ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / arch / mn10300 / kernel / time.c
blob75da468090b90342ef5ff2566389b6efa1b28487
1 /* MN10300 Low level time management
3 * Copyright (C) 2007-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 * - Derived from arch/i386/kernel/time.c
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public Licence
9 * as published by the Free Software Foundation; either version
10 * 2 of the Licence, or (at your option) any later version.
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/interrupt.h>
15 #include <linux/time.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/profile.h>
19 #include <linux/cnt32_to_63.h>
20 #include <linux/clocksource.h>
21 #include <linux/clockchips.h>
22 #include <asm/irq.h>
23 #include <asm/div64.h>
24 #include <asm/processor.h>
25 #include <asm/intctl-regs.h>
26 #include <asm/rtc.h>
27 #include "internal.h"
29 static unsigned long mn10300_last_tsc; /* time-stamp counter at last time
30 * interrupt occurred */
32 static unsigned long sched_clock_multiplier;
35 * scheduler clock - returns current time in nanosec units.
37 unsigned long long sched_clock(void)
39 union {
40 unsigned long long ll;
41 unsigned l[2];
42 } tsc64, result;
43 unsigned long tmp;
44 unsigned product[3]; /* 96-bit intermediate value */
46 /* cnt32_to_63() is not safe with preemption */
47 preempt_disable();
49 /* expand the tsc to 64-bits.
50 * - sched_clock() must be called once a minute or better or the
51 * following will go horribly wrong - see cnt32_to_63()
53 tsc64.ll = cnt32_to_63(get_cycles()) & 0x7fffffffffffffffULL;
55 preempt_enable();
57 /* scale the 64-bit TSC value to a nanosecond value via a 96-bit
58 * intermediate
60 asm("mulu %2,%0,%3,%0 \n" /* LSW * mult -> 0:%3:%0 */
61 "mulu %2,%1,%2,%1 \n" /* MSW * mult -> %2:%1:0 */
62 "add %3,%1 \n"
63 "addc 0,%2 \n" /* result in %2:%1:%0 */
64 : "=r"(product[0]), "=r"(product[1]), "=r"(product[2]), "=r"(tmp)
65 : "0"(tsc64.l[0]), "1"(tsc64.l[1]), "2"(sched_clock_multiplier)
66 : "cc");
68 result.l[0] = product[1] << 16 | product[0] >> 16;
69 result.l[1] = product[2] << 16 | product[1] >> 16;
71 return result.ll;
75 * initialise the scheduler clock
77 static void __init mn10300_sched_clock_init(void)
79 sched_clock_multiplier =
80 __muldiv64u(NSEC_PER_SEC, 1 << 16, MN10300_TSCCLK);
83 /**
84 * local_timer_interrupt - Local timer interrupt handler
86 * Handle local timer interrupts for this CPU. They may have been propagated
87 * to this CPU from the CPU that actually gets them by way of an IPI.
89 irqreturn_t local_timer_interrupt(void)
91 profile_tick(CPU_PROFILING);
92 update_process_times(user_mode(get_irq_regs()));
93 return IRQ_HANDLED;
96 #ifndef CONFIG_GENERIC_TIME
98 * advance the kernel's time keeping clocks (xtime and jiffies)
99 * - we use Timer 0 & 1 cascaded as a clock to nudge us the next time
100 * there's a need to update
102 static irqreturn_t timer_interrupt(int irq, void *dev_id)
104 unsigned tsc, elapse;
105 irqreturn_t ret;
107 write_seqlock(&xtime_lock);
109 while (tsc = get_cycles(),
110 elapse = tsc - mn10300_last_tsc, /* time elapsed since last
111 * tick */
112 elapse > MN10300_TSC_PER_HZ
114 mn10300_last_tsc += MN10300_TSC_PER_HZ;
116 /* advance the kernel's time tracking system */
117 do_timer(1);
120 write_sequnlock(&xtime_lock);
122 ret = local_timer_interrupt();
123 #ifdef CONFIG_SMP
124 send_IPI_allbutself(LOCAL_TIMER_IPI);
125 #endif
126 return ret;
129 static struct irqaction timer_irq = {
130 .handler = timer_interrupt,
131 .flags = IRQF_DISABLED | IRQF_SHARED | IRQF_TIMER,
132 .name = "timer",
134 #endif /* CONFIG_GENERIC_TIME */
136 #ifdef CONFIG_CSRC_MN10300
137 void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock)
139 u64 temp;
140 u32 shift;
142 /* Find a shift value */
143 for (shift = 32; shift > 0; shift--) {
144 temp = (u64) NSEC_PER_SEC << shift;
145 do_div(temp, clock);
146 if ((temp >> 32) == 0)
147 break;
149 cs->shift = shift;
150 cs->mult = (u32) temp;
152 #endif
154 #if CONFIG_CEVT_MN10300
155 void __cpuinit clockevent_set_clock(struct clock_event_device *cd,
156 unsigned int clock)
158 u64 temp;
159 u32 shift;
161 /* Find a shift value */
162 for (shift = 32; shift > 0; shift--) {
163 temp = (u64) clock << shift;
164 do_div(temp, NSEC_PER_SEC);
165 if ((temp >> 32) == 0)
166 break;
168 cd->shift = shift;
169 cd->mult = (u32) temp;
171 #endif
174 * initialise the various timers used by the main part of the kernel
176 void __init time_init(void)
178 /* we need the prescalar running to be able to use IOCLK/8
179 * - IOCLK runs at 1/4 (ST5 open) or 1/8 (ST5 closed) internal CPU clock
180 * - IOCLK runs at Fosc rate (crystal speed)
182 TMPSCNT |= TMPSCNT_ENABLE;
184 #ifdef CONFIG_GENERIC_TIME
185 init_clocksource();
186 #else
187 startup_timestamp_counter();
188 #endif
190 printk(KERN_INFO
191 "timestamp counter I/O clock running at %lu.%02lu"
192 " (calibrated against RTC)\n",
193 MN10300_TSCCLK / 1000000, (MN10300_TSCCLK / 10000) % 100);
195 mn10300_last_tsc = read_timestamp_counter();
197 #ifdef CONFIG_GENERIC_CLOCKEVENTS
198 init_clockevents();
199 #else
200 reload_jiffies_counter(MN10300_JC_PER_HZ - 1);
201 setup_jiffies_interrupt(TMJCIRQ, &timer_irq, CONFIG_TIMER_IRQ_LEVEL);
202 #endif
204 #ifdef CONFIG_MN10300_WD_TIMER
205 /* start the watchdog timer */
206 watchdog_go();
207 #endif
209 mn10300_sched_clock_init();