2 * Copyright (c) 2010 Broadcom Corporation
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/types.h>
21 Description: This function saturate input 32 bit number into a 16 bit number.
22 If input number is greater than 0x7fff then output is saturated to 0x7fff.
23 else if input number is less than 0xffff8000 then output is saturated to 0xffff8000
24 else output is same as input.
29 if (op
> (s32
) 0x7fff) {
31 } else if (op
< (s32
) 0xffff8000) {
32 result
= (s16
) (0x8000);
40 Description: This function multiply two input 16 bit numbers and return the 32 bit result.
41 This multiplication is similar to compiler multiplication. This operation is defined if
42 16 bit multiplication on the processor platform is cheaper than 32 bit multiplication (as
43 the most of qmath functions can be replaced with processor intrinsic instructions).
45 s32
qm_mul321616(s16 op1
, s16 op2
)
47 return (s32
) (op1
) * (s32
) (op2
);
51 Description: This function make 16 bit multiplication and return the result in 16 bits.
52 To fit the result into 16 bits the 32 bit multiplication result is right
55 s16
qm_mul16(s16 op1
, s16 op2
)
58 result
= ((s32
) (op1
) * (s32
) (op2
));
59 return (s16
) (result
>> 16);
63 Description: This function multiply two 16 bit numbers and return the result in 32 bits.
64 This function remove the extra sign bit created by the multiplication by leftshifting the
65 32 bit multiplication result by 1 bit before returning the result. So the output is
66 twice that of compiler multiplication. (i.e. qm_muls321616(2,3)=12).
67 When both input 16 bit numbers are 0x8000, then the result is saturated to 0x7fffffff.
69 s32
qm_muls321616(s16 op1
, s16 op2
)
72 if (op1
== (s16
) (0x8000) && op2
== (s16
) (0x8000)) {
75 result
= ((s32
) (op1
) * (s32
) (op2
));
82 Description: This function make 16 bit unsigned multiplication. To fit the output into
83 16 bits the 32 bit multiplication result is right shifted by 16 bits.
85 u16
qm_mulu16(u16 op1
, u16 op2
)
87 return (u16
) (((u32
) op1
* (u32
) op2
) >> 16);
91 Description: This function make 16 bit multiplication and return the result in 16 bits.
92 To fit the multiplication result into 16 bits the multiplication result is right shifted by
93 15 bits. Right shifting 15 bits instead of 16 bits is done to remove the extra sign bit formed
94 due to the multiplication.
95 When both the 16bit inputs are 0x8000 then the output is saturated to 0x7fffffff.
97 s16
qm_muls16(s16 op1
, s16 op2
)
100 if (op1
== (s16
) 0x8000 && op2
== (s16
) 0x8000) {
103 result
= ((s32
) (op1
) * (s32
) (op2
));
105 return (s16
) (result
>> 15);
109 Description: This function add two 32 bit numbers and return the 32bit result.
110 If the result overflow 32 bits, the output will be saturated to 32bits.
112 s32
qm_add32(s32 op1
, s32 op2
)
116 if (op1
< 0 && op2
< 0 && result
> 0) {
118 } else if (op1
> 0 && op2
> 0 && result
< 0) {
125 Description: This function add two 16 bit numbers and return the 16bit result.
126 If the result overflow 16 bits, the output will be saturated to 16bits.
128 s16
qm_add16(s16 op1
, s16 op2
)
131 s32 temp
= (s32
) op1
+ (s32
) op2
;
132 if (temp
> (s32
) 0x7fff) {
133 result
= (s16
) 0x7fff;
134 } else if (temp
< (s32
) 0xffff8000) {
135 result
= (s16
) 0xffff8000;
143 Description: This function make 16 bit subtraction and return the 16bit result.
144 If the result overflow 16 bits, the output will be saturated to 16bits.
146 s16
qm_sub16(s16 op1
, s16 op2
)
149 s32 temp
= (s32
) op1
- (s32
) op2
;
150 if (temp
> (s32
) 0x7fff) {
151 result
= (s16
) 0x7fff;
152 } else if (temp
< (s32
) 0xffff8000) {
153 result
= (s16
) 0xffff8000;
161 Description: This function make 32 bit subtraction and return the 32bit result.
162 If the result overflow 32 bits, the output will be saturated to 32bits.
164 s32
qm_sub32(s32 op1
, s32 op2
)
168 if (op1
>= 0 && op2
< 0 && result
< 0) {
170 } else if (op1
< 0 && op2
> 0 && result
> 0) {
177 Description: This function multiply input 16 bit numbers and accumulate the result
178 into the input 32 bit number and return the 32 bit accumulated result.
