Fixed a few warnings.
[tangerine.git] / compiler / libjpeg / test / transupp.c
blob7224e2dadbbd300ecbcc02d6c382be7943d43495
1 /*
2 $Id$
3 */
5 /*
6 * transupp.c
8 * Copyright (C) 1997-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains image transformation routines and other utility code
13 * used by the jpegtran sample application. These are NOT part of the core
14 * JPEG library. But we keep these routines separate from jpegtran.c to
15 * ease the task of maintaining jpegtran-like programs that have other user
16 * interfaces.
19 /* Although this file really shouldn't have access to the library internals,
20 * it's helpful to let it call jround_up() and jcopy_block_row().
22 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "transupp.h" /* My own external interface */
29 #if TRANSFORMS_SUPPORTED
32 * Lossless image transformation routines. These routines work on DCT
33 * coefficient arrays and thus do not require any lossy decompression
34 * or recompression of the image.
35 * Thanks to Guido Vollbeding for the initial design and code of this feature.
37 * Horizontal flipping is done in-place, using a single top-to-bottom
38 * pass through the virtual source array. It will thus be much the
39 * fastest option for images larger than main memory.
41 * The other routines require a set of destination virtual arrays, so they
42 * need twice as much memory as jpegtran normally does. The destination
43 * arrays are always written in normal scan order (top to bottom) because
44 * the virtual array manager expects this. The source arrays will be scanned
45 * in the corresponding order, which means multiple passes through the source
46 * arrays for most of the transforms. That could result in much thrashing
47 * if the image is larger than main memory.
49 * Some notes about the operating environment of the individual transform
50 * routines:
51 * 1. Both the source and destination virtual arrays are allocated from the
52 * source JPEG object, and therefore should be manipulated by calling the
53 * source's memory manager.
54 * 2. The destination's component count should be used. It may be smaller
55 * than the source's when forcing to grayscale.
56 * 3. Likewise the destination's sampling factors should be used. When
57 * forcing to grayscale the destination's sampling factors will be all 1,
58 * and we may as well take that as the effective iMCU size.
59 * 4. When "trim" is in effect, the destination's dimensions will be the
60 * trimmed values but the source's will be untrimmed.
61 * 5. All the routines assume that the source and destination buffers are
62 * padded out to a full iMCU boundary. This is true, although for the
63 * source buffer it is an undocumented property of jdcoefct.c.
64 * Notes 2,3,4 boil down to this: generally we should use the destination's
65 * dimensions and ignore the source's.
69 LOCAL(void)
70 do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
71 jvirt_barray_ptr *src_coef_arrays)
72 /* Horizontal flip; done in-place, so no separate dest array is required */
74 JDIMENSION MCU_cols, comp_width, blk_x, blk_y;
75 int ci, k, offset_y;
76 JBLOCKARRAY buffer;
77 JCOEFPTR ptr1, ptr2;
78 JCOEF temp1, temp2;
79 jpeg_component_info *compptr;
81 /* Horizontal mirroring of DCT blocks is accomplished by swapping
82 * pairs of blocks in-place. Within a DCT block, we perform horizontal
83 * mirroring by changing the signs of odd-numbered columns.
84 * Partial iMCUs at the right edge are left untouched.
86 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
88 for (ci = 0; ci < dstinfo->num_components; ci++) {
89 compptr = dstinfo->comp_info + ci;
90 comp_width = MCU_cols * compptr->h_samp_factor;
91 for (blk_y = 0; blk_y < compptr->height_in_data_units;
92 blk_y += compptr->v_samp_factor) {
93 buffer = (*srcinfo->mem->access_virt_barray)
94 ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
95 (JDIMENSION) compptr->v_samp_factor, TRUE);
96 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
97 for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
98 ptr1 = buffer[offset_y][blk_x];
99 ptr2 = buffer[offset_y][comp_width - blk_x - 1];
100 /* this unrolled loop doesn't need to know which row it's on... */
101 for (k = 0; k < DCTSIZE2; k += 2) {
102 temp1 = *ptr1; /* swap even column */
103 temp2 = *ptr2;
104 *ptr1++ = temp2;
105 *ptr2++ = temp1;
106 temp1 = *ptr1; /* swap odd column with sign change */
107 temp2 = *ptr2;
108 *ptr1++ = -temp2;
109 *ptr2++ = -temp1;
118 LOCAL(void)
119 do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
120 jvirt_barray_ptr *src_coef_arrays,
121 jvirt_barray_ptr *dst_coef_arrays)
122 /* Vertical flip */
124 JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
125 int ci, i, j, offset_y;
126 JBLOCKARRAY src_buffer, dst_buffer;
127 JBLOCKROW src_row_ptr, dst_row_ptr;
128 JCOEFPTR src_ptr, dst_ptr;
129 jpeg_component_info *compptr;
131 /* We output into a separate array because we can't touch different
132 * rows of the source virtual array simultaneously. Otherwise, this
133 * is a pretty straightforward analog of horizontal flip.
