2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
43 #include <asm/system.h>
44 #include <asm/unaligned.h>
46 #include <linux/irq.h>
47 #include <linux/platform_device.h>
51 #define DRIVER_VERSION "0.0.50"
57 #define oxu_dbg(oxu, fmt, args...) \
58 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
59 #define oxu_err(oxu, fmt, args...) \
60 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
61 #define oxu_info(oxu, fmt, args...) \
62 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
64 static inline struct usb_hcd
*oxu_to_hcd(struct oxu_hcd
*oxu
)
66 return container_of((void *) oxu
, struct usb_hcd
, hcd_priv
);
69 static inline struct oxu_hcd
*hcd_to_oxu(struct usb_hcd
*hcd
)
71 return (struct oxu_hcd
*) (hcd
->hcd_priv
);
79 #undef OXU_VERBOSE_DEBUG
81 #ifdef OXU_VERBOSE_DEBUG
82 #define oxu_vdbg oxu_dbg
84 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
89 static int __attribute__((__unused__
))
90 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
92 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
93 label
, label
[0] ? " " : "", status
,
94 (status
& STS_ASS
) ? " Async" : "",
95 (status
& STS_PSS
) ? " Periodic" : "",
96 (status
& STS_RECL
) ? " Recl" : "",
97 (status
& STS_HALT
) ? " Halt" : "",
98 (status
& STS_IAA
) ? " IAA" : "",
99 (status
& STS_FATAL
) ? " FATAL" : "",
100 (status
& STS_FLR
) ? " FLR" : "",
101 (status
& STS_PCD
) ? " PCD" : "",
102 (status
& STS_ERR
) ? " ERR" : "",
103 (status
& STS_INT
) ? " INT" : ""
107 static int __attribute__((__unused__
))
108 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
110 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
111 label
, label
[0] ? " " : "", enable
,
112 (enable
& STS_IAA
) ? " IAA" : "",
113 (enable
& STS_FATAL
) ? " FATAL" : "",
114 (enable
& STS_FLR
) ? " FLR" : "",
115 (enable
& STS_PCD
) ? " PCD" : "",
116 (enable
& STS_ERR
) ? " ERR" : "",
117 (enable
& STS_INT
) ? " INT" : ""
121 static const char *const fls_strings
[] =
122 { "1024", "512", "256", "??" };
124 static int dbg_command_buf(char *buf
, unsigned len
,
125 const char *label
, u32 command
)
127 return scnprintf(buf
, len
,
128 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
129 label
, label
[0] ? " " : "", command
,
130 (command
& CMD_PARK
) ? "park" : "(park)",
131 CMD_PARK_CNT(command
),
132 (command
>> 16) & 0x3f,
133 (command
& CMD_LRESET
) ? " LReset" : "",
134 (command
& CMD_IAAD
) ? " IAAD" : "",
135 (command
& CMD_ASE
) ? " Async" : "",
136 (command
& CMD_PSE
) ? " Periodic" : "",
137 fls_strings
[(command
>> 2) & 0x3],
138 (command
& CMD_RESET
) ? " Reset" : "",
139 (command
& CMD_RUN
) ? "RUN" : "HALT"
143 static int dbg_port_buf(char *buf
, unsigned len
, const char *label
,
144 int port
, u32 status
)
148 /* signaling state */
149 switch (status
& (3 << 10)) {
154 sig
= "k"; /* low speed */
164 return scnprintf(buf
, len
,
165 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
166 label
, label
[0] ? " " : "", port
, status
,
167 (status
& PORT_POWER
) ? " POWER" : "",
168 (status
& PORT_OWNER
) ? " OWNER" : "",
170 (status
& PORT_RESET
) ? " RESET" : "",
171 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
172 (status
& PORT_RESUME
) ? " RESUME" : "",
173 (status
& PORT_OCC
) ? " OCC" : "",
174 (status
& PORT_OC
) ? " OC" : "",
175 (status
& PORT_PEC
) ? " PEC" : "",
176 (status
& PORT_PE
) ? " PE" : "",
177 (status
& PORT_CSC
) ? " CSC" : "",
178 (status
