Updated PCI IDs to latest snapshot.
[tangerine.git] / arch / common / boot / grub2 / lib / LzmaEnc.c
blob842d43ac16c9e02a34f16fb44ad8f380d6a57fae
1 /*
2 * GRUB -- GRand Unified Bootloader
3 * Copyright (c) 1999-2008 Igor Pavlov
4 * Copyright (C) 2008 Free Software Foundation, Inc.
6 * GRUB is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
11 * GRUB is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
21 * This code was taken from LZMA SDK 4.58 beta, and was slightly modified
22 * to adapt it to GRUB's requirement.
24 * See <http://www.7-zip.org>, for more information about LZMA.
27 #include <stdio.h>
28 #include <string.h>
30 #include <grub/lib/LzmaEnc.h>
32 #include <grub/lib/LzFind.h>
33 #ifdef COMPRESS_MF_MT
34 #include <grub/lib/LzFindMt.h>
35 #endif
37 /* #define SHOW_STAT */
38 /* #define SHOW_STAT2 */
40 #ifdef SHOW_STAT
41 static int ttt = 0;
42 #endif
44 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
46 #define kBlockSize (9 << 10)
47 #define kUnpackBlockSize (1 << 18)
48 #define kMatchArraySize (1 << 21)
49 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
51 #define kNumMaxDirectBits (31)
53 #define kNumTopBits 24
54 #define kTopValue ((UInt32)1 << kNumTopBits)
56 #define kNumBitModelTotalBits 11
57 #define kBitModelTotal (1 << kNumBitModelTotalBits)
58 #define kNumMoveBits 5
59 #define kProbInitValue (kBitModelTotal >> 1)
61 #define kNumMoveReducingBits 4
62 #define kNumBitPriceShiftBits 4
63 #define kBitPrice (1 << kNumBitPriceShiftBits)
65 void LzmaEncProps_Init(CLzmaEncProps *p)
67 p->level = 5;
68 p->dictSize = p->mc = 0;
69 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
70 p->writeEndMark = 0;
73 void LzmaEncProps_Normalize(CLzmaEncProps *p)
75 int level = p->level;
76 if (level < 0) level = 5;
77 p->level = level;
78 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
79 if (p->lc < 0) p->lc = 3;
80 if (p->lp < 0) p->lp = 0;
81 if (p->pb < 0) p->pb = 2;
82 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
83 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
84 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
85 if (p->numHashBytes < 0) p->numHashBytes = 4;
86 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
87 if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1);
90 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
92 CLzmaEncProps props = *props2;
93 LzmaEncProps_Normalize(&props);
94 return props.dictSize;
97 /* #define LZMA_LOG_BSR */
98 /* Define it for Intel's CPU */
101 #ifdef LZMA_LOG_BSR
103 #define kDicLogSizeMaxCompress 30
105 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
107 UInt32 GetPosSlot1(UInt32 pos)
109 UInt32 res;
110 BSR2_RET(pos, res);
111 return res;
113 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
114 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
116 #else
118 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
119 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
121 void LzmaEnc_FastPosInit(Byte *g_FastPos)
123 int c = 2, slotFast;
124 g_FastPos[0] = 0;
125 g_FastPos[1] = 1;
127 for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
129 UInt32 k = (1 << ((slotFast >> 1) - 1));
130 UInt32 j;
131 for (j = 0; j < k; j++, c++)
132 g_FastPos[c] = (Byte)slotFast;
136 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
137 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
138 res = p->g_FastPos[pos >> i] + (i * 2); }
140 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
141 p->g_FastPos[pos >> 6] + 12 : \
142 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
145 #define GetPosSlot1(pos) p->g_FastPos[pos]
146 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
147 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
149 #endif
152 #define LZMA_NUM_REPS 4
154 typedef unsigned CState;
156 typedef struct _COptimal
158 UInt32 price;
160 CState state;
161 int prev1IsChar;
162 int prev2;
164 UInt32 posPrev2;
165 UInt32 backPrev2;
167 UInt32 posPrev;
168 UInt32 backPrev;
169 UInt32 backs[LZMA_NUM_REPS];
170 } COptimal;
172 #define kNumOpts (1 << 12)
174 #define kNumLenToPosStates 4
175 #define kNumPosSlotBits 6
176 #define kDicLogSizeMin 0
177 #define kDicLogSizeMax 32
178 #define kDistTableSizeMax (kDicLogSizeMax * 2)
181 #define kNumAlignBits 4
182 #define kAlignTableSize (1 << kNumAlignBits)
183 #define kAlignMask (kAlignTableSize - 1)
185 #define kStartPosModelIndex 4
186 #define kEndPosModelIndex 14
187 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
189 #define kNumFullDistances (1 << (kEndPosModelIndex / 2))
191 #ifdef _LZMA_PROB32
192 #define CLzmaProb UInt32
193 #else
194 #define CLzmaProb UInt16
195 #endif
197 #define LZMA_PB_MAX 4
198 #define LZMA_LC_MAX 8
199 #define LZMA_LP_MAX 4
201 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
204 #define kLenNumLowBits 3
205 #define kLenNumLowSymbols (1 << kLenNumLowBits)
206 #define kLenNumMidBits 3
207 #define kLenNumMidSymbols (1 << kLenNumMidBits)
208 #define kLenNumHighBits 8
209 #define kLenNumHighSymbols (1 << kLenNumHighBits)
211 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
213 #define LZMA_MATCH_LEN_MIN 2
214 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
216 #define kNumStates 12
218 typedef struct
220 CLzmaProb choice;
221 CLzmaProb choice2;
222 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
223 CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
224 CLzmaProb high[kLenNumHighSymbols];
225 } CLenEnc;
227 typedef struct
229 CLenEnc p;
230 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
231 UInt32 tableSize;
232 UInt32 counters[LZMA_NUM_PB_STATES_MAX];
233 } CLenPriceEnc;
235 typedef struct _CRangeEnc
237 UInt32 range;
238 Byte cache;
239 UInt64 low;
240 UInt64 cacheSize;
241 Byte *buf;
242 Byte *bufLim;
243 Byte *bufBase;
244 ISeqOutStream *outStream;
245 UInt64 processed;
246 SRes res;
247 } CRangeEnc;
249 typedef struct _CSeqInStreamBuf
251 ISeqInStream funcTable;
252 const Byte *data;
253 SizeT rem;
254 } CSeqInStreamBuf;
256 static SRes MyRead(void *pp, void *data, size_t *size)
258 size_t curSize = *size;
259 CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp;
260 if (p->rem < curSize)
261 curSize = p->rem;
262 memcpy(data, p->data, curSize);
263 p->rem -= curSize;
264 p->data += curSize;
265 *size = curSize;
266 return SZ_OK;
269 typedef struct
271 CLzmaProb *litProbs;
273 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
274 CLzmaProb isRep[kNumStates];
275 CLzmaProb isRepG0[kNumStates];
276 CLzmaProb isRepG1[kNumStates];
277 CLzmaProb isRepG2[kNumStates];
278 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
280 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
281 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
282 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
284 CLenPriceEnc lenEnc;
285 CLenPriceEnc repLenEnc;
287 UInt32 reps[LZMA_NUM_REPS];
288 UInt32 state;
289 } CSaveState;
291 typedef struct _CLzmaEnc
293 IMatchFinder matchFinder;
294 void *matchFinderObj;
296 #ifdef COMPRESS_MF_MT
297 Bool mtMode;
298 CMatchFinderMt matchFinderMt;
299 #endif
301 CMatchFinder matchFinderBase;
303 #ifdef COMPRESS_MF_MT
304 Byte pad[128];
305 #endif
307 UInt32 optimumEndIndex;
308 UInt32 optimumCurrentIndex;
310 Bool longestMatchWasFound;
311 UInt32 longestMatchLength;
312 UInt32 numDistancePairs;
314 COptimal opt[kNumOpts];
316 #ifndef LZMA_LOG_BSR
317 Byte g_FastPos[1 << kNumLogBits];
318 #endif
320 UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
321 UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
322 UInt32 numFastBytes;
323 UInt32 additionalOffset;
324 UInt32 reps[LZMA_NUM_REPS];
