc1cf6
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
6 #include "mathtrans_intern.h"
8 /*
9 FUNCTION
10 Calculate square root of ffp number
12 RESULT
13 Motorola fast floating point number
15 flags:
16 zero : result is zero
17 negative : 0
18 overflow : square root could not be calculated
20 NOTES
22 EXAMPLE
24 BUGS
26 SEE ALSO
28 INTERNALS
30 ALGORITHM:
31 First check for a zero and a negative argument and take
32 appropriate action.
33 fnum1 = M * 2^E
35 If exponent is an odd number:
36 <code>
37 fnum = ( M*2 ) * 2^ (E-1)
38 Now E' = E-1 is an even number and
39 -> sqrt(fnum) = sqrt(M) * sqrt(2) * sqrt (2^E')
40 = sqrt(M) * sqrt(2) * 2^(E'/2)
41 (with sqrt(M*2)>1)
42 = sqrt(M) * sqrt(2) * 2^(E'/2)
43 = sqrt(M) * 1/sqrt(2) * 2^(1+(E'/2))
44 = sqrt(M/2) * 2^(1+(E'/2))
45 </code>
48 If Exponent is an even number:
49 <code>
50 -> sqrt(fnum) = sqrt(M) * sqrt (2^E) =
51 = sqrt(M) * 2^(E/2)
52 </code>
54 Now calculate the square root of the mantisse.
55 The following algorithm calculates the square of a number + delta
56 and compares it to the mantisse. If the square of that number +
57 delta is less than the mantisse then keep that number + delta.
58 Otherwise calculate a lower delta and try again.
59 Start out with number = 0;
62 <code>
63 Exponent = -1;
64 Root = 0;
65 repeat
67 if ( ( Root + 2^Exponent ) ^2 < Mantisse)
68 Root += 2^Exponent
69 Exponent --;
71 until you`re happy with the accuracy
72 </code>
75 HISTORY
78 AROS_LH1(float, SPSqrt,
79 AROS_LHA(float, fnum1, D0),
80 struct Library *, MathTransBase, 16, MathTrans
83 AROS_LIBFUNC_INIT
85 ULONG Res, ResSquared, Delta, X, TargetMantisse;
86 int z;
87 BYTE Exponent;
89 if (0 == fnum1)
91 SetSR(Zero_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
92 return 0;
94 /* is fnum negative */
95 if ((char)fnum1 < 0)
97 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
98 return fnum1;
101 /* let us calculate the square-root now! */
103 TargetMantisse = ((ULONG)fnum1 & FFPMantisse_Mask);
105 if (fnum1 & 1)
107 /* TargetMantisse = TargetMantisse / 2; */
108 TargetMantisse >>= 1;
109 Exponent = ((BYTE)fnum1 >> 1) + 0x21;
111 else
113 Exponent = ((BYTE)fnum1 >> 1) + 0x20;
116 Res = 0;
117 ResSquared = 0;
118 z = 0;
121 this calculates the sqrt of the mantisse. It`s short, isn`t it?
122 Delta starts out with 0.5, then 0.25, 0.125 etc.
124 while (ResSquared != TargetMantisse && z < 25)
126 Delta = (0x80000000 >> z);
128 X = (Res+Delta)^2 =
129 = Res^2 + 2*Res*Delta + Delta^2
131 X = ResSquared + (Res >> z) + (Delta >> (z+1));
132 z++;
133 if (X <= TargetMantisse)
135 Res += Delta;
136 ResSquared = X;
140 /* an adjustment for precision */
141 if ((char) Res < 0) Res += 0x100;
143 Res &= FFPMantisse_Mask;
144 Res |= Exponent;
146 return Res;
148 AROS_LIBFUNC_EXIT