ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / drivers / staging / brcm80211 / util / qmath.c
blob40c9929de2bbe5baa8b6de7495b67c59dd90e53f
1 /*
2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/types.h>
18 #include "qmath.h"
21 Description: This function saturate input 32 bit number into a 16 bit number.
22 If input number is greater than 0x7fff then output is saturated to 0x7fff.
23 else if input number is less than 0xffff8000 then output is saturated to 0xffff8000
24 else output is same as input.
26 s16 qm_sat32(s32 op)
28 s16 result;
29 if (op > (s32) 0x7fff) {
30 result = 0x7fff;
31 } else if (op < (s32) 0xffff8000) {
32 result = (s16) (0x8000);
33 } else {
34 result = (s16) op;
36 return result;
40 Description: This function multiply two input 16 bit numbers and return the 32 bit result.
41 This multiplication is similar to compiler multiplication. This operation is defined if
42 16 bit multiplication on the processor platform is cheaper than 32 bit multiplication (as
43 the most of qmath functions can be replaced with processor intrinsic instructions).
45 s32 qm_mul321616(s16 op1, s16 op2)
47 return (s32) (op1) * (s32) (op2);
51 Description: This function make 16 bit multiplication and return the result in 16 bits.
52 To fit the result into 16 bits the 32 bit multiplication result is right
53 shifted by 16 bits.
55 s16 qm_mul16(s16 op1, s16 op2)
57 s32 result;
58 result = ((s32) (op1) * (s32) (op2));
59 return (s16) (result >> 16);
63 Description: This function multiply two 16 bit numbers and return the result in 32 bits.
64 This function remove the extra sign bit created by the multiplication by leftshifting the
65 32 bit multiplication result by 1 bit before returning the result. So the output is
66 twice that of compiler multiplication. (i.e. qm_muls321616(2,3)=12).
67 When both input 16 bit numbers are 0x8000, then the result is saturated to 0x7fffffff.
69 s32 qm_muls321616(s16 op1, s16 op2)
71 s32 result;
72 if (op1 == (s16) (0x8000) && op2 == (s16) (0x8000)) {
73 result = 0x7fffffff;
74 } else {
75 result = ((s32) (op1) * (s32) (op2));
76 result = result << 1;
78 return result;
82 Description: This function make 16 bit unsigned multiplication. To fit the output into
83 16 bits the 32 bit multiplication result is right shifted by 16 bits.
85 u16 qm_mulu16(u16 op1, u16 op2)
87 return (u16) (((u32) op1 * (u32) op2) >> 16);
91 Description: This function make 16 bit multiplication and return the result in 16 bits.
92 To fit the multiplication result into 16 bits the multiplication result is right shifted by
93 15 bits. Right shifting 15 bits instead of 16 bits is done to remove the extra sign bit formed
94 due to the multiplication.
95 When both the 16bit inputs are 0x8000 then the output is saturated to 0x7fffffff.
97 s16 qm_muls16(s16 op1, s16 op2)
99 s32 result;
100 if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000) {
101 result = 0x7fffffff;
102 } else {
103 result = ((s32) (op1) * (s32) (op2));
105 return (s16) (result >> 15);
109 Description: This function add two 32 bit numbers and return the 32bit result.
110 If the result overflow 32 bits, the output will be saturated to 32bits.
112 s32 qm_add32(s32 op1, s32 op2)
114 s32 result;
115 result = op1 + op2;
116 if (op1 < 0 && op2 < 0 && result > 0) {
117 result = 0x80000000;
118 } else if (op1 > 0 && op2 > 0 && result < 0) {
119 result = 0x7fffffff;
121 return result;
125 Description: This function add two 16 bit numbers and return the 16bit result.
126 If the result overflow 16 bits, the output will be saturated to 16bits.
128 s16 qm_add16(s16 op1, s16 op2)
130 s16 result;
131 s32 temp = (s32) op1 + (s32) op2;
132 if (temp > (s32) 0x7fff) {
133 result = (s16) 0x7fff;
134 } else if (temp < (s32) 0xffff8000) {
135 result = (s16) 0xffff8000;
136 } else {
137 result = (s16) temp;
139 return result;