134 * Within a DCT block, vertical mirroring is done by changing the signs
135 * of odd-numbered rows.
136 * Partial iMCUs at the bottom edge are copied verbatim.
138 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
140 for (ci = 0; ci < dstinfo->num_components; ci++) {
141 compptr = dstinfo->comp_info + ci;
142 comp_height = MCU_rows * compptr->v_samp_factor;
143 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
144 dst_blk_y += compptr->v_samp_factor) {
145 dst_buffer = (*srcinfo->mem->access_virt_barray)
146 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
147 (JDIMENSION) compptr->v_samp_factor, TRUE);
148 if (dst_blk_y < comp_height) {
149 /* Row is within the mirrorable area. */
150 src_buffer = (*srcinfo->mem->access_virt_barray)
151 ((j_common_ptr) srcinfo, src_coef_arrays[ci],
152 comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
153 (JDIMENSION) compptr->v_samp_factor, FALSE);
154 } else {
155 /* Bottom-edge blocks will be copied verbatim. */
156 src_buffer = (*srcinfo->mem->access_virt_barray)
157 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
158 (JDIMENSION) compptr->v_samp_factor, FALSE);
160 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
161 if (dst_blk_y < comp_height) {
162 /* Row is within the mirrorable area. */
163 dst_row_ptr = dst_buffer[offset_y];
164 src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
165 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_data_units;
166 dst_blk_x++) {
167 dst_ptr = dst_row_ptr[dst_blk_x];
168 src_ptr = src_row_ptr[dst_blk_x];
169 for (i = 0; i < DCTSIZE; i += 2) {
170 /* copy even row */
171 for (j = 0; j < DCTSIZE; j++)
172 *dst_ptr++ = *src_ptr++;
173 /* copy odd row with sign change */
174 for (j = 0; j < DCTSIZE; j++)
175 *dst_ptr++ = - *src_ptr++;
178 } else {
179 /* Just copy row verbatim. */
180 jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y],
181 compptr->width_in_data_units);
189 LOCAL(void)
190 do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
191 jvirt_barray_ptr *src_coef_arrays,
192 jvirt_barray_ptr *dst_coef_arrays)
193 /* Transpose source into destination */
195 JDIMENSION dst_blk_x, dst_blk_y;
196 int ci, i, j, offset_x, offset_y;
197 JBLOCKARRAY src_buffer, dst_buffer;
198 JCOEFPTR src_ptr, dst_ptr;
199 jpeg_component_info *compptr;
201 /* Transposing pixels within a block just requires transposing the
202 * DCT coefficients.
203 * Partial iMCUs at the edges require no special treatment; we simply
204 * process all the available DCT blocks for every component.
206 for (ci = 0; ci < dstinfo->num_components; ci++) {
207 compptr = dstinfo->comp_info + ci;
208 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
209 dst_blk_y += compptr->v_samp_factor) {
210 dst_buffer = (*srcinfo->mem->access_virt_barray)
211 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
212 (JDIMENSION) compptr->v_samp_factor, TRUE);
213 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
214 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_data_units;
215 dst_blk_x += compptr->h_samp_factor) {
216 src_buffer = (*srcinfo->mem->access_virt_barray)
217 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
218 (JDIMENSION) compptr->h_samp_factor, FALSE);
219 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
220 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
221 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
222 for (i = 0; i < DCTSIZE; i++)
223 for (j = 0; j < DCTSIZE; j++)
224 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
233 LOCAL(void)
234 do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
235 jvirt_barray_ptr *src_coef_arrays,
236 jvirt_barray_ptr *dst_coef_arrays)
237 /* 90 degree rotation is equivalent to
238 * 1. Transposing the image;
239 * 2. Horizontal mirroring.