325 UInt32 state;
327 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
328 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
329 UInt32 alignPrices[kAlignTableSize];
330 UInt32 alignPriceCount;
332 UInt32 distTableSize;
334 unsigned lc, lp, pb;
335 unsigned lpMask, pbMask;
337 CLzmaProb *litProbs;
339 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
340 CLzmaProb isRep[kNumStates];
341 CLzmaProb isRepG0[kNumStates];
342 CLzmaProb isRepG1[kNumStates];
343 CLzmaProb isRepG2[kNumStates];
344 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
346 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
347 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
348 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
350 CLenPriceEnc lenEnc;
351 CLenPriceEnc repLenEnc;
353 unsigned lclp;
355 Bool fastMode;
357 CRangeEnc rc;
359 Bool writeEndMark;
360 UInt64 nowPos64;
361 UInt32 matchPriceCount;
362 Bool finished;
363 Bool multiThread;
365 SRes result;
366 UInt32 dictSize;
367 UInt32 matchFinderCycles;
369 ISeqInStream *inStream;
370 CSeqInStreamBuf seqBufInStream;
372 CSaveState saveState;
373 } CLzmaEnc;
375 void LzmaEnc_SaveState(CLzmaEncHandle pp)
377 CLzmaEnc *p = (CLzmaEnc *)pp;
378 CSaveState *dest = &p->saveState;
379 int i;
380 dest->lenEnc = p->lenEnc;
381 dest->repLenEnc = p->repLenEnc;
382 dest->state = p->state;
384 for (i = 0; i < kNumStates; i++)
386 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
387 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
389 for (i = 0; i < kNumLenToPosStates; i++)
390 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
391 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
392 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
393 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
394 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
395 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
396 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
397 memcpy(dest->reps, p->reps, sizeof(p->reps));
398 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
401 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
403 CLzmaEnc *dest = (CLzmaEnc *)pp;
404 const CSaveState *p = &dest->saveState;
405 int i;
406 dest->lenEnc = p->lenEnc;
407 dest->repLenEnc = p->repLenEnc;
408 dest->state = p->state;
410 for (i = 0; i < kNumStates; i++)
412 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
413 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
415 for (i = 0; i < kNumLenToPosStates; i++)
416 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
417 memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
418 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
419 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
420 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
421 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
422 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
423 memcpy(dest->reps, p->reps, sizeof(p->reps));
424 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
427 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
429 CLzmaEnc *p = (CLzmaEnc *)pp;
430 CLzmaEncProps props = *props2;
431 LzmaEncProps_Normalize(&props);
433 if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
434 props.dictSize > (1U << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
435 return SZ_ERROR_PARAM;
436 p->dictSize = props.dictSize;
437 p->matchFinderCycles = props.mc;
439 unsigned fb = props.fb;
440 if (fb < 5)
441 fb = 5;
442 if (fb > LZMA_MATCH_LEN_MAX)
443 fb = LZMA_MATCH_LEN_MAX;
444 p->numFastBytes = fb;
446 p->lc = props.lc;
447 p->lp = props.lp;
448 p->pb = props.pb;
449 p->fastMode = (props.algo == 0);
450 p->matchFinderBase.btMode = props.btMode;
452 UInt32 numHashBytes = 4;
453 if (props.btMode)
455 if (props.numHashBytes < 2)
456 numHashBytes = 2;
457 else if (props.numHashBytes < 4)
458 numHashBytes = props.numHashBytes;
460 p->matchFinderBase.numHashBytes = numHashBytes;
463 p->matchFinderBase.cutValue = props.mc;
465 p->writeEndMark = props.writeEndMark;
467 #ifdef COMPRESS_MF_MT
469 if (newMultiThread != _multiThread)
471 ReleaseMatchFinder();
472 _multiThread = newMultiThread;
475 p->multiThread = (props.numThreads > 1);
476 #endif
478 return SZ_OK;
481 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
482 static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
483 static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
484 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
487 void UpdateChar() { Index = kLiteralNextStates[Index]; }
488 void UpdateMatch() { Index = kMatchNextStates[Index]; }
489 void UpdateRep() { Index = kRepNextStates[Index]; }
490 void UpdateShortRep() { Index = kShortRepNextStates[Index]; }
493 #define IsCharState(s) ((s) < 7)
496 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
498 #define kInfinityPrice (1 << 30)
500 static void RangeEnc_Construct(CRangeEnc *p)
502 p->outStream = 0;
503 p->bufBase = 0;
506 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
508 #define RC_BUF_SIZE (1 << 16)
509 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
511 if (p->bufBase == 0)
513 p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
514 if (p->bufBase == 0)
515 return 0;
516 p->bufLim = p->bufBase + RC_BUF_SIZE;
518 return 1;
521 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
523 alloc->Free(alloc, p->bufBase);
524 p->bufBase = 0;
527 static void RangeEnc_Init(CRangeEnc *p)
529 /* Stream.Init(); */
530 p->low = 0;
531 p->range = 0xFFFFFFFF;
532 p->cacheSize = 1;
533 p->cache = 0;
535 p->buf = p->bufBase;
537 p->processed = 0;
538 p->res = SZ_OK;
541 static void RangeEnc_FlushStream(CRangeEnc *p)
543 size_t num;
544 if (p->res != SZ_OK)
545 return;
546 num = p->buf - p->bufBase;
547 if (num != p->outStream->Write(p->outStream, p->bufBase, num))
548 p->res = SZ_ERROR_WRITE;
549 p->processed += num;
550 p->buf = p->bufBase;
553 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
555 if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
557 Byte temp = p->cache;
560 Byte *buf = p->buf;
561 *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
562 p->buf = buf;
563 if (buf == p->bufLim)
564 RangeEnc_FlushStream(p);
565 temp = 0xFF;
567 while (--p->cacheSize != 0);
568 p->cache = (Byte)((UInt32)p->low >> 24);
570 p->cacheSize++;
571 p->low = (UInt32)p->low << 8;
574 static void RangeEnc_FlushData(CRangeEnc *p)
576 int i;
577 for (i = 0; i < 5; i++)
578 RangeEnc_ShiftLow(p);
581 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
585 p->range >>= 1;
586 p->low += p->range & (0 - ((value >> --numBits) & 1));
587 if (p->range < kTopValue)
589 p->range <<= 8;
590 RangeEnc_ShiftLow(p);
593 while (numBits != 0);
596 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
598 UInt32 ttt = *prob;
599 UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
600 if (symbol == 0)
602 p->range = newBound;
603 ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
605 else
607 p->low += newBound;
608 p->range -= newBound;
609 ttt -= ttt >> kNumMoveBits;
611 *prob = (CLzmaProb)ttt;
612 if (p->range < kTopValue)
614 p->range <<= 8;
615 RangeEnc_ShiftLow(p);
619 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
621 symbol |= 0x100;
624 RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
625 symbol <<= 1;
627 while (symbol < 0x10000);
630 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
632 UInt32 offs = 0x100;
633 symbol |= 0x100;
636 matchByte <<= 1;
637 RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
638 symbol <<= 1;
639 offs &= ~(matchByte ^ symbol);
641 while (symbol < 0x10000);
