Fixed a few warnings.
[tangerine.git] / compiler / mlib / k_tanf.c
blobaa7f4f62ac75645ac623b0932d734c36d9ba5187
1 /* k_tanf.c -- float version of k_tan.c
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 * Optimized by Bruce D. Evans.
4 */
6 /*
7 * ====================================================
8 * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #ifndef INLINE_KERNEL_TANDF
17 #ifndef lint
18 static char rcsid[] = "$FreeBSD: src/lib/msun/src/k_tanf.c,v 1.20 2005/11/28 11:46:20 bde Exp $";
19 #endif
20 #endif
22 #include "math.h"
23 #include "math_private.h"
25 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
26 static const double
27 T[] = {
28 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
29 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
30 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
31 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
32 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
33 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
36 #ifdef INLINE_KERNEL_TANDF
37 extern inline
38 #endif
39 float
40 __kernel_tandf(double x, int iy)
42 double z,r,w,s,t,u;
44 z = x*x;
46 * Split up the polynomial into small independent terms to give
47 * opportunities for parallel evaluation. The chosen splitting is
48 * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
49 * relative to Horner's method on sequential machines.
51 * We add the small terms from lowest degree up for efficiency on
52 * non-sequential machines (the lowest degree terms tend to be ready
53 * earlier). Apart from this, we don't care about order of
54 * operations, and don't need to to care since we have precision to
55 * spare. However, the chosen splitting is good for accuracy too,
56 * and would give results as accurate as Horner's method if the
57 * small terms were added from highest degree down.
59 r = T[4]+z*T[5];
60 t = T[2]+z*T[3];
61 w = z*z;
62 s = z*x;
63 u = T[0]+z*T[1];
64 r = (x+s*u)+(s*w)*(t+w*r);
65 if(iy==1) return r;
66 else return -1.0/r;