Fixed a few warnings.
[tangerine.git] / compiler / mlib / s_fma.c
blob6ed5698e3955500bedb93b0f78e7e9c7ab70a9cf
1 /*-
2 * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $");
30 #include <fenv.h>
31 #include <float.h>
32 #include <math.h>
35 * Fused multiply-add: Compute x * y + z with a single rounding error.
37 * We use scaling to avoid overflow/underflow, along with the
38 * canonical precision-doubling technique adapted from:
40 * Dekker, T. A Floating-Point Technique for Extending the
41 * Available Precision. Numer. Math. 18, 224-242 (1971).
43 * This algorithm is sensitive to the rounding precision. FPUs such
44 * as the i387 must be set in double-precision mode if variables are
45 * to be stored in FP registers in order to avoid incorrect results.
46 * This is the default on FreeBSD, but not on many other systems.
48 * Hardware instructions should be used on architectures that support it,
49 * since this implementation will likely be several times slower.
51 #if LDBL_MANT_DIG != 113
52 double
53 fma(double x, double y, double z)
55 static const double split = 0x1p27 + 1.0;
56 double xs, ys, zs;
57 double c, cc, hx, hy, p, q, tx, ty;
58 double r, rr, s;
59 int oround;
60 int ex, ey, ez;
61 int spread;
63 if (z == 0.0)
64 return (x * y);
65 if (x == 0.0 || y == 0.0)
66 return (x * y + z);
68 /* Results of frexp() are undefined for these cases. */
69 if (!isfinite(x) || !isfinite(y) || !isfinite(z))
70 return (x * y + z);
72 xs = frexp(x, &ex);
73 ys = frexp(y, &ey);
74 zs = frexp(z, &ez);
75 oround = fegetround();
76 spread = ex + ey - ez;
79 * If x * y and z are many orders of magnitude apart, the scaling
80 * will overflow, so we handle these cases specially. Rounding
81 * modes other than FE_TONEAREST are painful.
83 if (spread > DBL_MANT_DIG * 2) {
84 fenv_t env;
85 feraiseexcept(FE_INEXACT);
86 switch(oround) {
87 case FE_TONEAREST:
88 return (x * y);
89 case FE_TOWARDZERO:
90 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
91 return (x * y);
92 feholdexcept(&env);
93 r = x * y;
94 if (!fetestexcept(FE_INEXACT))
95 r = nextafter(r, 0);
96 feupdateenv(&env);
97 return (r);
98 case FE_DOWNWARD:
99 if (z > 0.0)
100 return (x * y);
101 feholdexcept(&env);
102 r = x * y;
103 if (!fetestexcept(FE_INEXACT))
104 r = nextafter(r, -INFINITY);
105 feupdateenv(&env);
106 return (r);
107 default: /* FE_UPWARD */
108 if (z < 0.0)
109 return (x * y);
110 feholdexcept(&env);
111 r = x * y;
112 if (!fetestexcept(FE_INEXACT))
113 r = nextafter(r, INFINITY);
114 feupdateenv(&env);
115 return (r);
118 if (spread < -DBL_MANT_DIG) {
119 feraiseexcept(FE_INEXACT);
120 if (!isnormal(z))
121 feraiseexcept(FE_UNDERFLOW);
122 switch (oround) {
123 case FE_TONEAREST:
124 return (z);
125 case FE_TOWARDZERO:
126 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
127 return (z);
128 else
129 return (nextafter(z, 0));
130 case FE_DOWNWARD:
131 if (x > 0.0 ^ y < 0.0)
132 return (z);
133 else
134 return (nextafter(z, -INFINITY));
135 default: /* FE_UPWARD */
136 if (x > 0.0 ^ y < 0.0)
137 return (nextafter(z, INFINITY));
138 else
139 return (z);
144 * Use Dekker's algorithm to perform the multiplication and
145 * subsequent addition in twice the machine precision.
146 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
148 fesetround(FE_TONEAREST);
150 p = xs * split;
151 hx = xs - p;
152 hx += p;
153 tx = xs - hx;
155 p = ys * split;
156 hy = ys - p;
157 hy += p;
158 ty = ys - hy;
160 p = hx * hy;
161 q = hx * ty + tx * hy;
162 c = p + q;
163 cc = p - c + q + tx * ty;
165 zs = ldexp(zs, -spread);
166 r = c + zs;
167 s = r - c;
168 rr = (c - (r - s)) + (zs - s) + cc;
170 spread = ex + ey;
171 if (spread + ilogb(r) > -1023) {
172 fesetround(oround);
173 r = r + rr;
174 } else {
176 * The result is subnormal, so we round before scaling to
177 * avoid double rounding.
179 p = ldexp(copysign(0x1p-1022, r), -spread);
180 c = r + p;
181 s = c - r;
182 cc = (r - (c - s)) + (p - s) + rr;
183 fesetround(oround);
184 r = (c + cc) - p;
186 return (ldexp(r, spread));
188 #else /* LDBL_MANT_DIG == 113 */
190 * 113 bits of precision is more than twice the precision of a double,
191 * so it is enough to represent the intermediate product exactly.
193 double
194 fma(double x, double y, double z)
196 return ((long double)x * y + z);
198 #endif /* LDBL_MANT_DIG != 113 */
200 #if (LDBL_MANT_DIG == 53)
201 __weak_reference(fma, fmal);
202 #endif