644 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
646 UInt32 i;
647 for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
649 const int kCyclesBits = kNumBitPriceShiftBits;
650 UInt32 w = i;
651 UInt32 bitCount = 0;
652 int j;
653 for (j = 0; j < kCyclesBits; j++)
655 w = w * w;
656 bitCount <<= 1;
657 while (w >= ((UInt32)1 << 16))
659 w >>= 1;
660 bitCount++;
663 ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
668 #define GET_PRICE(prob, symbol) \
669 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
671 #define GET_PRICEa(prob, symbol) \
672 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
674 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
675 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
677 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
678 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
680 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
682 UInt32 price = 0;
683 symbol |= 0x100;
686 price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
687 symbol <<= 1;
689 while (symbol < 0x10000);
690 return price;
693 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
695 UInt32 price = 0;
696 UInt32 offs = 0x100;
697 symbol |= 0x100;
700 matchByte <<= 1;
701 price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
702 symbol <<= 1;
703 offs &= ~(matchByte ^ symbol);
705 while (symbol < 0x10000);
706 return price;
710 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
712 UInt32 m = 1;
713 int i;
714 for (i = numBitLevels; i != 0 ;)
716 UInt32 bit;
717 i--;
718 bit = (symbol >> i) & 1;
719 RangeEnc_EncodeBit(rc, probs + m, bit);
720 m = (m << 1) | bit;
724 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
726 UInt32 m = 1;
727 int i;
728 for (i = 0; i < numBitLevels; i++)
730 UInt32 bit = symbol & 1;
731 RangeEnc_EncodeBit(rc, probs + m, bit);
732 m = (m << 1) | bit;
733 symbol >>= 1;
737 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
739 UInt32 price = 0;
740 symbol |= (1 << numBitLevels);
741 while (symbol != 1)
743 price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
744 symbol >>= 1;
746 return price;
749 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
751 UInt32 price = 0;
752 UInt32 m = 1;
753 int i;
754 for (i = numBitLevels; i != 0; i--)
756 UInt32 bit = symbol & 1;
757 symbol >>= 1;
758 price += GET_PRICEa(probs[m], bit);
759 m = (m << 1) | bit;
761 return price;
765 static void LenEnc_Init(CLenEnc *p)
767 unsigned i;
768 p->choice = p->choice2 = kProbInitValue;
769 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
770 p->low[i] = kProbInitValue;
771 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
772 p->mid[i] = kProbInitValue;
773 for (i = 0; i < kLenNumHighSymbols; i++)
774 p->high[i] = kProbInitValue;
777 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
779 if (symbol < kLenNumLowSymbols)
781 RangeEnc_EncodeBit(rc, &p->choice, 0);
782 RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
784 else
786 RangeEnc_EncodeBit(rc, &p->choice, 1);
787 if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
789 RangeEnc_EncodeBit(rc, &p->choice2, 0);
790 RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
792 else
794 RangeEnc_EncodeBit(rc, &p->choice2, 1);
795 RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
800 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
802 UInt32 a0 = GET_PRICE_0a(p->choice);
803 UInt32 a1 = GET_PRICE_1a(p->choice);
804 UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
805 UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
806 UInt32 i = 0;
807 for (i = 0; i < kLenNumLowSymbols; i++)
809 if (i >= numSymbols)
810 return;
811 prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
813 for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
815 if (i >= numSymbols)
816 return;
817 prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
819 for (; i < numSymbols; i++)
820 prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
823 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
825 LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
826 p->counters[posState] = p->tableSize;
829 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
831 UInt32 posState;
832 for (posState = 0; posState < numPosStates; posState++)
833 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
836 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
838 LenEnc_Encode(&p->p, rc, symbol, posState);
839 if (updatePrice)
840 if (--p->counters[posState] == 0)
841 LenPriceEnc_UpdateTable(p, posState, ProbPrices);
847 static void MovePos(CLzmaEnc *p, UInt32 num)
849 #ifdef SHOW_STAT
850 ttt += num;
851 printf("\n MovePos %d", num);
852 #endif
853 if (num != 0)
855 p->additionalOffset += num;
856 p->matchFinder.Skip(p->matchFinderObj, num);
860 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
862 UInt32 lenRes = 0, numDistancePairs;
863 numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances);
864 #ifdef SHOW_STAT
865 printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2);
866 if (ttt >= 61994)
867 ttt = ttt;
869 ttt++;
871 UInt32 i;
872 for (i = 0; i < numDistancePairs; i += 2)
873 printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]);
875 #endif
876 if (numDistancePairs > 0)
878 lenRes = p->matchDistances[numDistancePairs - 2];
879 if (lenRes == p->numFastBytes)
881 UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1;
882 const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
883 UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1;
884 if (numAvail > LZMA_MATCH_LEN_MAX)
885 numAvail = LZMA_MATCH_LEN_MAX;
888 const Byte *pby2 = pby - distance;
889 for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
893 p->additionalOffset++;
894 *numDistancePairsRes = numDistancePairs;
895 return lenRes;
899 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
900 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
901 #define IsShortRep(p) ((p)->backPrev == 0)
903 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
905 return
906 GET_PRICE_0(p->isRepG0[state]) +
907 GET_PRICE_0(p->isRep0Long[state][posState]);
910 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
912 UInt32 price;
913 if (repIndex == 0)
915 price = GET_PRICE_0(p->isRepG0[state]);
916 price += GET_PRICE_1(p->isRep0Long[state][posState]);
918 else
920 price = GET_PRICE_1(p->isRepG0[state]);
921 if (repIndex == 1)
922 price += GET_PRICE_0(p->isRepG1[state]);
923 else
925 price += GET_PRICE_1(p->isRepG1[state]);
926 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
929 return price;
932 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
934 return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
935 GetPureRepPrice(p, repIndex, state, posState);
938 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
940 UInt32 posMem = p->opt[cur].posPrev;
941 UInt32 backMem = p->opt[cur].backPrev;
942 p->optimumEndIndex = cur;
945 if (p->opt[cur].prev1IsChar)
947 MakeAsChar(&p->opt[posMem])
948 p->opt[posMem].posPrev = posMem - 1;
949 if (p->opt[cur].prev2)
951 p->opt[posMem - 1].prev1IsChar = False;
952 p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
953 p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
957 UInt32 posPrev = posMem;
958 UInt32 backCur = backMem;
960 backMem = p->opt[posPrev].backPrev;
961 posMem = p->opt[posPrev].posPrev;
963 p->opt[posPrev].backPrev = backCur;
964 p->opt[posPrev].posPrev = cur;
965 cur = posPrev;
968 while (cur != 0);
969 *backRes = p->opt[0].backPrev;
970 p->optimumCurrentIndex = p->opt[0].posPrev;
971 return p->optimumCurrentIndex;
974 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