& PORT_CONNECT
) ? " CONNECT" : ""
184 static inline int __attribute__((__unused__
))
185 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
188 static inline int __attribute__((__unused__
))
189 dbg_command_buf(char *buf
, unsigned len
, const char *label
, u32 command
)
192 static inline int __attribute__((__unused__
))
193 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
196 static inline int __attribute__((__unused__
))
197 dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
, u32 status
)
202 /* functions have the "wrong" filename when they're output... */
203 #define dbg_status(oxu, label, status) { \
205 dbg_status_buf(_buf, sizeof _buf, label, status); \
206 oxu_dbg(oxu, "%s\n", _buf); \
209 #define dbg_cmd(oxu, label, command) { \
211 dbg_command_buf(_buf, sizeof _buf, label, command); \
212 oxu_dbg(oxu, "%s\n", _buf); \
215 #define dbg_port(oxu, label, port, status) { \
217 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
218 oxu_dbg(oxu, "%s\n", _buf); \
225 /* Initial IRQ latency: faster than hw default */
226 static int log2_irq_thresh
; /* 0 to 6 */
227 module_param(log2_irq_thresh
, int, S_IRUGO
);
228 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
230 /* Initial park setting: slower than hw default */
231 static unsigned park
;
232 module_param(park
, uint
, S_IRUGO
);
233 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
235 /* For flakey hardware, ignore overcurrent indicators */
236 static int ignore_oc
;
237 module_param(ignore_oc
, bool, S_IRUGO
);
238 MODULE_PARM_DESC(ignore_oc
, "ignore bogus hardware overcurrent indications");
241 static void ehci_work(struct oxu_hcd
*oxu
);
242 static int oxu_hub_control(struct usb_hcd
*hcd
,
243 u16 typeReq
, u16 wValue
, u16 wIndex
,
244 char *buf
, u16 wLength
);
250 /* Low level read/write registers functions */
251 static inline u32
oxu_readl(void *base
, u32 reg
)
253 return readl(base
+ reg
);
256 static inline void oxu_writel(void *base
, u32 reg
, u32 val
)
258 writel(val
, base
+ reg
);
261 static inline void timer_action_done(struct oxu_hcd
*oxu
,
262 enum ehci_timer_action action
)
264 clear_bit(action
, &oxu
->actions
);
267 static inline void timer_action(struct oxu_hcd
*oxu
,
268 enum ehci_timer_action action
)
270 if (!test_and_set_bit(action
, &oxu
->actions
)) {
274 case TIMER_IAA_WATCHDOG
:
275 t
= EHCI_IAA_JIFFIES
;
277 case TIMER_IO_WATCHDOG
:
280 case TIMER_ASYNC_OFF
:
281 t
= EHCI_ASYNC_JIFFIES
;
283 case TIMER_ASYNC_SHRINK
:
285 t
= EHCI_SHRINK_JIFFIES
;
289 /* all timings except IAA watchdog can be overridden.
290 * async queue SHRINK often precedes IAA. while it's ready
291 * to go OFF neither can matter, and afterwards the IO
292 * watchdog stops unless there's still periodic traffic.
294 if (action
!= TIMER_IAA_WATCHDOG
295 && t
> oxu
->watchdog
.expires
296 && timer_pending(&oxu
->watchdog
))
298 mod_timer(&oxu
->watchdog
, t
);
303 * handshake - spin reading hc until handshake completes or fails
304 * @ptr: address of hc register to be read
305 * @mask: bits to look at in result of read
306 * @done: value of those bits when handshake succeeds
307 * @usec: timeout in microseconds
309 * Returns negative errno, or zero on success
311 * Success happens when the "mask" bits have the specified value (hardware
312 * handshake done). There are two failure modes: "usec" have passed (major
313 * hardware flakeout), or the register reads as all-ones (hardware removed).