143 Description: This function make 16 bit subtraction and return the 16bit result.
144 If the result overflow 16 bits, the output will be saturated to 16bits.
146 s16 qm_sub16(s16 op1, s16 op2)
148 s16 result;
149 s32 temp = (s32) op1 - (s32) op2;
150 if (temp > (s32) 0x7fff) {
151 result = (s16) 0x7fff;
152 } else if (temp < (s32) 0xffff8000) {
153 result = (s16) 0xffff8000;
154 } else {
155 result = (s16) temp;
157 return result;
161 Description: This function make 32 bit subtraction and return the 32bit result.
162 If the result overflow 32 bits, the output will be saturated to 32bits.
164 s32 qm_sub32(s32 op1, s32 op2)
166 s32 result;
167 result = op1 - op2;
168 if (op1 >= 0 && op2 < 0 && result < 0) {
169 result = 0x7fffffff;
170 } else if (op1 < 0 && op2 > 0 && result > 0) {
171 result = 0x80000000;
173 return result;
177 Description: This function multiply input 16 bit numbers and accumulate the result
178 into the input 32 bit number and return the 32 bit accumulated result.
179 If the accumulation result in overflow, then the output will be saturated.
181 s32 qm_mac321616(s32 acc, s16 op1, s16 op2)
183 s32 result;
184 result = qm_add32(acc, qm_mul321616(op1, op2));
185 return result;
189 Description: This function make a 32 bit saturated left shift when the specified shift
190 is +ve. This function will make a 32 bit right shift when the specified shift is -ve.
191 This function return the result after shifting operation.
193 s32 qm_shl32(s32 op, int shift)
195 int i;
196 s32 result;
197 result = op;
198 if (shift > 31)
199 shift = 31;
200 else if (shift < -31)
201 shift = -31;
202 if (shift >= 0) {
203 for (i = 0; i < shift; i++) {
204 result = qm_add32(result, result);
206 } else {
207 result = result >> (-shift);
209 return result;
213 Description: This function make a 32 bit right shift when shift is +ve.
214 This function make a 32 bit saturated left shift when shift is -ve. This function
215 return the result of the shift operation.
217 s32 qm_shr32(s32 op, int shift)
219 return qm_shl32(op, -shift);
223 Description: This function make a 16 bit saturated left shift when the specified shift
224 is +ve. This function will make a 16 bit right shift when the specified shift is -ve.
225 This function return the result after shifting operation.
227 s16 qm_shl16(s16 op, int shift)
229 int i;
230 s16 result;
231 result = op;
232 if (shift > 15)
233 shift = 15;
234 else if (shift < -15)
235 shift = -15;
236 if (shift > 0) {
237 for (i = 0; i < shift; i++) {
238 result = qm_add16(result, result);
240 } else {
241 result = result >> (-shift);
243 return result;
247 Description: This function make a 16 bit right shift when shift is +ve.
248 This function make a 16 bit saturated left shift when shift is -ve. This function
249 return the result of the shift operation.
251 s16 qm_shr16(s16 op, int shift)
253 return qm_shl16(op, -shift);
257 Description: This function return the number of redundant sign bits in a 16 bit number.
258 Example: qm_norm16(0x0080) = 7.
260 s16 qm_norm16(s16 op)
262 u16 u16extraSignBits;
263 if (op == 0) {
264 return 15;
265 } else {
266 u16extraSignBits = 0;
267 while ((op >> 15) == (op >> 14)) {
268 u16extraSignBits++;
269 op = op << 1;
272 return u16extraSignBits;
276 Description: This function return the number of redundant sign bits in a 32 bit number.
277 Example: qm_norm32(0x00000080) = 23
279 s16 qm_norm32(s32 op)
281 u16 u16extraSignBits;
282 if (op == 0) {
283 return 31;
284 } else {
285 u16extraSignBits = 0;
286 while ((op >> 31) == (op >> 30)) {
287 u16extraSignBits++;
288 op = op << 1;
291 return u16extraSignBits;
