1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
15 #include <linux/spinlock.h>
17 /**************************************************************************
21 **************************************************************************
23 * Notes on locking strategy:
25 * Most CSRs are 128-bit (oword) and therefore cannot be read or
26 * written atomically. Access from the host is buffered by the Bus
27 * Interface Unit (BIU). Whenever the host reads from the lowest
28 * address of such a register, or from the address of a different such
29 * register, the BIU latches the register's value. Subsequent reads
30 * from higher addresses of the same register will read the latched
31 * value. Whenever the host writes part of such a register, the BIU
32 * collects the written value and does not write to the underlying
33 * register until all 4 dwords have been written. A similar buffering
34 * scheme applies to host access to the NIC's 64-bit SRAM.
36 * Access to different CSRs and 64-bit SRAM words must be serialised,
37 * since interleaved access can result in lost writes or lost
38 * information from read-to-clear fields. We use efx_nic::biu_lock
39 * for this. (We could use separate locks for read and write, but
40 * this is not normally a performance bottleneck.)
42 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
43 * 128-bit but are special-cased in the BIU to avoid the need for
44 * locking in the host:
46 * - They are write-only.
47 * - The semantics of writing to these registers are such that
48 * replacing the low 96 bits with zero does not affect functionality.
49 * - If the host writes to the last dword address of such a register
50 * (i.e. the high 32 bits) the underlying register will always be
51 * written. If the collector does not hold values for the low 96
52 * bits of the register, they will be written as zero. Writing to
53 * the last qword does not have this effect and must not be done.
54 * - If the host writes to the address of any other part of such a
55 * register while the collector already holds values for some other
56 * register, the write is discarded and the collector maintains its
60 #if BITS_PER_LONG == 64
61 #define EFX_USE_QWORD_IO 1
64 #ifdef EFX_USE_QWORD_IO
65 static inline void _efx_writeq(struct efx_nic
*efx
, __le64 value
,
68 __raw_writeq((__force u64
)value
, efx
->membase
+ reg
);
70 static inline __le64
_efx_readq(struct efx_nic
*efx
, unsigned int reg
)
72 return (__force __le64
)__raw_readq(efx
->membase
+ reg
);
76 static inline void _efx_writed(struct efx_nic
*efx
, __le32 value
,
79 __raw_writel((__force u32
)value
, efx
->membase
+ reg
);
81 static inline __le32
_efx_readd(struct efx_nic
*efx
, unsigned int reg
)
83 return (__force __le32
)__raw_readl(efx
->membase
+ reg
);
86 /* Write a normal 128-bit CSR, locking as appropriate. */
87 static inline void efx_writeo(struct efx_nic
*efx
, efx_oword_t
*value
,
90 unsigned long flags
__attribute__ ((unused
));
92 netif_vdbg(efx
, hw
, efx
->net_dev
,
93 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
94 EFX_OWORD_VAL(*value
));
96 spin_lock_irqsave(&efx
->biu_lock
, flags
);
97 #ifdef EFX_USE_QWORD_IO
98 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
99 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
101 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
102 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
103 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
104 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
107 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
110 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
111 static inline void efx_sram_writeq(struct efx_nic
*efx
, void __iomem
*membase
,
112 efx_qword_t
*value
, unsigned int index
)
114 unsigned int addr
= index
* sizeof(*value
);
115 unsigned long flags
__attribute__ ((unused
));
117 netif_vdbg(efx
, hw
, efx
->net_dev
,
118 "writing SRAM address %x with " EFX_QWORD_FMT
"\n",
119 addr
, EFX_QWORD_VAL(*value
));
121 spin_lock_irqsave(&efx
->biu_lock
, flags
);
122 #ifdef EFX_USE_QWORD_IO
123 __raw_writeq((__force u64
)value
->u64
[0], membase
+ addr
);
125 __raw_writel((__force u32
)value
->u32
[0], membase
+ addr
);
126 __raw_writel((__force u32
)value
->u32
[1], membase
+ addr
+ 4);
129 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
132 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
133 static inline void efx_writed(struct efx_nic
*efx
, efx_dword_t
*value
,
136 netif_vdbg(efx
, hw
, efx
->net_dev
,
137 "writing register %x with "EFX_DWORD_FMT
"\n",
138 reg
, EFX_DWORD_VAL(*value
));
140 /* No lock required */
141 _efx_writed(efx
, value
->u32
[0], reg
);
144 /* Read a 128-bit CSR, locking as appropriate. */
145 static inline void efx_reado(struct efx_nic
