2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
57 #if defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
58 #define FEC_ALIGNMENT 0xf
60 #define FEC_ALIGNMENT 0x3
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype
[] = {
76 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
81 static unsigned char macaddr
[ETH_ALEN
];
82 module_param_array(macaddr
, byte
, NULL
, 0);
83 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
85 #if defined(CONFIG_M5272)
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
90 #if defined(CONFIG_NETtel)
91 #define FEC_FLASHMAC 0xf0006006
92 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93 #define FEC_FLASHMAC 0xf0006000
94 #elif defined(CONFIG_CANCam)
95 #define FEC_FLASHMAC 0xf0020000
96 #elif defined (CONFIG_M5272C3)
97 #define FEC_FLASHMAC (0xffe04000 + 4)
98 #elif defined(CONFIG_MOD5272)
99 #define FEC_FLASHMAC 0xffc0406b
101 #define FEC_FLASHMAC 0
103 #endif /* CONFIG_M5272 */
105 /* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
111 #define FEC_ENET_RX_PAGES 8
112 #define FEC_ENET_RX_FRSIZE 2048
113 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115 #define FEC_ENET_TX_FRSIZE 2048
116 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117 #define TX_RING_SIZE 16 /* Must be power of two */
118 #define TX_RING_MOD_MASK 15 /* for this to work */
120 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
121 #error "FEC: descriptor ring size constants too large"
124 /* Interrupt events/masks. */
125 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
138 /* The FEC stores dest/src/type, data, and checksum for receive packets.
140 #define PKT_MAXBUF_SIZE 1518
141 #define PKT_MINBUF_SIZE 64
142 #define PKT_MAXBLR_SIZE 1520
146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
150 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || \
152 defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
153 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
155 #define OPT_FRAME_SIZE 0
158 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
159 * tx_bd_base always point to the base of the buffer descriptors. The
160 * cur_rx and cur_tx point to the currently available buffer.
161 * The dirty_tx tracks the current buffer that is being sent by the
162 * controller. The cur_tx and dirty_tx are equal under both completely
163 * empty and completely full conditions. The empty/ready indicator in
164 * the buffer descriptor determines the actual condition.
166 struct fec_enet_private
{
167 /* Hardware registers of the FEC device */
170 struct net_device
*netdev
;
174 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
175 unsigned char *tx_bounce
[TX_RING_SIZE
];
176 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
177 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
181 /* CPM dual port RAM relative addresses */
183 /* Address of Rx and Tx buffers */
184 struct bufdesc
*rx_bd_base
;
185 struct bufdesc
*tx_bd_base
;
186 /* The next free ring entry */
187 struct bufdesc
*cur_rx
, *cur_tx
;
188 /* The ring entries to be free()ed */
189 struct bufdesc
*dirty_tx
;
192 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
195 struct platform_device
*pdev
;
199 /* Phylib and MDIO interface */
200 struct mii_bus
*mii_bus
;
201 struct phy_device
*phy_dev
;
204 phy_interface_t phy_interface
;
207 struct completion mdio_done
;
210 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
211 static void fec_enet_tx(struct net_device
*dev
);
212 static void fec_enet_rx(struct net_device
*dev
);
213 static int fec_enet_close(struct net_device
*dev
);
214 static void fec_restart(struct net_device
*dev
, int duplex
);
215 static void fec_stop(struct net_device
*dev
);
217 /* FEC MII MMFR bits definition */
218 #define FEC_MMFR_ST (1 << 30)
219 #define FEC_MMFR_OP_READ (2 << 28)
220 #define FEC_MMFR_OP_WRITE (1 << 28)
221 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
222 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
223 #define FEC_MMFR_TA (2 << 16)
224 #define FEC_MMFR_DATA(v) (v & 0xffff)
226 #define FEC_MII_TIMEOUT 1000 /* us */
228 /* Transmitter timeout */
229 #define TX_TIMEOUT (2 * HZ)
231 static void *swap_buffer(void *bufaddr
, int len
)
234 unsigned int *buf
= bufaddr
;
236 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
237 *buf
= cpu_to_be32(*buf
);
243 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
245 struct fec_enet_private
*fep
= netdev_priv(dev
);
246 const struct platform_device_id
*id_entry
=
247 platform_get_device_id(fep
->pdev
);
250 unsigned short status
;
254 /* Link is down or autonegotiation is in progress. */
255 return NETDEV_TX_BUSY
;
258 spin_lock_irqsave(&fep
->hw_lock
, flags
);
259 /* Fill in a Tx ring entry */
262 status
= bdp
->cbd_sc
;
264 if (status
& BD_ENET_TX_READY
) {
265 /* Ooops. All transmit buffers are full. Bail out.