240 * These two steps are merged into a single processing routine.
243 JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
244 int ci, i, j, offset_x, offset_y;
245 JBLOCKARRAY src_buffer, dst_buffer;
246 JCOEFPTR src_ptr, dst_ptr;
247 jpeg_component_info *compptr;
249 /* Because of the horizontal mirror step, we can't process partial iMCUs
250 * at the (output) right edge properly. They just get transposed and
251 * not mirrored.
253 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
255 for (ci = 0; ci < dstinfo->num_components; ci++) {
256 compptr = dstinfo->comp_info + ci;
257 comp_width = MCU_cols * compptr->h_samp_factor;
258 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
259 dst_blk_y += compptr->v_samp_factor) {
260 dst_buffer = (*srcinfo->mem->access_virt_barray)
261 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
262 (JDIMENSION) compptr->v_samp_factor, TRUE);
263 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
264 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_data_units;
265 dst_blk_x += compptr->h_samp_factor) {
266 src_buffer = (*srcinfo->mem->access_virt_barray)
267 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
268 (JDIMENSION) compptr->h_samp_factor, FALSE);
269 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
270 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
271 if (dst_blk_x < comp_width) {
272 /* Block is within the mirrorable area. */
273 dst_ptr = dst_buffer[offset_y]
274 [comp_width - dst_blk_x - offset_x - 1];
275 for (i = 0; i < DCTSIZE; i++) {
276 for (j = 0; j < DCTSIZE; j++)
277 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
278 i++;
279 for (j = 0; j < DCTSIZE; j++)
280 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
282 } else {
283 /* Edge blocks are transposed but not mirrored. */
284 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
285 for (i = 0; i < DCTSIZE; i++)
286 for (j = 0; j < DCTSIZE; j++)
287 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
297 LOCAL(void)
298 do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
299 jvirt_barray_ptr *src_coef_arrays,
300 jvirt_barray_ptr *dst_coef_arrays)
301 /* 270 degree rotation is equivalent to
302 * 1. Horizontal mirroring;
303 * 2. Transposing the image.
304 * These two steps are merged into a single processing routine.
307 JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
308 int ci, i, j, offset_x, offset_y;
309 JBLOCKARRAY src_buffer, dst_buffer;
310 JCOEFPTR src_ptr, dst_ptr;
311 jpeg_component_info *compptr;
313 /* Because of the horizontal mirror step, we can't process partial iMCUs
314 * at the (output) bottom edge properly. They just get transposed and
315 * not mirrored.
317 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
319 for (ci = 0; ci < dstinfo->num_components; ci++) {
320 compptr = dstinfo->comp_info + ci;
321 comp_height = MCU_rows * compptr->v_samp_factor;
322 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
323 dst_blk_y += compptr->v_samp_factor) {
324 dst_buffer = (*srcinfo->mem->access_virt_barray)
325 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
326 (JDIMENSION) compptr->v_samp_factor, TRUE);
327 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
328 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_data_units;
329 dst_blk_x += compptr->h_samp_factor) {
330 src_buffer = (*srcinfo->mem->access_virt_barray)
331 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
332 (JDIMENSION) compptr->h_samp_factor, FALSE);
333 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
334 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
335 if (dst_blk_y < comp_height) {
336 /* Block is within the mirrorable area. */
337 src_ptr = src_buffer[offset_x]
338 [comp_height - dst_blk_y - offset_y - 1];
339 for (i = 0; i < DCTSIZE; i++) {
340 for (j = 0; j < DCTSIZE; j++) {
341 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
342 j++;
343 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
346 } else {
347 /* Edge blocks are transposed but not mirrored. */
348 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
349 for (i = 0; i < DCTSIZE; i++)
350 for (j = 0; j < DCTSIZE; j++)
351 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
361 LOCAL(void)
362 do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
363 jvirt_barray_ptr *src_coef_arrays,
364 jvirt_barray_ptr *dst_coef_arrays)
365 /* 180 degree rotation is equivalent to
366 * 1. Vertical mirroring;
367 * 2. Horizontal mirroring.