976 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
978 UInt32 numAvailableBytes, lenMain, numDistancePairs;
979 const Byte *data;
980 UInt32 reps[LZMA_NUM_REPS];
981 UInt32 repLens[LZMA_NUM_REPS];
982 UInt32 repMaxIndex, i;
983 UInt32 *matchDistances;
984 Byte currentByte, matchByte;
985 UInt32 posState;
986 UInt32 matchPrice, repMatchPrice;
987 UInt32 lenEnd;
988 UInt32 len;
989 UInt32 normalMatchPrice;
990 UInt32 cur;
991 if (p->optimumEndIndex != p->optimumCurrentIndex)
993 const COptimal *opt = &p->opt[p->optimumCurrentIndex];
994 UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
995 *backRes = opt->backPrev;
996 p->optimumCurrentIndex = opt->posPrev;
997 return lenRes;
999 p->optimumCurrentIndex = p->optimumEndIndex = 0;
1001 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1003 if (!p->longestMatchWasFound)
1005 lenMain = ReadMatchDistances(p, &numDistancePairs);
1007 else
1009 lenMain = p->longestMatchLength;
1010 numDistancePairs = p->numDistancePairs;
1011 p->longestMatchWasFound = False;
1014 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1015 if (numAvailableBytes < 2)
1017 *backRes = (UInt32)(-1);
1018 return 1;
1020 if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
1021 numAvailableBytes = LZMA_MATCH_LEN_MAX;
1023 repMaxIndex = 0;
1024 for (i = 0; i < LZMA_NUM_REPS; i++)
1026 UInt32 lenTest;
1027 const Byte *data2;
1028 reps[i] = p->reps[i];
1029 data2 = data - (reps[i] + 1);
1030 if (data[0] != data2[0] || data[1] != data2[1])
1032 repLens[i] = 0;
1033 continue;
1035 for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
1036 repLens[i] = lenTest;
1037 if (lenTest > repLens[repMaxIndex])
1038 repMaxIndex = i;
1040 if (repLens[repMaxIndex] >= p->numFastBytes)
1042 UInt32 lenRes;
1043 *backRes = repMaxIndex;
1044 lenRes = repLens[repMaxIndex];
1045 MovePos(p, lenRes - 1);
1046 return lenRes;
1049 matchDistances = p->matchDistances;
1050 if (lenMain >= p->numFastBytes)
1052 *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
1053 MovePos(p, lenMain - 1);
1054 return lenMain;
1056 currentByte = *data;
1057 matchByte = *(data - (reps[0] + 1));
1059 if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2)
1061 *backRes = (UInt32)-1;
1062 return 1;
1065 p->opt[0].state = (CState)p->state;
1067 posState = (position & p->pbMask);
1070 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1071 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1072 (!IsCharState(p->state) ?
1073 LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
1074 LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
1077 MakeAsChar(&p->opt[1]);
1079 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1080 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1082 if (matchByte == currentByte)
1084 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1085 if (shortRepPrice < p->opt[1].price)
1087 p->opt[1].price = shortRepPrice;
1088 MakeAsShortRep(&p->opt[1]);
1091 lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]);
1093 if (lenEnd < 2)
1095 *backRes = p->opt[1].backPrev;
1096 return 1;
1099 p->opt[1].posPrev = 0;
1100 for (i = 0; i < LZMA_NUM_REPS; i++)
1101 p->opt[0].backs[i] = reps[i];
1103 len = lenEnd;
1105 p->opt[len--].price = kInfinityPrice;
1106 while (len >= 2);
1108 for (i = 0; i < LZMA_NUM_REPS; i++)
1110 UInt32 repLen = repLens[i];
1111 UInt32 price;
1112 if (repLen < 2)
1113 continue;
1114 price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1117 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1118 COptimal *opt = &p->opt[repLen];
1119 if (curAndLenPrice < opt->price)
1121 opt->price = curAndLenPrice;
1122 opt->posPrev = 0;
1123 opt->backPrev = i;
1124 opt->prev1IsChar = False;
1127 while (--repLen >= 2);
1130 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1132 len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1133 if (len <= lenMain)
1135 UInt32 offs = 0;
1136 while (len > matchDistances[offs])
1137 offs += 2;
1138 for (; ; len++)
1140 COptimal *opt;
1141 UInt32 distance = matchDistances[offs + 1];
1143 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1144 UInt32 lenToPosState = GetLenToPosState(len);
1145 if (distance < kNumFullDistances)
1146 curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1147 else
1149 UInt32 slot;
1150 GetPosSlot2(distance, slot);
1151 curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1153 opt = &p->opt[len];
1154 if (curAndLenPrice < opt->price)
1156 opt->price = curAndLenPrice;
1157 opt->posPrev = 0;
1158 opt->backPrev = distance + LZMA_NUM_REPS;
1159 opt->prev1IsChar = False;
1161 if (len == matchDistances[offs])
1163 offs += 2;
1164 if (offs == numDistancePairs)
1165 break;
1170 cur = 0;
1172 #ifdef SHOW_STAT2
1173 if (position >= 0)
1175 unsigned i;
1176 printf("\n pos = %4X", position);
1177 for (i = cur; i <= lenEnd; i++)
1178 printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1180 #endif
1182 for (;;)
1184 UInt32 numAvailableBytesFull, newLen, numDistancePairs;
1185 COptimal *curOpt;
1186 UInt32 posPrev;
1187 UInt32 state;
1188 UInt32 curPrice;
1189 Bool nextIsChar;
1190 const Byte *data;
1191 Byte currentByte, matchByte;
1192 UInt32 posState;
1193 UInt32 curAnd1Price;
1194 COptimal *nextOpt;
1195 UInt32 matchPrice, repMatchPrice;
1196 UInt32 numAvailableBytes;
1197 UInt32 startLen;
1199 cur++;
1200 if (cur == lenEnd)
1201 return Backward(p, backRes, cur);
1203 numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1204 newLen = ReadMatchDistances(p, &numDistancePairs);
1205 if (newLen >= p->numFastBytes)
1207 p->numDistancePairs = numDistancePairs;
1208 p->longestMatchLength = newLen;
1209 p->longestMatchWasFound = True;
1210 return Backward(p, backRes, cur);
1212 position++;
1213 curOpt = &p->opt[cur];
1214 posPrev = curOpt->posPrev;
1215 if (curOpt->prev1IsChar)
1217 posPrev--;
1218 if (curOpt->prev2)
1220 state = p->opt[curOpt->posPrev2].state;
1221 if (curOpt->backPrev2 < LZMA_NUM_REPS)
1222 state = kRepNextStates[state];
1223 else
1224 state = kMatchNextStates[state];
1226 else
1227 state = p->opt[posPrev].state;
1228 state = kLiteralNextStates[state];
1230 else
1231 state = p->opt[posPrev].state;
1232 if (posPrev == cur - 1)
1234 if (IsShortRep(curOpt))
1235 state = kShortRepNextStates[state];
1236 else
1237 state = kLiteralNextStates[state];
1239 else
1241 UInt32 pos;
1242 const COptimal *prevOpt;
1243 if (curOpt->prev1IsChar && curOpt->prev2)
1245 posPrev = curOpt->posPrev2;
1246 pos = curOpt->backPrev2;
1247 state = kRepNextStates[state];
1249 else
1251 pos = curOpt->backPrev;
1252 if (pos < LZMA_NUM_REPS)
1253 state = kRepNextStates[state];
1254 else
1255 state = kMatchNextStates[state];
1257 prevOpt = &p->opt[posPrev];
1258 if (pos < LZMA_NUM_REPS)
1260 UInt32 i;
1261 reps[0] = prevOpt->backs[pos];
1262 for (i = 1; i <= pos; i++)
1263 reps[i] = prevOpt->backs[i - 1];
1264 for (; i < LZMA_NUM_REPS; i++)
1265 reps[i] = prevOpt->backs[i];
1267 else
1269 UInt32 i;
1270 reps[0] = (pos - LZMA_NUM_REPS);
1271 for (i = 1; i < LZMA_NUM_REPS; i++)
1272 reps[i] = prevOpt->backs[i - 1];
1275 curOpt->state = (CState)state;
1277 curOpt->backs[0] = reps[0];
1278 curOpt->backs[1] = reps[1];
1279 curOpt->backs[2] = reps[2];
1280 curOpt->backs[3] = reps[3];
1282 curPrice = curOpt->price;
1283 nextIsChar = False;
1284 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1285 currentByte = *data;
1286 matchByte = *(data - (reps[0] + 1));
1288 posState = (position & p->pbMask);
1290 curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1292 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1293 curAnd1Price +=
1294 (!IsCharState(state) ?