315 * That last failure should_only happen in cases like physical cardbus eject
316 * before driver shutdown. But it also seems to be caused by bugs in cardbus
317 * bridge shutdown: shutting down the bridge before the devices using it.
319 static int handshake(struct oxu_hcd
*oxu
, void __iomem
*ptr
,
320 u32 mask
, u32 done
, int usec
)
326 if (result
== ~(u32
)0) /* card removed */
337 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
338 static int ehci_halt(struct oxu_hcd
*oxu
)
340 u32 temp
= readl(&oxu
->regs
->status
);
342 /* disable any irqs left enabled by previous code */
343 writel(0, &oxu
->regs
->intr_enable
);
345 if ((temp
& STS_HALT
) != 0)
348 temp
= readl(&oxu
->regs
->command
);
350 writel(temp
, &oxu
->regs
->command
);
351 return handshake(oxu
, &oxu
->regs
->status
,
352 STS_HALT
, STS_HALT
, 16 * 125);
355 /* Put TDI/ARC silicon into EHCI mode */
356 static void tdi_reset(struct oxu_hcd
*oxu
)
358 u32 __iomem
*reg_ptr
;
361 reg_ptr
= (u32 __iomem
*)(((u8 __iomem
*)oxu
->regs
) + 0x68);
362 tmp
= readl(reg_ptr
);
364 writel(tmp
, reg_ptr
);
367 /* Reset a non-running (STS_HALT == 1) controller */
368 static int ehci_reset(struct oxu_hcd
*oxu
)
371 u32 command
= readl(&oxu
->regs
->command
);
373 command
|= CMD_RESET
;
374 dbg_cmd(oxu
, "reset", command
);
375 writel(command
, &oxu
->regs
->command
);
376 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
377 oxu
->next_statechange
= jiffies
;
378 retval
= handshake(oxu
, &oxu
->regs
->command
,
379 CMD_RESET
, 0, 250 * 1000);
389 /* Idle the controller (from running) */
390 static void ehci_quiesce(struct oxu_hcd
*oxu
)
395 if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
399 /* wait for any schedule enables/disables to take effect */
400 temp
= readl(&oxu
->regs
->command
) << 10;
401 temp
&= STS_ASS
| STS_PSS
;
402 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
403 temp
, 16 * 125) != 0) {
404 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
408 /* then disable anything that's still active */
409 temp
= readl(&oxu
->regs
->command
);
410 temp
&= ~(CMD_ASE
| CMD_IAAD
| CMD_PSE
);
411 writel(temp
, &oxu
->regs
->command
);
413 /* hardware can take 16 microframes to turn off ... */
414 if (handshake(oxu
, &oxu
->regs
->status
, STS_ASS
| STS_PSS
,
416 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
421 static int check_reset_complete(struct oxu_hcd
*oxu
, int index
,
422 u32 __iomem
*status_reg
, int port_status
)
424 if (!(port_status
& PORT_CONNECT
)) {
425 oxu
->reset_done
[index
] = 0;
429 /* if reset finished and it's still not enabled -- handoff */
430 if (!(port_status
& PORT_PE
)) {
431 oxu_dbg(oxu
, "Failed to enable port %d on root hub TT\n",
435 oxu_dbg(oxu
, "port %d high speed\n", index
+ 1);
440 static void ehci_hub_descriptor(struct oxu_hcd
*oxu
,
441 struct usb_hub_descriptor
*desc
)
443 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
446 desc
->bDescriptorType
= 0x29;
447 desc
->bPwrOn2PwrGood
= 10; /* oxu 1.0, 2.3.9 says 20ms max */
448 desc
->bHubContrCurrent
= 0;
450 desc
->bNbrPorts
= ports
;
451 temp
= 1 + (ports
/ 8);
452 desc
->bDescLength
= 7 + 2 * temp
;
454 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
455 memset(&desc
->bitmap
[0], 0, temp
);
456 memset(&desc
->bitmap
[temp
], 0xff, temp
);
458 temp
= 0x0008; /* per-port overcurrent reporting */
459 if (HCS_PPC(oxu
->hcs_params
))
460 temp
|= 0x0001; /* per-port power control */
462 temp
|= 0x0002; /* no power switching */
463 desc
->wHubCharacteristics
= (__force __u16
)cpu_to_le16(temp
);
467 /* Allocate an OXU210HP on-chip memory data buffer
469 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
470 * Each transfer descriptor has one or more on-chip memory data buffers.