368 * These two steps are merged into a single processing routine.
371 JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
372 int ci, i, j, offset_y;
373 JBLOCKARRAY src_buffer, dst_buffer;
374 JBLOCKROW src_row_ptr, dst_row_ptr;
375 JCOEFPTR src_ptr, dst_ptr;
376 jpeg_component_info *compptr;
378 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
379 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
381 for (ci = 0; ci < dstinfo->num_components; ci++) {
382 compptr = dstinfo->comp_info + ci;
383 comp_width = MCU_cols * compptr->h_samp_factor;
384 comp_height = MCU_rows * compptr->v_samp_factor;
385 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
386 dst_blk_y += compptr->v_samp_factor) {
387 dst_buffer = (*srcinfo->mem->access_virt_barray)
388 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
389 (JDIMENSION) compptr->v_samp_factor, TRUE);
390 if (dst_blk_y < comp_height) {
391 /* Row is within the vertically mirrorable area. */
392 src_buffer = (*srcinfo->mem->access_virt_barray)
393 ((j_common_ptr) srcinfo, src_coef_arrays[ci],
394 comp_height - dst_blk_y - (JDIMENSION) compptr->v_samp_factor,
395 (JDIMENSION) compptr->v_samp_factor, FALSE);
396 } else {
397 /* Bottom-edge rows are only mirrored horizontally. */
398 src_buffer = (*srcinfo->mem->access_virt_barray)
399 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_y,
400 (JDIMENSION) compptr->v_samp_factor, FALSE);
402 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
403 if (dst_blk_y < comp_height) {
404 /* Row is within the mirrorable area. */
405 dst_row_ptr = dst_buffer[offset_y];
406 src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
407 /* Process the blocks that can be mirrored both ways. */
408 for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
409 dst_ptr = dst_row_ptr[dst_blk_x];
410 src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
411 for (i = 0; i < DCTSIZE; i += 2) {
412 /* For even row, negate every odd column. */
413 for (j = 0; j < DCTSIZE; j += 2) {
414 *dst_ptr++ = *src_ptr++;
415 *dst_ptr++ = - *src_ptr++;
417 /* For odd row, negate every even column. */
418 for (j = 0; j < DCTSIZE; j += 2) {
419 *dst_ptr++ = - *src_ptr++;
420 *dst_ptr++ = *src_ptr++;
424 /* Any remaining right-edge blocks are only mirrored vertically. */
425 for (; dst_blk_x < compptr->width_in_data_units; dst_blk_x++) {
426 dst_ptr = dst_row_ptr[dst_blk_x];
427 src_ptr = src_row_ptr[dst_blk_x];
428 for (i = 0; i < DCTSIZE; i += 2) {
429 for (j = 0; j < DCTSIZE; j++)
430 *dst_ptr++ = *src_ptr++;
431 for (j = 0; j < DCTSIZE; j++)
432 *dst_ptr++ = - *src_ptr++;
435 } else {
436 /* Remaining rows are just mirrored horizontally. */
437 dst_row_ptr = dst_buffer[offset_y];
438 src_row_ptr = src_buffer[offset_y];
439 /* Process the blocks that can be mirrored. */
440 for (dst_blk_x = 0; dst_blk_x < comp_width; dst_blk_x++) {
441 dst_ptr = dst_row_ptr[dst_blk_x];
442 src_ptr = src_row_ptr[comp_width - dst_blk_x - 1];
443 for (i = 0; i < DCTSIZE2; i += 2) {
444 *dst_ptr++ = *src_ptr++;
445 *dst_ptr++ = - *src_ptr++;
448 /* Any remaining right-edge blocks are only copied. */
449 for (; dst_blk_x < compptr->width_in_data_units; dst_blk_x++) {
450 dst_ptr = dst_row_ptr[dst_blk_x];
451 src_ptr = src_row_ptr[dst_blk_x];
452 for (i = 0; i < DCTSIZE2; i++)
453 *dst_ptr++ = *src_ptr++;
462 LOCAL(void)
463 do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
464 jvirt_barray_ptr *src_coef_arrays,
465 jvirt_barray_ptr *dst_coef_arrays)
466 /* Transverse transpose is equivalent to
467 * 1. 180 degree rotation;
468 * 2. Transposition;
469 * or
470 * 1. Horizontal mirroring;
471 * 2. Transposition;
472 * 3. Horizontal mirroring.