1295 LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) :
1296 LitEnc_GetPrice(probs, currentByte, p->ProbPrices));
1299 nextOpt = &p->opt[cur + 1];
1301 if (curAnd1Price < nextOpt->price)
1303 nextOpt->price = curAnd1Price;
1304 nextOpt->posPrev = cur;
1305 MakeAsChar(nextOpt);
1306 nextIsChar = True;
1309 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1310 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1312 if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1314 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1315 if (shortRepPrice <= nextOpt->price)
1317 nextOpt->price = shortRepPrice;
1318 nextOpt->posPrev = cur;
1319 MakeAsShortRep(nextOpt);
1320 nextIsChar = True;
1325 UInt32 temp = kNumOpts - 1 - cur;
1326 if (temp < numAvailableBytesFull)
1327 numAvailableBytesFull = temp;
1329 numAvailableBytes = numAvailableBytesFull;
1331 if (numAvailableBytes < 2)
1332 continue;
1333 if (numAvailableBytes > p->numFastBytes)
1334 numAvailableBytes = p->numFastBytes;
1335 if (!nextIsChar && matchByte != currentByte) /* speed optimization */
1337 /* try Literal + rep0 */
1338 UInt32 temp;
1339 UInt32 lenTest2;
1340 const Byte *data2 = data - (reps[0] + 1);
1341 UInt32 limit = p->numFastBytes + 1;
1342 if (limit > numAvailableBytesFull)
1343 limit = numAvailableBytesFull;
1345 for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1346 lenTest2 = temp - 1;
1347 if (lenTest2 >= 2)
1349 UInt32 state2 = kLiteralNextStates[state];
1350 UInt32 posStateNext = (position + 1) & p->pbMask;
1351 UInt32 nextRepMatchPrice = curAnd1Price +
1352 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1353 GET_PRICE_1(p->isRep[state2]);
1354 /* for (; lenTest2 >= 2; lenTest2--) */
1356 UInt32 curAndLenPrice;
1357 COptimal *opt;
1358 UInt32 offset = cur + 1 + lenTest2;
1359 while (lenEnd < offset)
1360 p->opt[++lenEnd].price = kInfinityPrice;
1361 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1362 opt = &p->opt[offset];
1363 if (curAndLenPrice < opt->price)
1365 opt->price = curAndLenPrice;
1366 opt->posPrev = cur + 1;
1367 opt->backPrev = 0;
1368 opt->prev1IsChar = True;
1369 opt->prev2 = False;
1375 startLen = 2; /* speed optimization */
1377 UInt32 repIndex;
1378 for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1380 UInt32 lenTest;
1381 UInt32 lenTestTemp;
1382 UInt32 price;
1383 const Byte *data2 = data - (reps[repIndex] + 1);
1384 if (data[0] != data2[0] || data[1] != data2[1])
1385 continue;
1386 for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++);
1387 while (lenEnd < cur + lenTest)
1388 p->opt[++lenEnd].price = kInfinityPrice;
1389 lenTestTemp = lenTest;
1390 price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1393 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1394 COptimal *opt = &p->opt[cur + lenTest];
1395 if (curAndLenPrice < opt->price)
1397 opt->price = curAndLenPrice;
1398 opt->posPrev = cur;
1399 opt->backPrev = repIndex;
1400 opt->prev1IsChar = False;
1403 while (--lenTest >= 2);
1404 lenTest = lenTestTemp;
1406 if (repIndex == 0)
1407 startLen = lenTest + 1;
1409 /* if (_maxMode) */
1411 UInt32 lenTest2 = lenTest + 1;
1412 UInt32 limit = lenTest2 + p->numFastBytes;
1413 UInt32 nextRepMatchPrice;
1414 if (limit > numAvailableBytesFull)
1415 limit = numAvailableBytesFull;
1416 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1417 lenTest2 -= lenTest + 1;
1418 if (lenTest2 >= 2)
1420 UInt32 state2 = kRepNextStates[state];
1421 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1422 UInt32 curAndLenCharPrice =
1423 price + p->repLenEnc.prices[posState][lenTest - 2] +
1424 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1425 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1426 data[lenTest], data2[lenTest], p->ProbPrices);
1427 state2 = kLiteralNextStates[state2];
1428 posStateNext = (position + lenTest + 1) & p->pbMask;
1429 nextRepMatchPrice = curAndLenCharPrice +
1430 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1431 GET_PRICE_1(p->isRep[state2]);
1433 /* for (; lenTest2 >= 2; lenTest2--) */
1435 UInt32 curAndLenPrice;
1436 COptimal *opt;
1437 UInt32 offset = cur + lenTest + 1 + lenTest2;
1438 while (lenEnd < offset)
1439 p->opt[++lenEnd].price = kInfinityPrice;
1440 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1441 opt = &p->opt[offset];
1442 if (curAndLenPrice < opt->price)
1444 opt->price = curAndLenPrice;
1445 opt->posPrev = cur + lenTest + 1;
1446 opt->backPrev = 0;
1447 opt->prev1IsChar = True;
1448 opt->prev2 = True;
1449 opt->posPrev2 = cur;
1450 opt->backPrev2 = repIndex;
1457 /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1458 if (newLen > numAvailableBytes)
1460 newLen = numAvailableBytes;
1461 for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2);
1462 matchDistances[numDistancePairs] = newLen;
1463 numDistancePairs += 2;
1465 if (newLen >= startLen)
1467 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1468 UInt32 offs, curBack, posSlot;
1469 UInt32 lenTest;
1470 while (lenEnd < cur + newLen)
1471 p->opt[++lenEnd].price = kInfinityPrice;
1473 offs = 0;
1474 while (startLen > matchDistances[offs])
1475 offs += 2;
1476 curBack = matchDistances[offs + 1];
1477 GetPosSlot2(curBack, posSlot);
1478 for (lenTest = /*2*/ startLen; ; lenTest++)
1480 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1481 UInt32 lenToPosState = GetLenToPosState(lenTest);
1482 COptimal *opt;
1483 if (curBack < kNumFullDistances)
1484 curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1485 else
1486 curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1488 opt = &p->opt[cur + lenTest];
1489 if (curAndLenPrice < opt->price)
1491 opt->price = curAndLenPrice;
1492 opt->posPrev = cur;
1493 opt->backPrev = curBack + LZMA_NUM_REPS;
1494 opt->prev1IsChar = False;
1497 if (/*_maxMode && */lenTest == matchDistances[offs])
1499 /* Try Match + Literal + Rep0 */
1500 const Byte *data2 = data - (curBack + 1);
1501 UInt32 lenTest2 = lenTest + 1;
1502 UInt32 limit = lenTest2 + p->numFastBytes;
1503 UInt32 nextRepMatchPrice;
1504 if (limit > numAvailableBytesFull)
1505 limit = numAvailableBytesFull;
1506 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1507 lenTest2 -= lenTest + 1;
1508 if (lenTest2 >= 2)
1510 UInt32 state2 = kMatchNextStates[state];
1511 UInt32 posStateNext = (position + lenTest) & p->pbMask;
1512 UInt32 curAndLenCharPrice = curAndLenPrice +
1513 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1514 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1515 data[lenTest], data2[lenTest], p->ProbPrices);
1516 state2 = kLiteralNextStates[state2];
1517 posStateNext = (posStateNext + 1) & p->pbMask;
1518 nextRepMatchPrice = curAndLenCharPrice +
1519 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1520 GET_PRICE_1(p->isRep[state2]);
1522 /* for (; lenTest2 >= 2; lenTest2--) */
1524 UInt32 offset = cur + lenTest + 1 + lenTest2;
1525 UInt32 curAndLenPrice;
1526 COptimal *opt;