266 * This should not happen, since dev->tbusy should be set.
268 printk("%s: tx queue full!.\n", dev
->name
);
269 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
270 return NETDEV_TX_BUSY
;
273 /* Clear all of the status flags */
274 status
&= ~BD_ENET_TX_STATS
;
276 /* Set buffer length and buffer pointer */
278 bdp
->cbd_datlen
= skb
->len
;
281 * On some FEC implementations data must be aligned on
282 * 4-byte boundaries. Use bounce buffers to copy data
283 * and get it aligned. Ugh.
285 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
287 index
= bdp
- fep
->tx_bd_base
;
288 memcpy(fep
->tx_bounce
[index
], (void *)skb
->data
, skb
->len
);
289 bufaddr
= fep
->tx_bounce
[index
];
293 * Some design made an incorrect assumption on endian mode of
294 * the system that it's running on. As the result, driver has to
295 * swap every frame going to and coming from the controller.
297 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
298 swap_buffer(bufaddr
, skb
->len
);
300 /* Save skb pointer */
301 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
303 dev
->stats
.tx_bytes
+= skb
->len
;
304 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
306 /* Push the data cache so the CPM does not get stale memory
309 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, bufaddr
,
310 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
312 /* Send it on its way. Tell FEC it's ready, interrupt when done,
313 * it's the last BD of the frame, and to put the CRC on the end.
315 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
316 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
317 bdp
->cbd_sc
= status
;
319 /* Trigger transmission start */
320 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
322 /* If this was the last BD in the ring, start at the beginning again. */
323 if (status
& BD_ENET_TX_WRAP
)
324 bdp
= fep
->tx_bd_base
;
328 if (bdp
== fep
->dirty_tx
) {
330 netif_stop_queue(dev
);
335 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
341 fec_timeout(struct net_device
*dev
)
343 struct fec_enet_private
*fep
= netdev_priv(dev
);
345 dev
->stats
.tx_errors
++;
347 fec_restart(dev
, fep
->full_duplex
);
348 netif_wake_queue(dev
);
352 fec_enet_interrupt(int irq
, void * dev_id
)
354 struct net_device
*dev
= dev_id
;
355 struct fec_enet_private
*fep
= netdev_priv(dev
);
357 irqreturn_t ret
= IRQ_NONE
;
360 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
361 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
363 if (int_events
& FEC_ENET_RXF
) {
368 /* Transmit OK, or non-fatal error. Update the buffer
369 * descriptors. FEC handles all errors, we just discover
370 * them as part of the transmit process.
372 if (int_events
& FEC_ENET_TXF
) {
377 if (int_events
& FEC_ENET_MII
) {
379 complete(&fep
->mdio_done
);
381 } while (int_events
);
388 fec_enet_tx(struct net_device
*dev
)
390 struct fec_enet_private
*fep
;
392 unsigned short status
;
395 fep
= netdev_priv(dev
);
396 spin_lock(&fep
->hw_lock
);
399 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
400 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
403 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
, FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
404 bdp
->cbd_bufaddr
= 0;
406 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
407 /* Check for errors. */
408 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
409 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
411 dev
->stats
.tx_errors
++;
412 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
413 dev
->stats
.tx_heartbeat_errors
++;
414 if (status
& BD_ENET_TX_LC
) /* Late collision */
415 dev
->stats
.tx_window_errors
++;
416 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
417 dev
->stats
.tx_aborted_errors
++;
418 if (status
& BD_ENET_TX_UN
) /* Underrun */
419 dev
->stats
.tx_fifo_errors
++;
420 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
421 dev
->stats
.tx_carrier_errors
++;
423 dev
->stats
.tx_packets
++;
426 if (status
& BD_ENET_TX_READY
)
427 printk("HEY! Enet xmit interrupt and TX_READY.\n");
429 /* Deferred means some collisions occurred during transmit,
430 * but we eventually sent the packet OK.
