window simple/smart refresh config support
[tangerine.git] / compiler / mlib / e_asin.c
blobcbc03ea8f0f76852110f40c9f0ab227804a38433
1 /* @(#)e_asin.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_asin.c,v 1.8 1999/08/28 00:06:28 peter Exp $";
15 #endif
17 /* __ieee754_asin(x)
18 * Method :
19 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
20 * we approximate asin(x) on [0,0.5] by
21 * asin(x) = x + x*x^2*R(x^2)
22 * where
23 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
24 * and its remez error is bounded by
25 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
27 * For x in [0.5,1]
28 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
29 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
30 * then for x>0.98
31 * asin(x) = pi/2 - 2*(s+s*z*R(z))
32 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
33 * For x<=0.98, let pio4_hi = pio2_hi/2, then
34 * f = hi part of s;
35 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
36 * and
37 * asin(x) = pi/2 - 2*(s+s*z*R(z))
38 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
39 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
41 * Special cases:
42 * if x is NaN, return x itself;
43 * if |x|>1, return NaN with invalid signal.
48 #include "math.h"
49 #include "math_private.h"
51 #ifdef __STDC__
52 static const double
53 #else
54 static double
55 #endif
56 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
57 huge = 1.000e+300,
58 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
59 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
60 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
61 /* coefficient for R(x^2) */
62 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
63 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
64 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
65 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
66 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
67 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
68 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
69 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
70 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
71 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
73 #ifdef __STDC__
74 double __generic___ieee754_asin(double x)
75 #else
76 double __generic___ieee754_asin(x)
77 double x;
78 #endif
80 double t=0.0,w,p,q,c,r,s;
81 int32_t hx,ix;
82 GET_HIGH_WORD(hx,x);
83 ix = hx&0x7fffffff;
84 if(ix>= 0x3ff00000) { /* |x|>= 1 */
85 uint32_t lx;
86 GET_LOW_WORD(lx,x);
87 if(((ix-0x3ff00000)|lx)==0)
88 /* asin(1)=+-pi/2 with inexact */
89 return x*pio2_hi+x*pio2_lo;
90 return (x-x)/(x-x); /* asin(|x|>1) is NaN */
91 } else if (ix<0x3fe00000) { /* |x|<0.5 */
92 if(ix<0x3e400000) { /* if |x| < 2**-27 */
93 if(huge+x>one) return x;/* return x with inexact if x!=0*/
94 } else
95 t = x*x;
96 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
97 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
98 w = p/q;
99 return x+x*w;
101 /* 1> |x|>= 0.5 */
102 w = one-fabs(x);
103 t = w*0.5;
104 p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
105 q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
106 s = __ieee754_sqrt(t);
107 if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
108 w = p/q;
109 t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
110 } else {
111 w = s;
112 SET_LOW_WORD(w,0);
113 c = (t-w*w)/(s+w);
114 r = p/q;
115 p = 2.0*s*r-(pio2_lo-2.0*c);
116 q = pio4_hi-2.0*w;
117 t = pio4_hi-(p-q);
119 if(hx>0) return t; else return -t;