1527 while (lenEnd < offset)
1528 p->opt[++lenEnd].price = kInfinityPrice;
1529 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1530 opt = &p->opt[offset];
1531 if (curAndLenPrice < opt->price)
1533 opt->price = curAndLenPrice;
1534 opt->posPrev = cur + lenTest + 1;
1535 opt->backPrev = 0;
1536 opt->prev1IsChar = True;
1537 opt->prev2 = True;
1538 opt->posPrev2 = cur;
1539 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1543 offs += 2;
1544 if (offs == numDistancePairs)
1545 break;
1546 curBack = matchDistances[offs + 1];
1547 if (curBack >= kNumFullDistances)
1548 GetPosSlot2(curBack, posSlot);
1555 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1557 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1559 UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1560 UInt32 lenMain, numDistancePairs;
1561 const Byte *data;
1562 UInt32 repLens[LZMA_NUM_REPS];
1563 UInt32 repMaxIndex, i;
1564 UInt32 *matchDistances;
1565 UInt32 backMain;
1567 if (!p->longestMatchWasFound)
1569 lenMain = ReadMatchDistances(p, &numDistancePairs);
1571 else
1573 lenMain = p->longestMatchLength;
1574 numDistancePairs = p->numDistancePairs;
1575 p->longestMatchWasFound = False;
1578 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1579 if (numAvailableBytes > LZMA_MATCH_LEN_MAX)
1580 numAvailableBytes = LZMA_MATCH_LEN_MAX;
1581 if (numAvailableBytes < 2)
1583 *backRes = (UInt32)(-1);
1584 return 1;
1587 repMaxIndex = 0;
1589 for (i = 0; i < LZMA_NUM_REPS; i++)
1591 const Byte *data2 = data - (p->reps[i] + 1);
1592 UInt32 len;
1593 if (data[0] != data2[0] || data[1] != data2[1])
1595 repLens[i] = 0;
1596 continue;
1598 for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
1599 if (len >= p->numFastBytes)
1601 *backRes = i;
1602 MovePos(p, len - 1);
1603 return len;
1605 repLens[i] = len;
1606 if (len > repLens[repMaxIndex])
1607 repMaxIndex = i;
1609 matchDistances = p->matchDistances;
1610 if (lenMain >= p->numFastBytes)
1612 *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS;
1613 MovePos(p, lenMain - 1);
1614 return lenMain;
1617 backMain = 0; /* for GCC */
1618 if (lenMain >= 2)
1620 backMain = matchDistances[numDistancePairs - 1];
1621 while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1)
1623 if (!ChangePair(matchDistances[numDistancePairs - 3], backMain))
1624 break;
1625 numDistancePairs -= 2;
1626 lenMain = matchDistances[numDistancePairs - 2];
1627 backMain = matchDistances[numDistancePairs - 1];
1629 if (lenMain == 2 && backMain >= 0x80)
1630 lenMain = 1;
1633 if (repLens[repMaxIndex] >= 2)
1635 if (repLens[repMaxIndex] + 1 >= lenMain ||
1636 (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) ||
1637 (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15))))
1639 UInt32 lenRes;
1640 *backRes = repMaxIndex;
1641 lenRes = repLens[repMaxIndex];
1642 MovePos(p, lenRes - 1);
1643 return lenRes;
1647 if (lenMain >= 2 && numAvailableBytes > 2)
1649 UInt32 i;
1650 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
1651 p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs);
1652 if (p->longestMatchLength >= 2)
1654 UInt32 newDistance = matchDistances[p->numDistancePairs - 1];
1655 if ((p->longestMatchLength >= lenMain && newDistance < backMain) ||
1656 (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) ||
1657 (p->longestMatchLength > lenMain + 1) ||
1658 (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain)))
1660 p->longestMatchWasFound = True;
1661 *backRes = (UInt32)(-1);
1662 return 1;
1665 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1666 for (i = 0; i < LZMA_NUM_REPS; i++)
1668 UInt32 len;
1669 const Byte *data2 = data - (p->reps[i] + 1);
1670 if (data[1] != data2[1] || data[2] != data2[2])
1672 repLens[i] = 0;
1673 continue;
1675 for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++);
1676 if (len + 1 >= lenMain)
1678 p->longestMatchWasFound = True;
1679 *backRes = (UInt32)(-1);
1680 return 1;
1683 *backRes = backMain + LZMA_NUM_REPS;
1684 MovePos(p, lenMain - 2);
1685 return lenMain;
1687 *backRes = (UInt32)(-1);
1688 return 1;
1691 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1693 UInt32 len;
1694 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1695 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1696 p->state = kMatchNextStates[p->state];
1697 len = LZMA_MATCH_LEN_MIN;
1698 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1699 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1700 RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1701 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1704 static SRes CheckErrors(CLzmaEnc *p)
1706 if (p->result != SZ_OK)
1707 return p->result;
1708 if (p->rc.res != SZ_OK)
1709 p->result = SZ_ERROR_WRITE;
1710 if (p->matchFinderBase.result != SZ_OK)
1711 p->result = SZ_ERROR_READ;
1712 if (p->result != SZ_OK)
1713 p->finished = True;
1714 return p->result;
1717 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1719 /* ReleaseMFStream(); */
1720 p->finished = True;
1721 if (p->writeEndMark)
1722 WriteEndMarker(p, nowPos & p->pbMask);
1723 RangeEnc_FlushData(&p->rc);
1724 RangeEnc_FlushStream(&p->rc);
1725 return CheckErrors(p);
1728 static void FillAlignPrices(CLzmaEnc *p)
1730 UInt32 i;
1731 for (i = 0; i < kAlignTableSize; i++)
1732 p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1733 p->alignPriceCount = 0;
1736 static void FillDistancesPrices(CLzmaEnc *p)
1738 UInt32 tempPrices[kNumFullDistances];
1739 UInt32 i, lenToPosState;
1740 for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1742 UInt32 posSlot = GetPosSlot1(i);
1743 UInt32 footerBits = ((posSlot >> 1) - 1);
1744 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1745 tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1748 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1750 UInt32 posSlot;
1751 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1752 UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1753 for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1754 posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1755 for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1756 posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1759 UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1760 UInt32 i;
1761 for (i = 0; i < kStartPosModelIndex; i++)
1762 distancesPrices[i] = posSlotPrices[i];
1763 for (; i < kNumFullDistances; i++)
1764 distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1767 p->matchPriceCount = 0;
1770 void LzmaEnc_Construct(CLzmaEnc *p)
1772 RangeEnc_Construct(&p->rc);
1773 MatchFinder_Construct(&p->matchFinderBase);
1774 #ifdef COMPRESS_MF_MT
1775 MatchFinderMt_Construct(&p->matchFinderMt);
1776 p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1777 #endif
1780 CLzmaEncProps props;
1781 LzmaEncProps_Init(&props);
1782 LzmaEnc_SetProps(p, &props);
1785 #ifndef LZMA_LOG_BSR
1786 LzmaEnc_FastPosInit(p->g_FastPos);
1787 #endif