295 Description: This function divide two 16 bit unsigned numbers.
296 The numerator should be less than denominator. So the quotient is always less than 1.
297 This function return the quotient in q.15 format.
299 s16 qm_div_s(s16 num, s16 denom)
301 s16 var_out;
302 s16 iteration;
303 s32 L_num;
304 s32 L_denom;
305 L_num = (num) << 15;
306 L_denom = (denom) << 15;
307 for (iteration = 0; iteration < 15; iteration++) {
308 L_num <<= 1;
309 if (L_num >= L_denom) {
310 L_num = qm_sub32(L_num, L_denom);
311 L_num = qm_add32(L_num, 1);
314 var_out = (s16) (L_num & 0x7fff);
315 return var_out;
319 Description: This function compute the absolute value of a 16 bit number.
321 s16 qm_abs16(s16 op)
323 if (op < 0) {
324 if (op == (s16) 0xffff8000) {
325 return 0x7fff;
326 } else {
327 return -op;
329 } else {
330 return op;
335 Description: This function divide two 16 bit numbers.
336 The quotient is returned through return value.
337 The qformat of the quotient is returned through the pointer (qQuotient) passed
338 to this function. The qformat of quotient is adjusted appropriately such that
339 the quotient occupies all 16 bits.
341 s16 qm_div16(s16 num, s16 denom, s16 *qQuotient)
343 s16 sign;
344 s16 nNum, nDenom;
345 sign = num ^ denom;
346 num = qm_abs16(num);
347 denom = qm_abs16(denom);
348 nNum = qm_norm16(num);
349 nDenom = qm_norm16(denom);
350 num = qm_shl16(num, nNum - 1);
351 denom = qm_shl16(denom, nDenom);
352 *qQuotient = nNum - 1 - nDenom + 15;
353 if (sign >= 0) {
354 return qm_div_s(num, denom);
355 } else {
356 return -qm_div_s(num, denom);
361 Description: This function compute absolute value of a 32 bit number.
363 s32 qm_abs32(s32 op)
365 if (op < 0) {
366 if (op == (s32) 0x80000000) {
367 return 0x7fffffff;
368 } else {
369 return -op;
371 } else {
372 return op;
377 Description: This function divide two 32 bit numbers. The division is performed
378 by considering only important 16 bits in 32 bit numbers.
379 The quotient is returned through return value.
380 The qformat of the quotient is returned through the pointer (qquotient) passed
381 to this function. The qformat of quotient is adjusted appropriately such that
382 the quotient occupies all 16 bits.
384 s16 qm_div163232(s32 num, s32 denom, s16 *qquotient)
386 s32 sign;
387 s16 nNum, nDenom;
388 sign = num ^ denom;
389 num = qm_abs32(num);
390 denom = qm_abs32(denom);
391 nNum = qm_norm32(num);
392 nDenom = qm_norm32(denom);
393 num = qm_shl32(num, nNum - 1);
394 denom = qm_shl32(denom, nDenom);
395 *qquotient = nNum - 1 - nDenom + 15;
396 if (sign >= 0) {
397 return qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
398 } else {
399 return -qm_div_s((s16) (num >> 16), (s16) (denom >> 16));
404 Description: This function multiply a 32 bit number with a 16 bit number.
405 The multiplicaton result is right shifted by 16 bits to fit the result
406 into 32 bit output.
408 s32 qm_mul323216(s32 op1, s16 op2)
410 s16 hi;
411 u16 lo;
412 s32 result;
413 hi = op1 >> 16;
414 lo = (s16) (op1 & 0xffff);
415 result = qm_mul321616(hi, op2);
416 result = result + (qm_mulsu321616(op2, lo) >> 16);
417 return result;
421 Description: This function multiply signed 16 bit number with unsigned 16 bit number and return
422 the result in 32 bits.
424 s32 qm_mulsu321616(s16 op1, u16 op2)
426 return (s32) (op1) * op2;
430 Description: This function multiply 32 bit number with 16 bit number. The multiplication result is
431 right shifted by 15 bits to fit the result into 32 bits. Right shifting by only 15 bits instead of
432 16 bits is done to remove the extra sign bit formed by multiplication from the return value.
433 When the input numbers are 0x80000000, 0x8000 the return value is saturated to 0x7fffffff.
435 s32 qm_muls323216(s32 op1, s16 op2)
437 s16 hi;
438 u16 lo;
439 s32 result;
440 hi = op1 >> 16;
441 lo = (s16) (op1 & 0xffff);
442 result = qm_muls321616(hi, op2);
443 result = qm_add32(result, (qm_mulsu321616(op2, lo) >> 15));
444 return result;
448 Description: This function multiply two 32 bit numbers. The multiplication result is right
449 shifted by 32 bits to fit the multiplication result into 32 bits. The right shifted
450 multiplication result is returned as output.