473 * These steps are merged into a single processing routine.
476 JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
477 int ci, i, j, offset_x, offset_y;
478 JBLOCKARRAY src_buffer, dst_buffer;
479 JCOEFPTR src_ptr, dst_ptr;
480 jpeg_component_info *compptr;
482 MCU_cols = dstinfo->image_width / (dstinfo->max_h_samp_factor * DCTSIZE);
483 MCU_rows = dstinfo->image_height / (dstinfo->max_v_samp_factor * DCTSIZE);
485 for (ci = 0; ci < dstinfo->num_components; ci++) {
486 compptr = dstinfo->comp_info + ci;
487 comp_width = MCU_cols * compptr->h_samp_factor;
488 comp_height = MCU_rows * compptr->v_samp_factor;
489 for (dst_blk_y = 0; dst_blk_y < compptr->height_in_data_units;
490 dst_blk_y += compptr->v_samp_factor) {
491 dst_buffer = (*srcinfo->mem->access_virt_barray)
492 ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
493 (JDIMENSION) compptr->v_samp_factor, TRUE);
494 for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
495 for (dst_blk_x = 0; dst_blk_x < compptr->width_in_data_units;
496 dst_blk_x += compptr->h_samp_factor) {
497 src_buffer = (*srcinfo->mem->access_virt_barray)
498 ((j_common_ptr) srcinfo, src_coef_arrays[ci], dst_blk_x,
499 (JDIMENSION) compptr->h_samp_factor, FALSE);
500 for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
501 if (dst_blk_y < comp_height) {
502 src_ptr = src_buffer[offset_x]
503 [comp_height - dst_blk_y - offset_y - 1];
504 if (dst_blk_x < comp_width) {
505 /* Block is within the mirrorable area. */
506 dst_ptr = dst_buffer[offset_y]
507 [comp_width - dst_blk_x - offset_x - 1];
508 for (i = 0; i < DCTSIZE; i++) {
509 for (j = 0; j < DCTSIZE; j++) {
510 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
511 j++;
512 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
514 i++;
515 for (j = 0; j < DCTSIZE; j++) {
516 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
517 j++;
518 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
521 } else {
522 /* Right-edge blocks are mirrored in y only */
523 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
524 for (i = 0; i < DCTSIZE; i++) {
525 for (j = 0; j < DCTSIZE; j++) {
526 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
527 j++;
528 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
532 } else {
533 src_ptr = src_buffer[offset_x][dst_blk_y + offset_y];
534 if (dst_blk_x < comp_width) {
535 /* Bottom-edge blocks are mirrored in x only */
536 dst_ptr = dst_buffer[offset_y]
537 [comp_width - dst_blk_x - offset_x - 1];
538 for (i = 0; i < DCTSIZE; i++) {
539 for (j = 0; j < DCTSIZE; j++)
540 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
541 i++;
542 for (j = 0; j < DCTSIZE; j++)
543 dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
545 } else {
546 /* At lower right corner, just transpose, no mirroring */
547 dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
548 for (i = 0; i < DCTSIZE; i++)
549 for (j = 0; j < DCTSIZE; j++)
550 dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
561 /* Request any required workspace.
563 * We allocate the workspace virtual arrays from the source decompression
564 * object, so that all the arrays (both the original data and the workspace)
565 * will be taken into account while making memory management decisions.
566 * Hence, this routine must be called after jpeg_read_header (which reads
567 * the image dimensions) and before jpeg_read_coefficients (which realizes
568 * the source's virtual arrays).