1789 LzmaEnc_InitPriceTables(p->ProbPrices);
1790 p->litProbs = 0;
1791 p->saveState.litProbs = 0;
1794 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1796 void *p;
1797 p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1798 if (p != 0)
1799 LzmaEnc_Construct((CLzmaEnc *)p);
1800 return p;
1803 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1805 alloc->Free(alloc, p->litProbs);
1806 alloc->Free(alloc, p->saveState.litProbs);
1807 p->litProbs = 0;
1808 p->saveState.litProbs = 0;
1811 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1813 #ifdef COMPRESS_MF_MT
1814 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1815 #endif
1816 MatchFinder_Free(&p->matchFinderBase, allocBig);
1817 LzmaEnc_FreeLits(p, alloc);
1818 RangeEnc_Free(&p->rc, alloc);
1821 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1823 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1824 alloc->Free(alloc, p);
1827 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1829 UInt32 nowPos32, startPos32;
1830 if (p->inStream != 0)
1832 p->matchFinderBase.stream = p->inStream;
1833 p->matchFinder.Init(p->matchFinderObj);
1834 p->inStream = 0;
1837 if (p->finished)
1838 return p->result;
1839 RINOK(CheckErrors(p));
1841 nowPos32 = (UInt32)p->nowPos64;
1842 startPos32 = nowPos32;
1844 if (p->nowPos64 == 0)
1846 UInt32 numDistancePairs;
1847 Byte curByte;
1848 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1849 return Flush(p, nowPos32);
1850 ReadMatchDistances(p, &numDistancePairs);
1851 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1852 p->state = kLiteralNextStates[p->state];
1853 curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1854 LitEnc_Encode(&p->rc, p->litProbs, curByte);
1855 p->additionalOffset--;
1856 nowPos32++;
1859 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1860 for (;;)
1862 UInt32 pos, len, posState;
1864 if (p->fastMode)
1865 len = GetOptimumFast(p, &pos);
1866 else
1867 len = GetOptimum(p, nowPos32, &pos);
1869 #ifdef SHOW_STAT2
1870 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
1871 #endif
1873 posState = nowPos32 & p->pbMask;
1874 if (len == 1 && pos == 0xFFFFFFFF)
1876 Byte curByte;
1877 CLzmaProb *probs;
1878 const Byte *data;
1880 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1881 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1882 curByte = *data;
1883 probs = LIT_PROBS(nowPos32, *(data - 1));
1884 if (IsCharState(p->state))
1885 LitEnc_Encode(&p->rc, probs, curByte);
1886 else
1887 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1888 p->state = kLiteralNextStates[p->state];
1890 else
1892 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1893 if (pos < LZMA_NUM_REPS)
1895 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1896 if (pos == 0)
1898 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1899 RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1901 else
1903 UInt32 distance = p->reps[pos];
1904 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1905 if (pos == 1)
1906 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1907 else
1909 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1910 RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1911 if (pos == 3)
1912 p->reps[3] = p->reps[2];
1913 p->reps[2] = p->reps[1];
1915 p->reps[1] = p->reps[0];
1916 p->reps[0] = distance;
1918 if (len == 1)
1919 p->state = kShortRepNextStates[p->state];
1920 else
1922 LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1923 p->state = kRepNextStates[p->state];
1926 else
1928 UInt32 posSlot;
1929 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1930 p->state = kMatchNextStates[p->state];
1931 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1932 pos -= LZMA_NUM_REPS;
1933 GetPosSlot(pos, posSlot);
1934 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1936 if (posSlot >= kStartPosModelIndex)
1938 UInt32 footerBits = ((posSlot >> 1) - 1);
1939 UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1940 UInt32 posReduced = pos - base;
1942 if (posSlot < kEndPosModelIndex)
1943 RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1944 else
1946 RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1947 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1948 p->alignPriceCount++;
1951 p->reps[3] = p->reps[2];
1952 p->reps[2] = p->reps[1];
1953 p->reps[1] = p->reps[0];
1954 p->reps[0] = pos;
1955 p->matchPriceCount++;
1958 p->additionalOffset -= len;
1959 nowPos32 += len;
1960 if (p->additionalOffset == 0)
1962 UInt32 processed;
1963 if (!p->fastMode)
1965 if (p->matchPriceCount >= (1 << 7))
1966 FillDistancesPrices(p);
1967 if (p->alignPriceCount >= kAlignTableSize)
1968 FillAlignPrices(p);
1970 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1971 break;
1972 processed = nowPos32 - startPos32;
1973 if (useLimits)
1975 if (processed + kNumOpts + 300 >= maxUnpackSize ||
1976 RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1977 break;
1979 else if (processed >= (1 << 15))
1981 p->nowPos64 += nowPos32 - startPos32;
1982 return CheckErrors(p);
1986 p->nowPos64 += nowPos32 - startPos32;
1987 return Flush(p, nowPos32);
1990 #define kBigHashDicLimit ((UInt32)1 << 24)
1992 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1994 UInt32 beforeSize = kNumOpts;
1995 Bool btMode;
1996 if (!RangeEnc_Alloc(&p->rc, alloc))
1997 return SZ_ERROR_MEM;
1998 btMode = (p->matchFinderBase.btMode != 0);
1999 #ifdef COMPRESS_MF_MT
2000 p->mtMode = (p->multiThread && !p->fastMode && btMode);
2001 #endif
2004 unsigned lclp = p->lc + p->lp;
2005 if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
2007 LzmaEnc_FreeLits(p, alloc);
2008 p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
2009 p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
2010 if (p->litProbs == 0 || p->saveState.litProbs == 0)
2012 LzmaEnc_FreeLits(p, alloc);
2013 return SZ_ERROR_MEM;
2015 p->lclp = lclp;
2019 p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
2021 if (beforeSize + p->dictSize < keepWindowSize)
2022 beforeSize = keepWindowSize - p->dictSize;
2024 #ifdef COMPRESS_MF_MT
2025 if (p->mtMode)
2027 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
2028 p->matchFinderObj = &p->matchFinderMt;
2029 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
2031 else
2032 #endif
2034 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
2035 return SZ_ERROR_MEM;
2036 p->matchFinderObj = &p->matchFinderBase;
2037 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
2039 return SZ_OK;
2042 void LzmaEnc_Init(CLzmaEnc *p)
2044 UInt32 i;
2045 p->state = 0;
2046 for(i = 0 ; i < LZMA_NUM_REPS; i++)
2047 p->reps[i] = 0;
2049 RangeEnc_Init(&p->rc);
2052 for (i = 0; i < kNumStates; i++)
2054 UInt32 j;
2055 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
2057 p->isMatch[i][j] = kProbInitValue;
2058 p->isRep0Long[i][j] = kProbInitValue;
2060 p->isRep[i] = kProbInitValue;
2061 p->isRepG0[i] = kProbInitValue;