*efx
, efx_oword_t
*value
,
148 unsigned long flags
__attribute__ ((unused
));
150 spin_lock_irqsave(&efx
->biu_lock
, flags
);
151 value
->u32
[0] = _efx_readd(efx
, reg
+ 0);
152 value
->u32
[1] = _efx_readd(efx
, reg
+ 4);
153 value
->u32
[2] = _efx_readd(efx
, reg
+ 8);
154 value
->u32
[3] = _efx_readd(efx
, reg
+ 12);
155 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
157 netif_vdbg(efx
, hw
, efx
->net_dev
,
158 "read from register %x, got " EFX_OWORD_FMT
"\n", reg
,
159 EFX_OWORD_VAL(*value
));
162 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
163 static inline void efx_sram_readq(struct efx_nic
*efx
, void __iomem
*membase
,
164 efx_qword_t
*value
, unsigned int index
)
166 unsigned int addr
= index
* sizeof(*value
);
167 unsigned long flags
__attribute__ ((unused
));
169 spin_lock_irqsave(&efx
->biu_lock
, flags
);
170 #ifdef EFX_USE_QWORD_IO
171 value
->u64
[0] = (__force __le64
)__raw_readq(membase
+ addr
);
173 value
->u32
[0] = (__force __le32
)__raw_readl(membase
+ addr
);
174 value
->u32
[1] = (__force __le32
)__raw_readl(membase
+ addr
+ 4);
176 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
178 netif_vdbg(efx
, hw
, efx
->net_dev
,
179 "read from SRAM address %x, got "EFX_QWORD_FMT
"\n",
180 addr
, EFX_QWORD_VAL(*value
));
183 /* Read a 32-bit CSR or SRAM */
184 static inline void efx_readd(struct efx_nic
*efx
, efx_dword_t
*value
,
187 value
->u32
[0] = _efx_readd(efx
, reg
);
188 netif_vdbg(efx
, hw
, efx
->net_dev
,
189 "read from register %x, got "EFX_DWORD_FMT
"\n",
190 reg
, EFX_DWORD_VAL(*value
));
193 /* Write a 128-bit CSR forming part of a table */
194 static inline void efx_writeo_table(struct efx_nic
*efx
, efx_oword_t
*value
,
195 unsigned int reg
, unsigned int index
)
197 efx_writeo(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
200 /* Read a 128-bit CSR forming part of a table */
201 static inline void efx_reado_table(struct efx_nic
*efx
, efx_oword_t
*value
,
202 unsigned int reg
, unsigned int index
)
204 efx_reado(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
207 /* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
208 static inline void efx_writed_table(struct efx_nic
*efx
, efx_dword_t
*value
,
209 unsigned int reg
, unsigned int index
)
211 efx_writed(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
214 /* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
215 static inline void efx_readd_table(struct efx_nic
*efx
, efx_dword_t
*value
,
216 unsigned int reg
, unsigned int index
)
218 efx_readd(efx
, value
, reg
+ index
* sizeof(efx_dword_t
));
221 /* Page-mapped register block size */
222 #define EFX_PAGE_BLOCK_SIZE 0x2000
224 /* Calculate offset to page-mapped register block */
225 #define EFX_PAGED_REG(page, reg) \
226 ((page) * EFX_PAGE_BLOCK_SIZE + (reg))
228 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
229 static inline void _efx_writeo_page(struct efx_nic
*efx
, efx_oword_t
*value
,
230 unsigned int reg
, unsigned int page
)
232 reg
= EFX_PAGED_REG(page
, reg
);
234 netif_vdbg(efx
, hw
, efx
->net_dev
,
235 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
236 EFX_OWORD_VAL(*value
));
238 #ifdef EFX_USE_QWORD_IO
239 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
241 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
242 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
244 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
245 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
247 #define efx_writeo_page(efx, value, reg, page) \
248 _efx_writeo_page(efx, value, \
250 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
253 /* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
254 * RX_DESC_UPD or TX_DESC_UPD)
256 static inline void _efx_writed_page(struct efx_nic
*efx
, efx_dword_t
*value
,
257 unsigned int reg
, unsigned int page
)
259 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
261 #define efx_writed_page(efx, value, reg, page) \
262 _efx_writed_page(efx, value, \
264 BUILD_BUG_ON_ZERO((reg) != 0x400 && (reg) != 0x83c \
265 && (reg) != 0xa1c), \
268 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
269 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
270 * collector register.
272 static inline void _efx_writed_page_locked(struct efx_nic
*efx
,
277 unsigned long flags
__attribute__ ((unused
));
280 spin_lock_irqsave(&efx
->biu_lock
, flags
);
281 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
282 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
284 efx_writed(efx
, value
, EFX_PAGED_REG(page
, reg
));
287 #define efx_writed_page_locked(efx, value, reg, page) \
288 _efx_writed_page_locked(efx, value, \
289 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
292 #endif /* EFX_IO_H */