571 JGLOBAL(void)
572 jtransform_request_workspace (j_decompress_ptr srcinfo,
573 jpeg_transform_info *info)
575 jvirt_barray_ptr *coef_arrays = NULL;
576 jpeg_component_info *compptr;
577 int ci;
579 if (info->force_grayscale &&
580 srcinfo->jpeg_color_space == JCS_YCbCr &&
581 srcinfo->num_components == 3) {
582 /* We'll only process the first component */
583 info->num_components = 1;
584 } else {
585 /* Process all the components */
586 info->num_components = srcinfo->num_components;
589 switch (info->transform) {
590 case JXFORM_NONE:
591 case JXFORM_FLIP_H:
592 /* Don't need a workspace array */
593 break;
594 case JXFORM_FLIP_V:
595 case JXFORM_ROT_180:
596 /* Need workspace arrays having same dimensions as source image.
597 * Note that we allocate arrays padded out to the next iMCU boundary,
598 * so that transform routines need not worry about missing edge blocks.
600 coef_arrays = (jvirt_barray_ptr *)
601 (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
602 SIZEOF(jvirt_barray_ptr) * info->num_components);
603 for (ci = 0; ci < info->num_components; ci++) {
604 compptr = srcinfo->comp_info + ci;
605 coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
606 ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
607 (JDIMENSION) jround_up((long) compptr->width_in_data_units,
608 (long) compptr->h_samp_factor),
609 (JDIMENSION) jround_up((long) compptr->height_in_data_units,
610 (long) compptr->v_samp_factor),
611 (JDIMENSION) compptr->v_samp_factor);
613 break;
614 case JXFORM_TRANSPOSE:
615 case JXFORM_TRANSVERSE:
616 case JXFORM_ROT_90:
617 case JXFORM_ROT_270:
618 /* Need workspace arrays having transposed dimensions.
619 * Note that we allocate arrays padded out to the next iMCU boundary,
620 * so that transform routines need not worry about missing edge blocks.
622 coef_arrays = (jvirt_barray_ptr *)
623 (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
624 SIZEOF(jvirt_barray_ptr) * info->num_components);
625 for (ci = 0; ci < info->num_components; ci++) {
626 compptr = srcinfo->comp_info + ci;
627 coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
628 ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
629 (JDIMENSION) jround_up((long) compptr->height_in_data_units,
630 (long) compptr->v_samp_factor),
631 (JDIMENSION) jround_up((long) compptr->width_in_data_units,
632 (long) compptr->h_samp_factor),
633 (JDIMENSION) compptr->h_samp_factor);
635 break;
637 info->workspace_coef_arrays = coef_arrays;
641 /* Transpose destination image parameters */
643 LOCAL(void)
644 transpose_critical_parameters (j_compress_ptr dstinfo)
646 int tblno, i, j, ci, itemp;
647 jpeg_component_info *compptr;
648 JQUANT_TBL *qtblptr;
649 JDIMENSION dtemp;
650 UINT16 qtemp;
652 /* Transpose basic image dimensions */
653 dtemp = dstinfo->image_width;
654 dstinfo->image_width = dstinfo->image_height;
655 dstinfo->image_height = dtemp;
657 /* Transpose sampling factors */
658 for (ci = 0; ci < dstinfo->num_components; ci++) {
659 compptr = dstinfo->comp_info + ci;
660 itemp = compptr->h_samp_factor;
661 compptr->h_samp_factor = compptr->v_samp_factor;
662 compptr->v_samp_factor = itemp;
665 /* Transpose quantization tables */
666 for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
667 qtblptr = dstinfo->quant_tbl_ptrs[tblno];
668 if (qtblptr != NULL) {
669 for (i = 0; i < DCTSIZE; i++) {
670 for (j = 0; j < i; j++) {
671 qtemp = qtblptr->quantval[i*DCTSIZE+j];
672 qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
673 qtblptr->quantval[j*DCTSIZE+i] = qtemp;
681 /* Trim off any partial iMCUs on the indicated destination edge */
683 LOCAL(void)
684 trim_right_edge (j_compress_ptr dstinfo)
686 int ci, max_h_samp_factor;
687 JDIMENSION MCU_cols;
689 /* We have to compute max_h_samp_factor ourselves,
690 * because it hasn't been set yet in the destination
691 * (and we don't want to use the source's value).