432 if (status
& BD_ENET_TX_DEF
)
433 dev
->stats
.collisions
++;
435 /* Free the sk buffer associated with this last transmit */
436 dev_kfree_skb_any(skb
);
437 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
438 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
440 /* Update pointer to next buffer descriptor to be transmitted */
441 if (status
& BD_ENET_TX_WRAP
)
442 bdp
= fep
->tx_bd_base
;
446 /* Since we have freed up a buffer, the ring is no longer full
450 if (netif_queue_stopped(dev
))
451 netif_wake_queue(dev
);
455 spin_unlock(&fep
->hw_lock
);
459 /* During a receive, the cur_rx points to the current incoming buffer.
460 * When we update through the ring, if the next incoming buffer has
461 * not been given to the system, we just set the empty indicator,
462 * effectively tossing the packet.
465 fec_enet_rx(struct net_device
*dev
)
467 struct fec_enet_private
*fep
= netdev_priv(dev
);
468 const struct platform_device_id
*id_entry
=
469 platform_get_device_id(fep
->pdev
);
471 unsigned short status
;
480 spin_lock(&fep
->hw_lock
);
482 /* First, grab all of the stats for the incoming packet.
483 * These get messed up if we get called due to a busy condition.
487 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
489 /* Since we have allocated space to hold a complete frame,
490 * the last indicator should be set.
492 if ((status
& BD_ENET_RX_LAST
) == 0)
493 printk("FEC ENET: rcv is not +last\n");
496 goto rx_processing_done
;
498 /* Check for errors. */
499 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
500 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
501 dev
->stats
.rx_errors
++;
502 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
503 /* Frame too long or too short. */
504 dev
->stats
.rx_length_errors
++;
506 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
507 dev
->stats
.rx_frame_errors
++;
508 if (status
& BD_ENET_RX_CR
) /* CRC Error */
509 dev
->stats
.rx_crc_errors
++;
510 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
511 dev
->stats
.rx_fifo_errors
++;
514 /* Report late collisions as a frame error.
515 * On this error, the BD is closed, but we don't know what we
516 * have in the buffer. So, just drop this frame on the floor.
518 if (status
& BD_ENET_RX_CL
) {
519 dev
->stats
.rx_errors
++;
520 dev
->stats
.rx_frame_errors
++;
521 goto rx_processing_done
;
524 /* Process the incoming frame. */
525 dev
->stats
.rx_packets
++;
526 pkt_len
= bdp
->cbd_datlen
;
527 dev
->stats
.rx_bytes
+= pkt_len
;
528 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
530 dma_unmap_single(NULL
, bdp
->cbd_bufaddr
, bdp
->cbd_datlen
,
533 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
534 swap_buffer(data
, pkt_len
);
536 /* This does 16 byte alignment, exactly what we need.
537 * The packet length includes FCS, but we don't want to
538 * include that when passing upstream as it messes up
539 * bridging applications.
541 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
543 if (unlikely(!skb
)) {
544 printk("%s: Memory squeeze, dropping packet.\n",
546 dev
->stats
.rx_dropped
++;
548 skb_reserve(skb
, NET_IP_ALIGN
);
549 skb_put(skb
, pkt_len
- 4); /* Make room */
550 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
551 skb
->protocol
= eth_type_trans(skb
, dev
);
555 bdp
->cbd_bufaddr
= dma_map_single(NULL
, data
, bdp
->cbd_datlen
,
558 /* Clear the status flags for this buffer */
559 status
&= ~BD_ENET_RX_STATS
;
561 /* Mark the buffer empty */
562 status
|= BD_ENET_RX_EMPTY
;
563 bdp
->cbd_sc
= status
;
565 /* Update BD pointer to next entry */
566 if (status
& BD_ENET_RX_WRAP
)
567 bdp
= fep
->rx_bd_base
;
570 /* Doing this here will keep the FEC running while we process
571 * incoming frames. On a heavily loaded network, we should be
572 * able to keep up at the expense of system resources.