452 s32 qm_mul32(s32 a, s32 b)
454 s16 hi1, hi2;
455 u16 lo1, lo2;
456 s32 result;
457 hi1 = a >> 16;
458 hi2 = b >> 16;
459 lo1 = (u16) (a & 0xffff);
460 lo2 = (u16) (b & 0xffff);
461 result = qm_mul321616(hi1, hi2);
462 result = result + (qm_mulsu321616(hi1, lo2) >> 16);
463 result = result + (qm_mulsu321616(hi2, lo1) >> 16);
464 return result;
468 Description: This function multiply two 32 bit numbers. The multiplication result is
469 right shifted by 31 bits to fit the multiplication result into 32 bits. The right
470 shifted multiplication result is returned as output. Right shifting by only 31 bits
471 instead of 32 bits is done to remove the extra sign bit formed by multiplication.
472 When the input numbers are 0x80000000, 0x80000000 the return value is saturated to
473 0x7fffffff.
475 s32 qm_muls32(s32 a, s32 b)
477 s16 hi1, hi2;
478 u16 lo1, lo2;
479 s32 result;
480 hi1 = a >> 16;
481 hi2 = b >> 16;
482 lo1 = (u16) (a & 0xffff);
483 lo2 = (u16) (b & 0xffff);
484 result = qm_muls321616(hi1, hi2);
485 result = qm_add32(result, (qm_mulsu321616(hi1, lo2) >> 15));
486 result = qm_add32(result, (qm_mulsu321616(hi2, lo1) >> 15));
487 result = qm_add32(result, (qm_mulu16(lo1, lo2) >> 15));
488 return result;
491 /* This table is log2(1+(i/32)) where i=[0:1:31], in q.15 format */
492 static const s16 log_table[] = {
494 1455,
495 2866,
496 4236,
497 5568,
498 6863,
499 8124,
500 9352,
501 10549,
502 11716,
503 12855,
504 13968,
505 15055,
506 16117,
507 17156,
508 18173,
509 19168,
510 20143,
511 21098,
512 22034,
513 22952,
514 23852,
515 24736,
516 25604,
517 26455,
518 27292,
519 28114,
520 28922,
521 29717,
522 30498,
523 31267,
524 32024
527 #define LOG_TABLE_SIZE 32 /* log_table size */
528 #define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */
529 #define Q_LOG_TABLE 15 /* qformat of log_table */
530 #define LOG10_2 19728 /* log10(2) in q.16 */
533 Description:
534 This routine takes the input number N and its q format qN and compute
535 the log10(N). This routine first normalizes the input no N. Then N is in mag*(2^x) format.
536 mag is any number in the range 2^30-(2^31 - 1). Then log2(mag * 2^x) = log2(mag) + x is computed.
537 From that log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
538 This routine looks the log2 value in the table considering LOG2_LOG_TABLE_SIZE+1 MSBs.
539 As the MSB is always 1, only next LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup.
540 Next 16 MSBs are used for interpolation.
541 Inputs:
542 N - number to which log10 has to be found.
543 qN - q format of N
544 log10N - address where log10(N) will be written.
545 qLog10N - address where log10N qformat will be written.
546 Note/Problem:
547 For accurate results input should be in normalized or near normalized form.
549 void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
551 s16 s16norm, s16tableIndex, s16errorApproximation;
552 u16 u16offset;
553 s32 s32log;
555 /* Logerithm of negative values is undefined.
556 * assert N is greater than 0.
558 /* ASSERT(N > 0); */
560 /* normalize the N. */
561 s16norm = qm_norm32(N);
562 N = N << s16norm;
564 /* The qformat of N after normalization.
565 * -30 is added to treat the no as between 1.0 to 2.0
566 * i.e. after adding the -30 to the qformat the decimal point will be
567 * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
568 * at the right side of 30th bit.
