New bitmap method SetRGBConversionFunction which can be used to
[tangerine.git] / compiler / mlib / e_jnf.c
blob08c807aa4f615b84f6776b9157614a94409803ad
1 /* e_jnf.c -- float version of e_jn.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #ifndef lint
17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.6 1999/08/28 00:06:34 peter Exp $";
18 #endif
20 #include "math.h"
21 #include "math_private.h"
23 #ifdef __STDC__
24 static const float
25 #else
26 static float
27 #endif
28 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
29 two = 2.0000000000e+00, /* 0x40000000 */
30 one = 1.0000000000e+00; /* 0x3F800000 */
32 #ifdef __STDC__
33 static const float zero = 0.0000000000e+00;
34 #else
35 static float zero = 0.0000000000e+00;
36 #endif
38 #ifdef __STDC__
39 float __ieee754_jnf(int n, float x)
40 #else
41 float __ieee754_jnf(n,x)
42 int n; float x;
43 #endif
45 int32_t i,hx,ix, sgn;
46 float a, b, temp, di;
47 float z, w;
49 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
50 * Thus, J(-n,x) = J(n,-x)
52 GET_FLOAT_WORD(hx,x);
53 ix = 0x7fffffff&hx;
54 /* if J(n,NaN) is NaN */
55 if(ix>0x7f800000) return x+x;
56 if(n<0){
57 n = -n;
58 x = -x;
59 hx ^= 0x80000000;
61 if(n==0) return(__ieee754_j0f(x));
62 if(n==1) return(__ieee754_j1f(x));
63 sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
64 x = fabsf(x);
65 if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
66 b = zero;
67 else if((float)n<=x) {
68 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
69 a = __ieee754_j0f(x);
70 b = __ieee754_j1f(x);
71 for(i=1;i<n;i++){
72 temp = b;
73 b = b*((float)(i+i)/x) - a; /* avoid underflow */
74 a = temp;
76 } else {
77 if(ix<0x30800000) { /* x < 2**-29 */
78 /* x is tiny, return the first Taylor expansion of J(n,x)
79 * J(n,x) = 1/n!*(x/2)^n - ...
81 if(n>33) /* underflow */
82 b = zero;
83 else {
84 temp = x*(float)0.5; b = temp;
85 for (a=one,i=2;i<=n;i++) {
86 a *= (float)i; /* a = n! */
87 b *= temp; /* b = (x/2)^n */
89 b = b/a;
91 } else {
92 /* use backward recurrence */
93 /* x x^2 x^2
94 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
95 * 2n - 2(n+1) - 2(n+2)
97 * 1 1 1
98 * (for large x) = ---- ------ ------ .....
99 * 2n 2(n+1) 2(n+2)
100 * -- - ------ - ------ -
101 * x x x
103 * Let w = 2n/x and h=2/x, then the above quotient
104 * is equal to the continued fraction:
106 * = -----------------------
108 * w - -----------------
110 * w+h - ---------
111 * w+2h - ...
113 * To determine how many terms needed, let
114 * Q(0) = w, Q(1) = w(w+h) - 1,
115 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
116 * When Q(k) > 1e4 good for single
117 * When Q(k) > 1e9 good for double
118 * When Q(k) > 1e17 good for quadruple
120 /* determine k */
121 float t,v;
122 float q0,q1,h,tmp; int32_t k,m;
123 w = (n+n)/(float)x; h = (float)2.0/(float)x;
124 q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
125 while(q1<(float)1.0e9) {
126 k += 1; z += h;
127 tmp = z*q1 - q0;
128 q0 = q1;
129 q1 = tmp;
131 m = n+n;
132 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
133 a = t;
134 b = one;
135 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
136 * Hence, if n*(log(2n/x)) > ...
137 * single 8.8722839355e+01
138 * double 7.09782712893383973096e+02
139 * long double 1.1356523406294143949491931077970765006170e+04
140 * then recurrent value may overflow and the result is
141 * likely underflow to zero
143 tmp = n;
144 v = two/x;
145 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
146 if(tmp<(float)8.8721679688e+01) {
147 for(i=n-1,di=(float)(i+i);i>0;i--){
148 temp = b;
149 b *= di;
150 b = b/x - a;
151 a = temp;
152 di -= two;
154 } else {
155 for(i=n-1,di=(float)(i+i);i>0;i--){
156 temp = b;
157 b *= di;
158 b = b/x - a;
159 a = temp;
160 di -= two;
161 /* scale b to avoid spurious overflow */
162 if(b>(float)1e10) {
163 a /= b;
164 t /= b;
165 b = one;
169 b = (t*__ieee754_j0f(x)/b);
172 if(sgn==1) return -b; else return b;
175 #ifdef __STDC__
176 float __ieee754_ynf(int n, float x)
177 #else
178 float __ieee754_ynf(n,x)
179 int n; float x;
180 #endif
182 int32_t i,hx,ix,ib;
183 int32_t sign;
184 float a, b, temp;
186 GET_FLOAT_WORD(hx,x);
187 ix = 0x7fffffff&hx;
188 /* if Y(n,NaN) is NaN */
189 if(ix>0x7f800000) return x+x;
190 if(ix==0) return -one/zero;
191 if(hx<0) return zero/zero;
192 sign = 1;
193 if(n<0){
194 n = -n;
195 sign = 1 - ((n&1)<<1);
197 if(n==0) return(__ieee754_y0f(x));
198 if(n==1) return(sign*__ieee754_y1f(x));
199 if(ix==0x7f800000) return zero;
201 a = __ieee754_y0f(x);
202 b = __ieee754_y1f(x);
203 /* quit if b is -inf */
204 GET_FLOAT_WORD(ib,b);
205 for(i=1;i<n&&ib!=0xff800000;i++){
206 temp = b;
207 b = ((float)(i+i)/x)*b - a;
208 GET_FLOAT_WORD(ib,b);
209 a = temp;
211 if(sign>0) return b; else return -b;