574 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
578 spin_unlock(&fep
->hw_lock
);
581 /* ------------------------------------------------------------------------- */
582 static void __inline__
fec_get_mac(struct net_device
*dev
)
584 struct fec_enet_private
*fep
= netdev_priv(dev
);
585 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
586 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
589 * try to get mac address in following order:
591 * 1) module parameter via kernel command line in form
592 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
597 * 2) from flash or fuse (via platform data)
599 if (!is_valid_ether_addr(iap
)) {
602 iap
= (unsigned char *)FEC_FLASHMAC
;
605 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
610 * 3) FEC mac registers set by bootloader
612 if (!is_valid_ether_addr(iap
)) {
613 *((unsigned long *) &tmpaddr
[0]) =
614 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
615 *((unsigned short *) &tmpaddr
[4]) =
616 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
620 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
622 /* Adjust MAC if using macaddr */
624 dev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
627 /* ------------------------------------------------------------------------- */
632 static void fec_enet_adjust_link(struct net_device
*dev
)
634 struct fec_enet_private
*fep
= netdev_priv(dev
);
635 struct phy_device
*phy_dev
= fep
->phy_dev
;
638 int status_change
= 0;
640 spin_lock_irqsave(&fep
->hw_lock
, flags
);
642 /* Prevent a state halted on mii error */
643 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
644 phy_dev
->state
= PHY_RESUMING
;
648 /* Duplex link change */
650 if (fep
->full_duplex
!= phy_dev
->duplex
) {
651 fec_restart(dev
, phy_dev
->duplex
);
656 /* Link on or off change */
657 if (phy_dev
->link
!= fep
->link
) {
658 fep
->link
= phy_dev
->link
;
660 fec_restart(dev
, phy_dev
->duplex
);
667 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
670 phy_print_status(phy_dev
);
673 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
675 struct fec_enet_private
*fep
= bus
->priv
;
676 unsigned long time_left
;
678 fep
->mii_timeout
= 0;
679 init_completion(&fep
->mdio_done
);
681 /* start a read op */
682 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
683 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
684 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
686 /* wait for end of transfer */
687 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
688 usecs_to_jiffies(FEC_MII_TIMEOUT
));
689 if (time_left
== 0) {
690 fep
->mii_timeout
= 1;
691 printk(KERN_ERR
"FEC: MDIO read timeout\n");
696 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
699 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
702 struct fec_enet_private
*fep
= bus
->priv
;
703 unsigned long time_left
;
705 fep
->mii_timeout
= 0;
706 init_completion(&fep
->mdio_done
);
708 /* start a write op */
709 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
710 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
711 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
712 fep
->hwp
+ FEC_MII_DATA
);
714 /* wait for end of transfer */
715 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
716 usecs_to_jiffies(FEC_MII_TIMEOUT
));
717 if (time_left
== 0) {
718 fep
->mii_timeout
= 1;
719 printk(KERN_ERR
"FEC: MDIO write timeout\n");
726 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
731 static int fec_enet_mii_probe(struct net_device
*dev
)
733 struct fec_enet_private
*fep
= netdev_priv(dev
);
734 struct phy_device
*phy_dev
= NULL
;
735 char mdio_bus_id
[MII_BUS_ID_SIZE
];
736 char phy_name
[MII_BUS_ID_SIZE
+ 3];
738 int dev_id
= fep
->pdev
->id
;
742 /* check for attached phy */
743 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
744 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
746 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
748 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
752 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
756 if (phy_id
>= PHY_MAX_ADDR
) {
757 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
758 "to switch\n", dev
->name
);
759 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
763 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
764 phy_dev
= phy_connect(dev
, phy_name
, &fec_enet_adjust_link
, 0,
765 PHY_INTERFACE_MODE_MII
);
766 if (IS_ERR(phy_dev
)) {
767 printk(KERN_ERR
"%s: could not attach to PHY\n", dev
->name
);
768 return PTR_ERR(phy_dev
);
771 /* mask with MAC supported features */
772 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
773 phy_dev
->advertising
= phy_dev
->supported
;
775 fep
->phy_dev
= phy_dev
;
777 fep
->full_duplex
= 0;
779 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
780 "(mii_bus:phy_addr=%s, irq=%d)\n", dev
->name
,
781 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
787 static int fec_enet_mii_init(struct platform_device
*pdev
)
789 static struct mii_bus
*fec0_mii_bus
;
790 struct net_device
*dev
= platform_get_drvdata(pdev
);
791 struct fec_enet_private
*fep
= netdev_priv(dev
);
792 const struct platform_device_id
*id_entry
=
793 platform_get_device_id(fep
->pdev
);
797 * The dual fec interfaces are not equivalent with enet-mac.
798 * Here are the differences:
800 * - fec0 supports MII & RMII modes while fec1 only supports RMII
801 * - fec0 acts as the 1588 time master while fec1 is slave
802 * - external phys can only be configured by fec0
804 * That is to say fec1 can not work independently. It only works
805 * when fec0 is working. The reason behind this design is that the
806 * second interface is added primarily for Switch mode.