693 max_h_samp_factor = 1;
694 for (ci = 0; ci < dstinfo->num_components; ci++) {
695 int h_samp_factor = dstinfo->comp_info[ci].h_samp_factor;
696 max_h_samp_factor = MAX(max_h_samp_factor, h_samp_factor);
698 MCU_cols = dstinfo->image_width / (max_h_samp_factor * DCTSIZE);
699 if (MCU_cols > 0) /* can't trim to 0 pixels */
700 dstinfo->image_width = MCU_cols * (max_h_samp_factor * DCTSIZE);
703 LOCAL(void)
704 trim_bottom_edge (j_compress_ptr dstinfo)
706 int ci, max_v_samp_factor;
707 JDIMENSION MCU_rows;
709 /* We have to compute max_v_samp_factor ourselves,
710 * because it hasn't been set yet in the destination
711 * (and we don't want to use the source's value).
713 max_v_samp_factor = 1;
714 for (ci = 0; ci < dstinfo->num_components; ci++) {
715 int v_samp_factor = dstinfo->comp_info[ci].v_samp_factor;
716 max_v_samp_factor = MAX(max_v_samp_factor, v_samp_factor);
718 MCU_rows = dstinfo->image_height / (max_v_samp_factor * DCTSIZE);
719 if (MCU_rows > 0) /* can't trim to 0 pixels */
720 dstinfo->image_height = MCU_rows * (max_v_samp_factor * DCTSIZE);
724 /* Adjust output image parameters as needed.
726 * This must be called after jpeg_copy_critical_parameters()
727 * and before jpeg_write_coefficients().
729 * The return value is the set of virtual coefficient arrays to be written
730 * (either the ones allocated by jtransform_request_workspace, or the
731 * original source data arrays). The caller will need to pass this value
732 * to jpeg_write_coefficients().
735 JGLOBAL(jvirt_barray_ptr *)
736 jtransform_adjust_parameters (j_decompress_ptr srcinfo,
737 j_compress_ptr dstinfo,
738 jvirt_barray_ptr *src_coef_arrays,
739 jpeg_transform_info *info)
741 /* If force-to-grayscale is requested, adjust destination parameters */
742 if (info->force_grayscale) {
743 /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
744 * properly. Among other things, the target h_samp_factor & v_samp_factor
745 * will get set to 1, which typically won't match the source.
746 * In fact we do this even if the source is already grayscale; that
747 * provides an easy way of coercing a grayscale JPEG with funny sampling
748 * factors to the customary 1,1. (Some decoders fail on other factors.)
750 if ((dstinfo->jpeg_color_space == JCS_YCbCr &&
751 dstinfo->num_components == 3) ||
752 (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
753 dstinfo->num_components == 1)) {
754 /* We have to preserve the source's quantization table number. */
755 int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
756 jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
757 dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
758 } else {
759 /* Sorry, can't do it */
760 ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
764 /* Correct the destination's image dimensions etc if necessary */
765 switch (info->transform) {
766 case JXFORM_NONE:
767 /* Nothing to do */
768 break;
769 case JXFORM_FLIP_H:
770 if (info->trim)
771 trim_right_edge(dstinfo);
772 break;
773 case JXFORM_FLIP_V:
774 if (info->trim)
775 trim_bottom_edge(dstinfo);
776 break;
777 case JXFORM_TRANSPOSE:
778 transpose_critical_parameters(dstinfo);
779 /* transpose does NOT have to trim anything */
780 break;
781 case JXFORM_TRANSVERSE:
782 transpose_critical_parameters(dstinfo);
783 if (info->trim) {
784 trim_right_edge(dstinfo);
785 trim_bottom_edge(dstinfo);
787 break;
788 case JXFORM_ROT_90:
789 transpose_critical_parameters(dstinfo);
790 if (info->trim)
791 trim_right_edge(dstinfo);
792 break;
793 case JXFORM_ROT_180:
794 if (info->trim) {
795 trim_right_edge(dstinfo);
796 trim_bottom_edge(dstinfo);
798 break;
799 case JXFORM_ROT_270:
800 transpose_critical_parameters(dstinfo);
801 if (info->trim)
802 trim_bottom_edge(dstinfo);
803 break;
806 /* Return the appropriate output data set */
807 if (info->workspace_coef_arrays != NULL)
808 return info->workspace_coef_arrays;
809 return src_coef_arrays;
813 /* Execute the actual transformation, if any.
