1 /* @(#)k_sin.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
14 static char rcsid
[] = "$FreeBSD: src/lib/msun/src/k_sin.c,v 1.5 1999/08/28 00:06:41 peter Exp $";
17 /* __kernel_sin( x, y, iy)
18 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
19 * Input x is assumed to be bounded by ~pi/4 in magnitude.
20 * Input y is the tail of x.
21 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
24 * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
25 * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
26 * 3. sin(x) is approximated by a polynomial of degree 13 on
29 * sin(x) ~ x + S1*x + ... + S6*x
32 * |sin(x) 2 4 6 8 10 12 | -58
33 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
36 * 4. sin(x+y) = sin(x) + sin'(x')*y
37 * ~ sin(x) + (1-x*x/2)*y
38 * For better accuracy, let
40 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
42 * sin(x) = x + (S1*x + (x *(r-y/2)+y))
46 #include "math_private.h"
53 half
= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
54 S1
= -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
55 S2
= 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
56 S3
= -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
57 S4
= 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
58 S5
= -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
59 S6
= 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
62 double __kernel_sin(double x
, double y
, int iy
)
64 double __kernel_sin(x
, y
, iy
)
65 double x
,y
; int iy
; /* iy=0 if y is zero */
71 ix
&= 0x7fffffff; /* high word of x */
72 if(ix
<0x3e400000) /* |x| < 2**-27 */
73 {if((int)x
==0) return x
;} /* generate inexact */
76 r
= S2
+z
*(S3
+z
*(S4
+z
*(S5
+z
*S6
)));
77 if(iy
==0) return x
+v
*(S1
+z
*r
);
78 else return x
-((z
*(half
*y
-v
*r
)-y
)-v
*S1
);