808 * Because of the last point above, both phys are attached on fec0
809 * mdio interface in board design, and need to be configured by
812 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
) {
813 /* fec1 uses fec0 mii_bus */
814 fep
->mii_bus
= fec0_mii_bus
;
818 fep
->mii_timeout
= 0;
821 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
823 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
824 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
826 fep
->mii_bus
= mdiobus_alloc();
827 if (fep
->mii_bus
== NULL
) {
832 fep
->mii_bus
->name
= "fec_enet_mii_bus";
833 fep
->mii_bus
->read
= fec_enet_mdio_read
;
834 fep
->mii_bus
->write
= fec_enet_mdio_write
;
835 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
836 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
837 fep
->mii_bus
->priv
= fep
;
838 fep
->mii_bus
->parent
= &pdev
->dev
;
840 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
841 if (!fep
->mii_bus
->irq
) {
843 goto err_out_free_mdiobus
;
846 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
847 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
849 platform_set_drvdata(dev
, fep
->mii_bus
);
851 if (mdiobus_register(fep
->mii_bus
))
852 goto err_out_free_mdio_irq
;
854 /* save fec0 mii_bus */
855 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
856 fec0_mii_bus
= fep
->mii_bus
;
860 err_out_free_mdio_irq
:
861 kfree(fep
->mii_bus
->irq
);
862 err_out_free_mdiobus
:
863 mdiobus_free(fep
->mii_bus
);
868 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
871 phy_disconnect(fep
->phy_dev
);
872 mdiobus_unregister(fep
->mii_bus
);
873 kfree(fep
->mii_bus
->irq
);
874 mdiobus_free(fep
->mii_bus
);
877 static int fec_enet_get_settings(struct net_device
*dev
,
878 struct ethtool_cmd
*cmd
)
880 struct fec_enet_private
*fep
= netdev_priv(dev
);
881 struct phy_device
*phydev
= fep
->phy_dev
;
886 return phy_ethtool_gset(phydev
, cmd
);
889 static int fec_enet_set_settings(struct net_device
*dev
,
890 struct ethtool_cmd
*cmd
)
892 struct fec_enet_private
*fep
= netdev_priv(dev
);
893 struct phy_device
*phydev
= fep
->phy_dev
;
898 return phy_ethtool_sset(phydev
, cmd
);
901 static void fec_enet_get_drvinfo(struct net_device
*dev
,
902 struct ethtool_drvinfo
*info
)
904 struct fec_enet_private
*fep
= netdev_priv(dev
);
906 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
907 strcpy(info
->version
, "Revision: 1.0");
908 strcpy(info
->bus_info
, dev_name(&dev
->dev
));
911 static struct ethtool_ops fec_enet_ethtool_ops
= {
912 .get_settings
= fec_enet_get_settings
,
913 .set_settings
= fec_enet_set_settings
,
914 .get_drvinfo
= fec_enet_get_drvinfo
,
915 .get_link
= ethtool_op_get_link
,
918 static int fec_enet_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
920 struct fec_enet_private
*fep
= netdev_priv(dev
);
921 struct phy_device
*phydev
= fep
->phy_dev
;
923 if (!netif_running(dev
))
929 return phy_mii_ioctl(phydev
, rq
, cmd
);
932 static void fec_enet_free_buffers(struct net_device
*dev
)
934 struct fec_enet_private
*fep
= netdev_priv(dev
);
939 bdp
= fep
->rx_bd_base
;
940 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
941 skb
= fep
->rx_skbuff
[i
];
943 if (bdp
->cbd_bufaddr
)
944 dma_unmap_single(&dev
->dev
, bdp
->cbd_bufaddr
,
945 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
951 bdp
= fep
->tx_bd_base
;
952 for (i
= 0; i
< TX_RING_SIZE
; i
++)
953 kfree(fep
->tx_bounce
[i
]);
956 static int fec_enet_alloc_buffers(struct net_device
*dev
)
958 struct fec_enet_private
*fep
= netdev_priv(dev
);
963 bdp
= fep
->rx_bd_base
;
964 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
965 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
967 fec_enet_free_buffers(dev
);
970 fep
->rx_skbuff
[i
] = skb
;
972 bdp
->cbd_bufaddr
= dma_map_single(&dev
->dev
, skb
->data
,
973 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
974 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
978 /* Set the last buffer to wrap. */
980 bdp
->cbd_sc
|= BD_SC_WRAP
;
982 bdp
= fep
->tx_bd_base
;
983 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
984 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
987 bdp
->cbd_bufaddr
= 0;
991 /* Set the last buffer to wrap. */
993 bdp
->cbd_sc
|= BD_SC_WRAP
;
999 fec_enet_open(struct net_device
*dev
)
1001 struct fec_enet_private
*fep
= netdev_priv(dev
);
1004 /* I should reset the ring buffers here, but I don't yet know
1005 * a simple way to do that.