815 * This must be called *after* jpeg_write_coefficients, because it depends
816 * on jpeg_write_coefficients to have computed subsidiary values such as
817 * the per-component width and height fields in the destination object.
819 * Note that some transformations will modify the source data arrays!
822 JGLOBAL(void)
823 jtransform_execute_transformation (j_decompress_ptr srcinfo,
824 j_compress_ptr dstinfo,
825 jvirt_barray_ptr *src_coef_arrays,
826 jpeg_transform_info *info)
828 jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
830 switch (info->transform) {
831 case JXFORM_NONE:
832 break;
833 case JXFORM_FLIP_H:
834 do_flip_h(srcinfo, dstinfo, src_coef_arrays);
835 break;
836 case JXFORM_FLIP_V:
837 do_flip_v(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
838 break;
839 case JXFORM_TRANSPOSE:
840 do_transpose(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
841 break;
842 case JXFORM_TRANSVERSE:
843 do_transverse(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
844 break;
845 case JXFORM_ROT_90:
846 do_rot_90(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
847 break;
848 case JXFORM_ROT_180:
849 do_rot_180(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
850 break;
851 case JXFORM_ROT_270:
852 do_rot_270(srcinfo, dstinfo, src_coef_arrays, dst_coef_arrays);
853 break;
857 #endif /* TRANSFORMS_SUPPORTED */
860 /* Setup decompression object to save desired markers in memory.
861 * This must be called before jpeg_read_header() to have the desired effect.
864 JGLOBAL(void)
865 jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
867 #ifdef SAVE_MARKERS_SUPPORTED
868 int m;
870 /* Save comments except under NONE option */
871 if (option != JCOPYOPT_NONE) {
872 jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
874 /* Save all types of APPn markers iff ALL option */
875 if (option == JCOPYOPT_ALL) {
876 for (m = 0; m < 16; m++)
877 jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
879 #endif /* SAVE_MARKERS_SUPPORTED */
882 /* Copy markers saved in the given source object to the destination object.
883 * This should be called just after jpeg_start_compress() or
884 * jpeg_write_coefficients().
885 * Note that those routines will have written the SOI, and also the
886 * JFIF APP0 or Adobe APP14 markers if selected.
889 JGLOBAL(void)
890 jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
891 JCOPY_OPTION option)
893 jpeg_saved_marker_ptr marker;
895 /* In the current implementation, we don't actually need to examine the
896 * option flag here; we just copy everything that got saved.
897 * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
898 * if the encoder library already wrote one.
900 for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
901 if (dstinfo->write_JFIF_header &&
902 marker->marker == JPEG_APP0 &&
903 marker->data_length >= 5 &&
904 GETJOCTET(marker->data[0]) == 0x4A &&
905 GETJOCTET(marker->data[1]) == 0x46 &&
906 GETJOCTET(marker->data[2]) == 0x49 &&
907 GETJOCTET(marker->data[3]) == 0x46 &&
908 GETJOCTET(marker->data[4]) == 0)
909 continue; /* reject duplicate JFIF */
910 if (dstinfo->write_Adobe_marker &&
911 marker->marker == JPEG_APP0+14 &&
912 marker->data_length >= 5 &&
913 GETJOCTET(marker->data[0]) == 0x41 &&
914 GETJOCTET(marker->data[1]) == 0x64 &&
915 GETJOCTET(marker->data[2]) == 0x6F &&
916 GETJOCTET(marker->data[3]) == 0x62 &&
917 GETJOCTET(marker->data[4]) == 0x65)
918 continue; /* reject duplicate Adobe */
919 #ifdef NEED_FAR_POINTERS
920 /* We could use jpeg_write_marker if the data weren't FAR... */
922 unsigned int i;
923 jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
924 for (i = 0; i < marker->data_length; i++)
925 jpeg_write_m_byte(dstinfo, marker->data[i]);
927 #else
928 jpeg_write_marker(dstinfo, marker->marker,
929 marker->data, marker->data_length);
930 #endif