179 If the accumulation result in overflow, then the output will be saturated.
181 s32
qm_mac321616(s32 acc
, s16 op1
, s16 op2
)
184 result
= qm_add32(acc
, qm_mul321616(op1
, op2
));
189 Description: This function make a 32 bit saturated left shift when the specified shift
190 is +ve. This function will make a 32 bit right shift when the specified shift is -ve.
191 This function return the result after shifting operation.
193 s32
qm_shl32(s32 op
, int shift
)
200 else if (shift
< -31)
203 for (i
= 0; i
< shift
; i
++) {
204 result
= qm_add32(result
, result
);
207 result
= result
>> (-shift
);
213 Description: This function make a 32 bit right shift when shift is +ve.
214 This function make a 32 bit saturated left shift when shift is -ve. This function
215 return the result of the shift operation.
217 s32
qm_shr32(s32 op
, int shift
)
219 return qm_shl32(op
, -shift
);
223 Description: This function make a 16 bit saturated left shift when the specified shift
224 is +ve. This function will make a 16 bit right shift when the specified shift is -ve.
225 This function return the result after shifting operation.
227 s16
qm_shl16(s16 op
, int shift
)
234 else if (shift
< -15)
237 for (i
= 0; i
< shift
; i
++) {
238 result
= qm_add16(result
, result
);
241 result
= result
>> (-shift
);
247 Description: This function make a 16 bit right shift when shift is +ve.
248 This function make a 16 bit saturated left shift when shift is -ve. This function
249 return the result of the shift operation.
251 s16
qm_shr16(s16 op
, int shift
)
253 return qm_shl16(op
, -shift
);
257 Description: This function return the number of redundant sign bits in a 16 bit number.
258 Example: qm_norm16(0x0080) = 7.
260 s16
qm_norm16(s16 op
)
262 u16 u16extraSignBits
;
266 u16extraSignBits
= 0;
267 while ((op
>> 15) == (op
>> 14)) {
272 return u16extraSignBits
;
276 Description: This function return the number of redundant sign bits in a 32 bit number.
277 Example: qm_norm32(0x00000080) = 23
279 s16
qm_norm32(s32 op
)
281 u16 u16extraSignBits
;
285 u16extraSignBits
= 0;
286 while ((op
>> 31) == (op
>> 30)) {
291 return u16extraSignBits
;
295 Description: This function divide two 16 bit unsigned numbers.
296 The numerator should be less than denominator. So the quotient is always less than 1.
297 This function return the quotient in q.15 format.
299 s16
qm_div_s(s16 num
, s16 denom
)
306 L_denom
= (denom
) << 15;
307 for (iteration
= 0; iteration
< 15; iteration
++) {
309 if (L_num
>= L_denom
) {
310 L_num
= qm_sub32(L_num
, L_denom
);
311 L_num
= qm_add32(L_num
, 1);
314 var_out
= (s16
) (L_num
& 0x7fff);
319 Description: This function compute the absolute value of a 16 bit number.
324 if (op
== (s16
) 0xffff8000) {
335 Description: This function divide two 16 bit numbers.
336 The quotient is returned through return value.
337 The qformat of the quotient is returned through the pointer (qQuotient) passed
338 to this function. The qformat of quotient is adjusted appropriately such that
339 the quotient occupies all 16 bits.
341 s16
qm_div16(s16 num
, s16 denom
, s16
*qQuotient
)
347 denom
= qm_abs16(denom
);
348 nNum
= qm_norm16(num
);
349 nDenom
= qm_norm16(denom
);
350 num
= qm_shl16(num
, nNum
- 1);
351 denom
= qm_shl16(denom
, nDenom
);
352 *qQuotient
= nNum
- 1 - nDenom
+ 15;
354 return qm_div_s(num
, denom
);
356 return -qm_div_s(num
, denom
);
361 Description: This function compute absolute value of a 32 bit number.
366 if (op
== (s32
) 0x80000000) {
377 Description: This function divide two 32 bit numbers. The division is performed
378 by considering only important 16 bits in 32 bit numbers.
379 The quotient is returned through return value.
380 The qformat of the quotient is returned through the pointer (qquotient) passed
381 to this function. The qformat of quotient is adjusted appropriately such that
382 the quotient occupies all 16 bits.