1008 ret
= fec_enet_alloc_buffers(dev
);
1012 /* Probe and connect to PHY when open the interface */
1013 ret
= fec_enet_mii_probe(dev
);
1015 fec_enet_free_buffers(dev
);
1018 phy_start(fep
->phy_dev
);
1019 netif_start_queue(dev
);
1025 fec_enet_close(struct net_device
*dev
)
1027 struct fec_enet_private
*fep
= netdev_priv(dev
);
1029 /* Don't know what to do yet. */
1031 netif_stop_queue(dev
);
1035 phy_disconnect(fep
->phy_dev
);
1037 fec_enet_free_buffers(dev
);
1042 /* Set or clear the multicast filter for this adaptor.
1043 * Skeleton taken from sunlance driver.
1044 * The CPM Ethernet implementation allows Multicast as well as individual
1045 * MAC address filtering. Some of the drivers check to make sure it is
1046 * a group multicast address, and discard those that are not. I guess I
1047 * will do the same for now, but just remove the test if you want
1048 * individual filtering as well (do the upper net layers want or support
1049 * this kind of feature?).
1052 #define HASH_BITS 6 /* #bits in hash */
1053 #define CRC32_POLY 0xEDB88320
1055 static void set_multicast_list(struct net_device
*dev
)
1057 struct fec_enet_private
*fep
= netdev_priv(dev
);
1058 struct netdev_hw_addr
*ha
;
1059 unsigned int i
, bit
, data
, crc
, tmp
;
1062 if (dev
->flags
& IFF_PROMISC
) {
1063 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1065 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1069 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1071 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1073 if (dev
->flags
& IFF_ALLMULTI
) {
1074 /* Catch all multicast addresses, so set the
1077 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1078 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1083 /* Clear filter and add the addresses in hash register
1085 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1086 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1088 netdev_for_each_mc_addr(ha
, dev
) {
1089 /* Only support group multicast for now */
1090 if (!(ha
->addr
[0] & 1))
1093 /* calculate crc32 value of mac address */
1096 for (i
= 0; i
< dev
->addr_len
; i
++) {
1098 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1100 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1104 /* only upper 6 bits (HASH_BITS) are used
1105 * which point to specific bit in he hash registers
1107 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1110 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1111 tmp
|= 1 << (hash
- 32);
1112 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1114 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1116 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1121 /* Set a MAC change in hardware. */
1123 fec_set_mac_address(struct net_device
*dev
, void *p
)
1125 struct fec_enet_private
*fep
= netdev_priv(dev
);
1126 struct sockaddr
*addr
= p
;
1128 if (!is_valid_ether_addr(addr
->sa_data
))
1129 return -EADDRNOTAVAIL
;
1131 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1133 writel(dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
1134 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24),
1135 fep
->hwp
+ FEC_ADDR_LOW
);
1136 writel((dev
->dev_addr
[5] << 16) | (dev
->dev_addr
[4] << 24),
1137 fep
->hwp
+ FEC_ADDR_HIGH
);
1141 static const struct net_device_ops fec_netdev_ops
= {
1142 .ndo_open
= fec_enet_open
,
1143 .ndo_stop
= fec_enet_close
,
1144 .ndo_start_xmit
= fec_enet_start_xmit
,
1145 .ndo_set_multicast_list
= set_multicast_list
,
1146 .ndo_change_mtu
= eth_change_mtu
,
1147 .ndo_validate_addr
= eth_validate_addr
,
1148 .ndo_tx_timeout
= fec_timeout
,
1149 .ndo_set_mac_address
= fec_set_mac_address
,
1150 .ndo_do_ioctl
= fec_enet_ioctl
,
1154 * XXX: We need to clean up on failure exits here.