2062 p->isRepG1[i] = kProbInitValue;
2063 p->isRepG2[i] = kProbInitValue;
2067 UInt32 num = 0x300 << (p->lp + p->lc);
2068 for (i = 0; i < num; i++)
2069 p->litProbs[i] = kProbInitValue;
2073 for (i = 0; i < kNumLenToPosStates; i++)
2075 CLzmaProb *probs = p->posSlotEncoder[i];
2076 UInt32 j;
2077 for (j = 0; j < (1 << kNumPosSlotBits); j++)
2078 probs[j] = kProbInitValue;
2082 for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
2083 p->posEncoders[i] = kProbInitValue;
2086 LenEnc_Init(&p->lenEnc.p);
2087 LenEnc_Init(&p->repLenEnc.p);
2089 for (i = 0; i < (1 << kNumAlignBits); i++)
2090 p->posAlignEncoder[i] = kProbInitValue;
2092 p->longestMatchWasFound = False;
2093 p->optimumEndIndex = 0;
2094 p->optimumCurrentIndex = 0;
2095 p->additionalOffset = 0;
2097 p->pbMask = (1 << p->pb) - 1;
2098 p->lpMask = (1 << p->lp) - 1;
2101 void LzmaEnc_InitPrices(CLzmaEnc *p)
2103 if (!p->fastMode)
2105 FillDistancesPrices(p);
2106 FillAlignPrices(p);
2109 p->lenEnc.tableSize =
2110 p->repLenEnc.tableSize =
2111 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2112 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2113 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2116 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2118 UInt32 i;
2119 for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2120 if (p->dictSize <= ((UInt32)1 << i))
2121 break;
2122 p->distTableSize = i * 2;
2124 p->finished = False;
2125 p->result = SZ_OK;
2126 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2127 LzmaEnc_Init(p);
2128 LzmaEnc_InitPrices(p);
2129 p->nowPos64 = 0;
2130 return SZ_OK;
2133 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream,
2134 ISzAlloc *alloc, ISzAlloc *allocBig)
2136 CLzmaEnc *p = (CLzmaEnc *)pp;
2137 p->inStream = inStream;
2138 p->rc.outStream = outStream;
2139 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2142 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2143 ISeqInStream *inStream, UInt32 keepWindowSize,
2144 ISzAlloc *alloc, ISzAlloc *allocBig)
2146 CLzmaEnc *p = (CLzmaEnc *)pp;
2147 p->inStream = inStream;
2148 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2151 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2153 p->seqBufInStream.funcTable.Read = MyRead;
2154 p->seqBufInStream.data = src;
2155 p->seqBufInStream.rem = srcLen;
2158 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2159 UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2161 CLzmaEnc *p = (CLzmaEnc *)pp;
2162 LzmaEnc_SetInputBuf(p, src, srcLen);
2163 p->inStream = &p->seqBufInStream.funcTable;
2164 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2167 void LzmaEnc_Finish(CLzmaEncHandle pp)
2169 #ifdef COMPRESS_MF_MT
2170 CLzmaEnc *p = (CLzmaEnc *)pp;
2171 if (p->mtMode)
2172 MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2173 #else
2174 (void)pp;
2175 #endif
2178 typedef struct _CSeqOutStreamBuf
2180 ISeqOutStream funcTable;
2181 Byte *data;
2182 SizeT rem;
2183 Bool overflow;
2184 } CSeqOutStreamBuf;
2186 static size_t MyWrite(void *pp, const void *data, size_t size)
2188 CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2189 if (p->rem < size)
2191 size = p->rem;
2192 p->overflow = True;
2194 memcpy(p->data, data, size);
2195 p->rem -= size;
2196 p->data += size;
2197 return size;
2201 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2203 const CLzmaEnc *p = (CLzmaEnc *)pp;
2204 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2207 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2209 const CLzmaEnc *p = (CLzmaEnc *)pp;
2210 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2213 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2214 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2216 CLzmaEnc *p = (CLzmaEnc *)pp;
2217 UInt64 nowPos64;
2218 SRes res;
2219 CSeqOutStreamBuf outStream;
2221 outStream.funcTable.Write = MyWrite;
2222 outStream.data = dest;
2223 outStream.rem = *destLen;
2224 outStream.overflow = False;
2226 p->writeEndMark = False;
2227 p->finished = False;
2228 p->result = SZ_OK;
2230 if (reInit)
2231 LzmaEnc_Init(p);
2232 LzmaEnc_InitPrices(p);
2233 nowPos64 = p->nowPos64;
2234 RangeEnc_Init(&p->rc);
2235 p->rc.outStream = &outStream.funcTable;
2237 res = LzmaEnc_CodeOneBlock(pp, True, desiredPackSize, *unpackSize);
2239 *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2240 *destLen -= outStream.rem;
2241 if (outStream.overflow)
2242 return SZ_ERROR_OUTPUT_EOF;
2244 return res;
2247 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2248 ISzAlloc *alloc, ISzAlloc *allocBig)
2250 CLzmaEnc *p = (CLzmaEnc *)pp;
2251 SRes res = SZ_OK;
2253 #ifdef COMPRESS_MF_MT
2254 Byte allocaDummy[0x300];
2255 int i = 0;
2256 for (i = 0; i < 16; i++)
2257 allocaDummy[i] = (Byte)i;
2258 #endif
2260 RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig));
2262 for (;;)
2264 res = LzmaEnc_CodeOneBlock(pp, False, 0, 0);
2265 if (res != SZ_OK || p->finished != 0)
2266 break;
2267 if (progress != 0)
2269 res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2270 if (res != SZ_OK)
2272 res = SZ_ERROR_PROGRESS;
2273 break;
2277 LzmaEnc_Finish(pp);
2278 return res;
2281 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2283 CLzmaEnc *p = (CLzmaEnc *)pp;
2284 int i;
2285 UInt32 dictSize = p->dictSize;
2286 if (*size < LZMA_PROPS_SIZE)
2287 return SZ_ERROR_PARAM;
2288 *size = LZMA_PROPS_SIZE;
2289 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2291 for (i = 11; i <= 30; i++)
2293 if (dictSize <= ((UInt32)2 << i))
2295 dictSize = (2 << i);
2296 break;
2298 if (dictSize <= ((UInt32)3 << i))
2300 dictSize = (3 << i);
2301 break;
2305 for (i = 0; i < 4; i++)
2306 props[1 + i] = (Byte)(dictSize >> (8 * i));
2307 return SZ_OK;
2310 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2311 int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2313 SRes res;
2314 CLzmaEnc *p = (CLzmaEnc *)pp;
2316 CSeqOutStreamBuf outStream;
2318 LzmaEnc_SetInputBuf(p, src, srcLen);
2320 outStream.funcTable.Write = MyWrite;
2321 outStream.data = dest;
2322 outStream.rem = *destLen;
2323 outStream.overflow = False;
2325 p->writeEndMark = writeEndMark;
2326 res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable,
2327 progress, alloc, allocBig);
2329 *destLen -= outStream.rem;
2330 if (outStream.overflow)
2331 return SZ_ERROR_OUTPUT_EOF;
2332 return res;
2335 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2336 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2337 ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2339 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2340 SRes res;
2341 if (p == 0)
2342 return SZ_ERROR_MEM;
2344 res = LzmaEnc_SetProps(p, props);
2345 if (res == SZ_OK)
2347 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2348 if (res == SZ_OK)
2349 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2350 writeEndMark, progress, alloc, allocBig);
2353 LzmaEnc_Destroy(p, alloc, allocBig);
2354 return res;