570 qN = qN + s16norm - 30;
572 /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the MSB */
573 s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
575 /* remove the MSB. the MSB is always 1 after normalization. */
576 s16tableIndex =
577 s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
579 /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
580 N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
582 /* take the offset as the 16 MSBS after table index.
584 u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
586 /* look the log value in the table. */
587 s32log = log_table[s16tableIndex]; /* q.15 format */
589 /* interpolate using the offset. */
590 s16errorApproximation = (s16) qm_mulu16(u16offset, (u16) (log_table[s16tableIndex + 1] - log_table[s16tableIndex])); /* q.15 */
592 s32log = qm_add16((s16) s32log, s16errorApproximation); /* q.15 format */
594 /* adjust for the qformat of the N as
595 * log2(mag * 2^x) = log2(mag) + x
597 s32log = qm_add32(s32log, ((s32) -qN) << 15); /* q.15 format */
599 /* normalize the result. */
600 s16norm = qm_norm32(s32log);
602 /* bring all the important bits into lower 16 bits */
603 s32log = qm_shl32(s32log, s16norm - 16); /* q.15+s16norm-16 format */
605 /* compute the log10(N) by multiplying log2(N) with log10(2).
606 * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
607 * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
609 *log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
611 /* write the q format of the result. */
612 *qLog10N = 15 + s16norm - 16 + 1;
614 return;
618 Description:
619 This routine compute 1/N.
620 This routine reformates the given no N as N * 2^qN where N is in between 0.5 and 1.0
621 in q.15 format in 16 bits. So the problem now boils down to finding the inverse of a
622 q.15 no in 16 bits which is in the range of 0.5 to 1.0. The output is always between
623 2.0 to 1. So the output is 2.0 to 1.0 in q.30 format. Once the final output format is found
624 by taking the qN into account. Inverse is found with newton rapson method. Initially
625 inverse (x) is guessed as 1/0.75 (with appropriate sign). The new guess is calculated
626 using the formula x' = 2*x - N*x*x. After 4 or 5 iterations the inverse is very close to
627 inverse of N.
628 Inputs:
629 N - number to which 1/N has to be found.
630 qn - q format of N.
631 sqrtN - address where 1/N has to be written.
632 qsqrtN - address where q format of 1/N has to be written.
634 #define qx 29
635 void qm_1byN(s32 N, s16 qN, s32 *result, s16 *qResult)
637 s16 normN;
638 s32 s32firstTerm, s32secondTerm, x;
639 int i;
641 normN = qm_norm32(N);
643 /* limit N to least significant 16 bits. 15th bit is the sign bit. */
644 N = qm_shl32(N, normN - 16);
645 qN = qN + normN - 16 - 15;
646 /* -15 is added to treat N as 16 bit q.15 number in the range from 0.5 to 1 */
648 /* Take the initial guess as 1/0.75 in qx format with appropriate sign. */
649 if (N >= 0) {
650 x = (s32) ((1 / 0.75) * (1 << qx));
651 /* input no is in the range 0.5 to 1. So 1/0.75 is taken as initial guess. */
652 } else {
653 x = (s32) ((1 / -0.75) * (1 << qx));
654 /* input no is in the range -0.5 to -1. So 1/-0.75 is taken as initial guess. */
657 /* iterate the equation x = 2*x - N*x*x for 4 times. */
658 for (i = 0; i < 4; i++) {
659 s32firstTerm = qm_shl32(x, 1); /* s32firstTerm = 2*x in q.29 */
660 s32secondTerm =
661 qm_muls321616((s16) (s32firstTerm >> 16),
662 (s16) (s32firstTerm >> 16));
663 /* s32secondTerm = x*x in q.(29+1-16)*2+1 */
664 s32secondTerm =
665 qm_muls321616((s16) (s32secondTerm >> 16), (s16) N);
666 /* s32secondTerm = N*x*x in q.((29+1-16)*2+1)-16+15+1 i.e. in q.29 */
667 x = qm_sub32(s32firstTerm, s32secondTerm);
668 /* can be added directly as both are in q.29 */
671 /* Bring the x to q.30 format. */
672 *result = qm_shl32(x, 1);
673 /* giving the output in q.30 format for q.15 input in 16 bits. */
675 /* compute the final q format of the result. */
676 *qResult = -qN + 30; /* adjusting the q format of actual output */
678 return;
681 #undef qx