1157 static int fec_enet_init(struct net_device
*dev
)
1159 struct fec_enet_private
*fep
= netdev_priv(dev
);
1160 struct bufdesc
*cbd_base
;
1161 struct bufdesc
*bdp
;
1164 /* Allocate memory for buffer descriptors. */
1165 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1168 printk("FEC: allocate descriptor memory failed?\n");
1172 spin_lock_init(&fep
->hw_lock
);
1174 fep
->hwp
= (void __iomem
*)dev
->base_addr
;
1177 /* Get the Ethernet address */
1180 /* Set receive and transmit descriptor base. */
1181 fep
->rx_bd_base
= cbd_base
;
1182 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1184 /* The FEC Ethernet specific entries in the device structure */
1185 dev
->watchdog_timeo
= TX_TIMEOUT
;
1186 dev
->netdev_ops
= &fec_netdev_ops
;
1187 dev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1189 /* Initialize the receive buffer descriptors. */
1190 bdp
= fep
->rx_bd_base
;
1191 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1193 /* Initialize the BD for every fragment in the page. */
1198 /* Set the last buffer to wrap */
1200 bdp
->cbd_sc
|= BD_SC_WRAP
;
1202 /* ...and the same for transmit */
1203 bdp
= fep
->tx_bd_base
;
1204 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1206 /* Initialize the BD for every fragment in the page. */
1208 bdp
->cbd_bufaddr
= 0;
1212 /* Set the last buffer to wrap */
1214 bdp
->cbd_sc
|= BD_SC_WRAP
;
1216 fec_restart(dev
, 0);
1221 /* This function is called to start or restart the FEC during a link
1222 * change. This only happens when switching between half and full
1226 fec_restart(struct net_device
*dev
, int duplex
)
1228 struct fec_enet_private
*fep
= netdev_priv(dev
);
1229 const struct platform_device_id
*id_entry
=
1230 platform_get_device_id(fep
->pdev
);
1232 u32 val
, temp_mac
[2];
1234 /* Whack a reset. We should wait for this. */
1235 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1239 * enet-mac reset will reset mac address registers too,
1240 * so need to reconfigure it.
1242 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
1243 memcpy(&temp_mac
, dev
->dev_addr
, ETH_ALEN
);
1244 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
1245 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
1248 /* Clear any outstanding interrupt. */
1249 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
1251 /* Reset all multicast. */
1252 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1253 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1254 #ifndef CONFIG_M5272
1255 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
1256 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
1259 /* Set maximum receive buffer size. */
1260 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
1262 /* Set receive and transmit descriptor base. */
1263 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
1264 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
1265 fep
->hwp
+ FEC_X_DES_START
);
1267 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
1268 fep
->cur_rx
= fep
->rx_bd_base
;
1270 /* Reset SKB transmit buffers. */
1271 fep
->skb_cur
= fep
->skb_dirty
= 0;
1272 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
1273 if (fep
->tx_skbuff
[i
]) {
1274 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
1275 fep
->tx_skbuff
[i
] = NULL
;
1279 /* Enable MII mode */
1281 /* MII enable / FD enable */
1282 writel(OPT_FRAME_SIZE
| 0x04, fep
->hwp
+ FEC_R_CNTRL
);
1283 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
1285 /* MII enable / No Rcv on Xmit */
1286 writel(OPT_FRAME_SIZE
| 0x06, fep
->hwp
+ FEC_R_CNTRL
);
1287 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
1289 fep
->full_duplex
= duplex
;
1292 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1295 * The phy interface and speed need to get configured
1296 * differently on enet-mac.