384 s16
qm_div163232(s32 num
, s32 denom
, s16
*qquotient
)
390 denom
= qm_abs32(denom
);
391 nNum
= qm_norm32(num
);
392 nDenom
= qm_norm32(denom
);
393 num
= qm_shl32(num
, nNum
- 1);
394 denom
= qm_shl32(denom
, nDenom
);
395 *qquotient
= nNum
- 1 - nDenom
+ 15;
397 return qm_div_s((s16
) (num
>> 16), (s16
) (denom
>> 16));
399 return -qm_div_s((s16
) (num
>> 16), (s16
) (denom
>> 16));
404 Description: This function multiply a 32 bit number with a 16 bit number.
405 The multiplicaton result is right shifted by 16 bits to fit the result
408 s32
qm_mul323216(s32 op1
, s16 op2
)
414 lo
= (s16
) (op1
& 0xffff);
415 result
= qm_mul321616(hi
, op2
);
416 result
= result
+ (qm_mulsu321616(op2
, lo
) >> 16);
421 Description: This function multiply signed 16 bit number with unsigned 16 bit number and return
422 the result in 32 bits.
424 s32
qm_mulsu321616(s16 op1
, u16 op2
)
426 return (s32
) (op1
) * op2
;
430 Description: This function multiply 32 bit number with 16 bit number. The multiplication result is
431 right shifted by 15 bits to fit the result into 32 bits. Right shifting by only 15 bits instead of
432 16 bits is done to remove the extra sign bit formed by multiplication from the return value.
433 When the input numbers are 0x80000000, 0x8000 the return value is saturated to 0x7fffffff.
435 s32
qm_muls323216(s32 op1
, s16 op2
)
441 lo
= (s16
) (op1
& 0xffff);
442 result
= qm_muls321616(hi
, op2
);
443 result
= qm_add32(result
, (qm_mulsu321616(op2
, lo
) >> 15));
448 Description: This function multiply two 32 bit numbers. The multiplication result is right
449 shifted by 32 bits to fit the multiplication result into 32 bits. The right shifted
450 multiplication result is returned as output.
452 s32
qm_mul32(s32 a
, s32 b
)
459 lo1
= (u16
) (a
& 0xffff);
460 lo2
= (u16
) (b
& 0xffff);
461 result
= qm_mul321616(hi1
, hi2
);
462 result
= result
+ (qm_mulsu321616(hi1
, lo2
) >> 16);
463 result
= result
+ (qm_mulsu321616(hi2
, lo1
) >> 16);
468 Description: This function multiply two 32 bit numbers. The multiplication result is
469 right shifted by 31 bits to fit the multiplication result into 32 bits. The right
470 shifted multiplication result is returned as output. Right shifting by only 31 bits
471 instead of 32 bits is done to remove the extra sign bit formed by multiplication.
472 When the input numbers are 0x80000000, 0x80000000 the return value is saturated to
475 s32
qm_muls32(s32 a
, s32 b
)
482 lo1
= (u16
) (a
& 0xffff);
483 lo2
= (u16
) (b
& 0xffff);
484 result
= qm_muls321616(hi1
, hi2
);
485 result
= qm_add32(result
, (qm_mulsu321616(hi1
, lo2
) >> 15));
486 result
= qm_add32(result
, (qm_mulsu321616(hi2
, lo1
) >> 15));
487 result
= qm_add32(result
, (qm_mulu16(lo1
, lo2
) >> 15));
491 /* This table is log2(1+(i/32)) where i=[0:1:31], in q.15 format */
492 static const s16 log_table
[] = {
527 #define LOG_TABLE_SIZE 32 /* log_table size */
528 #define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */
529 #define Q_LOG_TABLE 15 /* qformat of log_table */
530 #define LOG10_2 19728 /* log10(2) in q.16 */
534 This routine takes the input number N and its q format qN and compute
535 the log10(N). This routine first normalizes the input no N. Then N is in mag*(2^x) format.
536 mag is any number in the range 2^30-(2^31 - 1). Then log2(mag * 2^x) = log2(mag) + x is computed.
537 From that log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
538 This routine looks the log2 value in the table considering LOG2_LOG_TABLE_SIZE+1 MSBs.
539 As the MSB is always 1, only next LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup.
540 Next 16 MSBs are used for interpolation.
542 N - number to which log10 has to be found.
544 log10N - address where log10(N) will be written.
545 qLog10N - address where log10N qformat will be written.
547 For accurate results input should be in normalized or near normalized form.
549 void qm_log10(s32 N
, s16 qN
, s16
*log10N
, s16
*qLog10N
)
551 s16 s16norm
, s16tableIndex
, s16errorApproximation
;
555 /* Logerithm of negative values is undefined.
556 * assert N is greater than 0.
560 /* normalize the N. */
561 s16norm
= qm_norm32(N
);
564 /* The qformat of N after normalization.
565 * -30 is added to treat the no as between 1.0 to 2.0
566 * i.e. after adding the -30 to the qformat the decimal point will be
567 * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
568 * at the right side of 30th bit.