1298 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
1299 val
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1302 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
1308 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_100
)
1313 writel(val
, fep
->hwp
+ FEC_R_CNTRL
);
1315 #ifdef FEC_MIIGSK_ENR
1316 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) {
1317 /* disable the gasket and wait */
1318 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
1319 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
1323 * configure the gasket:
1324 * RMII, 50 MHz, no loopback, no echo
1326 writel(1, fep
->hwp
+ FEC_MIIGSK_CFGR
);
1328 /* re-enable the gasket */
1329 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
1334 /* And last, enable the transmit and receive processing */
1335 writel(2, fep
->hwp
+ FEC_ECNTRL
);
1336 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
1338 /* Enable interrupts we wish to service */
1339 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1343 fec_stop(struct net_device
*dev
)
1345 struct fec_enet_private
*fep
= netdev_priv(dev
);
1347 /* We cannot expect a graceful transmit stop without link !!! */
1349 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
1351 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
1352 printk("fec_stop : Graceful transmit stop did not complete !\n");
1355 /* Whack a reset. We should wait for this. */
1356 writel(1, fep
->hwp
+ FEC_ECNTRL
);
1358 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1359 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
1362 static int __devinit
1363 fec_probe(struct platform_device
*pdev
)
1365 struct fec_enet_private
*fep
;
1366 struct fec_platform_data
*pdata
;
1367 struct net_device
*ndev
;
1368 int i
, irq
, ret
= 0;
1371 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1375 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1379 /* Init network device */
1380 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1384 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1386 /* setup board info structure */
1387 fep
= netdev_priv(ndev
);
1388 memset(fep
, 0, sizeof(*fep
));
1390 ndev
->base_addr
= (unsigned long)ioremap(r
->start
, resource_size(r
));
1393 if (!ndev
->base_addr
) {
1395 goto failed_ioremap
;
1398 platform_set_drvdata(pdev
, ndev
);
1400 pdata
= pdev
->dev
.platform_data
;
1402 fep
->phy_interface
= pdata
->phy
;
1404 /* This device has up to three irqs on some platforms */
1405 for (i
= 0; i
< 3; i
++) {
1406 irq
= platform_get_irq(pdev
, i
);
1409 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1412 irq
= platform_get_irq(pdev
, i
);
1413 free_irq(irq
, ndev
);
1420 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1421 if (IS_ERR(fep
->clk
)) {
1422 ret
= PTR_ERR(fep
->clk
);
1425 clk_enable(fep
->clk
);
1427 ret
= fec_enet_init(ndev
);
1431 ret
= fec_enet_mii_init(pdev
);
1433 goto failed_mii_init
;
1435 /* Carrier starts down, phylib will bring it up */
1436 netif_carrier_off(ndev
);
1438 ret
= register_netdev(ndev
);
1440 goto failed_register
;
1445 fec_enet_mii_remove(fep
);
1448 clk_disable(fep
->clk
);
1451 for (i
= 0; i
< 3; i
++) {
1452 irq
= platform_get_irq(pdev
, i
);
1454 free_irq(irq
, ndev
);
1457 iounmap((void __iomem
*)ndev
->base_addr
);
1464 static int __devexit
1465 fec_drv_remove(struct platform_device
*pdev
)
1467 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1468 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1470 platform_set_drvdata(pdev
, NULL
);
1473 fec_enet_mii_remove(fep
);
1474 clk_disable(fep
->clk
);
1476 iounmap((void __iomem
*)ndev
->base_addr
);
1477 unregister_netdev(ndev
);
1484 fec_suspend(struct device
*dev
)
1486 struct net_device
*ndev
= dev_get_drvdata(dev
);
1487 struct fec_enet_private
*fep
;
1490 fep
= netdev_priv(ndev
);
1491 if (netif_running(ndev
)) {
1493 netif_device_detach(ndev
);
1495 clk_disable(fep
->clk
);
1501 fec_resume(struct device
*dev
)
1503 struct net_device
*ndev
= dev_get_drvdata(dev
);
1504 struct fec_enet_private
*fep
;
1507 fep
= netdev_priv(ndev
);
1508 clk_enable(fep
->clk
);
1509 if (netif_running(ndev
)) {
1510 fec_restart(ndev
, fep
->full_duplex
);
1511 netif_device_attach(ndev
);
1517 static const struct dev_pm_ops fec_pm_ops
= {
1518 .suspend
= fec_suspend
,
1519 .resume
= fec_resume
,
1520 .freeze
= fec_suspend
,
1522 .poweroff
= fec_suspend
,
1523 .restore
= fec_resume
,
1527 static struct platform_driver fec_driver
= {
1529 .name
= DRIVER_NAME
,
1530 .owner
= THIS_MODULE
,
1535 .id_table
= fec_devtype
,
1537 .remove
= __devexit_p(fec_drv_remove
),
1541 fec_enet_module_init(void)
1543 printk(KERN_INFO
"FEC Ethernet Driver\n");
1545 return platform_driver_register(&fec_driver
);
1549 fec_enet_cleanup(void)
1551 platform_driver_unregister(&fec_driver
);
1554 module_exit(fec_enet_cleanup
);
1555 module_init(fec_enet_module_init
);
1557 MODULE_LICENSE("GPL");