570 qN
= qN
+ s16norm
- 30;
572 /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the MSB */
573 s16tableIndex
= (s16
) (N
>> (32 - (2 + LOG2_LOG_TABLE_SIZE
)));
575 /* remove the MSB. the MSB is always 1 after normalization. */
577 s16tableIndex
& (s16
) ((1 << LOG2_LOG_TABLE_SIZE
) - 1);
579 /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
580 N
= N
& ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE
))) - 1);
582 /* take the offset as the 16 MSBS after table index.
584 u16offset
= (u16
) (N
>> (32 - (2 + LOG2_LOG_TABLE_SIZE
+ 16)));
586 /* look the log value in the table. */
587 s32log
= log_table
[s16tableIndex
]; /* q.15 format */
589 /* interpolate using the offset. */
590 s16errorApproximation
= (s16
) qm_mulu16(u16offset
, (u16
) (log_table
[s16tableIndex
+ 1] - log_table
[s16tableIndex
])); /* q.15 */
592 s32log
= qm_add16((s16
) s32log
, s16errorApproximation
); /* q.15 format */
594 /* adjust for the qformat of the N as
595 * log2(mag * 2^x) = log2(mag) + x
597 s32log
= qm_add32(s32log
, ((s32
) -qN
) << 15); /* q.15 format */
599 /* normalize the result. */
600 s16norm
= qm_norm32(s32log
);
602 /* bring all the important bits into lower 16 bits */
603 s32log
= qm_shl32(s32log
, s16norm
- 16); /* q.15+s16norm-16 format */
605 /* compute the log10(N) by multiplying log2(N) with log10(2).
606 * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
607 * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
609 *log10N
= qm_muls16((s16
) s32log
, (s16
) LOG10_2
);
611 /* write the q format of the result. */
612 *qLog10N
= 15 + s16norm
- 16 + 1;
619 This routine compute 1/N.
620 This routine reformates the given no N as N * 2^qN where N is in between 0.5 and 1.0
621 in q.15 format in 16 bits. So the problem now boils down to finding the inverse of a
622 q.15 no in 16 bits which is in the range of 0.5 to 1.0. The output is always between
623 2.0 to 1. So the output is 2.0 to 1.0 in q.30 format. Once the final output format is found
624 by taking the qN into account. Inverse is found with newton rapson method. Initially
625 inverse (x) is guessed as 1/0.75 (with appropriate sign). The new guess is calculated
626 using the formula x' = 2*x - N*x*x. After 4 or 5 iterations the inverse is very close to
629 N - number to which 1/N has to be found.
631 sqrtN - address where 1/N has to be written.
632 qsqrtN - address where q format of 1/N has to be written.
635 void qm_1byN(s32 N
, s16 qN
, s32
*result
, s16
*qResult
)
638 s32 s32firstTerm
, s32secondTerm
, x
;
641 normN
= qm_norm32(N
);
643 /* limit N to least significant 16 bits. 15th bit is the sign bit. */
644 N
= qm_shl32(N
, normN
- 16);
645 qN
= qN
+ normN
- 16 - 15;
646 /* -15 is added to treat N as 16 bit q.15 number in the range from 0.5 to 1 */
648 /* Take the initial guess as 1/0.75 in qx format with appropriate sign. */
650 x
= (s32
) ((1 / 0.75) * (1 << qx
));
651 /* input no is in the range 0.5 to 1. So 1/0.75 is taken as initial guess. */
653 x
= (s32
) ((1 / -0.75) * (1 << qx
));
654 /* input no is in the range -0.5 to -1. So 1/-0.75 is taken as initial guess. */
657 /* iterate the equation x = 2*x - N*x*x for 4 times. */
658 for (i
= 0; i
< 4; i
++) {
659 s32firstTerm
= qm_shl32(x
, 1); /* s32firstTerm = 2*x in q.29 */
661 qm_muls321616((s16
) (s32firstTerm
>> 16),
662 (s16
) (s32firstTerm
>> 16));
663 /* s32secondTerm = x*x in q.(29+1-16)*2+1 */
665 qm_muls321616((s16
) (s32secondTerm
>> 16), (s16
) N
);
666 /* s32secondTerm = N*x*x in q.((29+1-16)*2+1)-16+15+1 i.e. in q.29 */
667 x
= qm_sub32(s32firstTerm
, s32secondTerm
);
668 /* can be added directly as both are in q.29 */
671 /* Bring the x to q.30 format. */
672 *result
= qm_shl32(x
, 1);
673 /* giving the output in q.30 format for q.15 input in 16 bits. */
675 /* compute the final q format of the result. */
676 *qResult
= -qN
+ 30; /* adjusting the q format of actual output */