472 * Data buffers are allocated from a fix sized pool of data blocks.
473 * To minimise fragmentation and give reasonable memory utlisation,
474 * data buffers are allocated with sizes the power of 2 multiples of
475 * the block size, starting on an address a multiple of the allocated size.
477 * FIXME: callers of this function require a buffer to be allocated for
478 * len=0. This is a waste of on-chip memory and should be fix. Then this
479 * function should be changed to not allocate a buffer for len=0.
481 static int oxu_buf_alloc(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
, int len
)
483 int n_blocks
; /* minium blocks needed to hold len */
484 int a_blocks
; /* blocks allocated */
487 /* Don't allocte bigger than supported */
488 if (len
> BUFFER_SIZE
* BUFFER_NUM
) {
489 oxu_err(oxu
, "buffer too big (%d)\n", len
);
493 spin_lock(&oxu
->mem_lock
);
495 /* Number of blocks needed to hold len */
496 n_blocks
= (len
+ BUFFER_SIZE
- 1) / BUFFER_SIZE
;
498 /* Round the number of blocks up to the power of 2 */
499 for (a_blocks
= 1; a_blocks
< n_blocks
; a_blocks
<<= 1)
502 /* Find a suitable available data buffer */
503 for (i
= 0; i
< BUFFER_NUM
;
504 i
+= max(a_blocks
, (int)oxu
->db_used
[i
])) {
506 /* Check all the required blocks are available */
507 for (j
= 0; j
< a_blocks
; j
++)
508 if (oxu
->db_used
[i
+ j
])
514 /* Allocate blocks found! */
515 qtd
->buffer
= (void *) &oxu
->mem
->db_pool
[i
];
516 qtd
->buffer_dma
= virt_to_phys(qtd
->buffer
);
518 qtd
->qtd_buffer_len
= BUFFER_SIZE
* a_blocks
;
519 oxu
->db_used
[i
] = a_blocks
;
521 spin_unlock(&oxu
->mem_lock
);
528 spin_unlock(&oxu
->mem_lock
);
533 static void oxu_buf_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
537 spin_lock(&oxu
->mem_lock
);
539 index
= (qtd
->buffer
- (void *) &oxu
->mem
->db_pool
[0])
541 oxu
->db_used
[index
] = 0;
542 qtd
->qtd_buffer_len
= 0;
546 spin_unlock(&oxu
->mem_lock
);
549 static inline void ehci_qtd_init(struct ehci_qtd
*qtd
, dma_addr_t dma
)
551 memset(qtd
, 0, sizeof *qtd
);
553 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
554 qtd
->hw_next
= EHCI_LIST_END
;
555 qtd
->hw_alt_next
= EHCI_LIST_END
;
556 INIT_LIST_HEAD(&qtd
->qtd_list
);
559 static inline void oxu_qtd_free(struct oxu_hcd
*oxu
, struct ehci_qtd
*qtd
)
564 oxu_buf_free(oxu
, qtd
);
566 spin_lock(&oxu
->mem_lock
);
568 index
= qtd
- &oxu
->mem
->qtd_pool
[0];
569 oxu
->qtd_used
[index
] = 0;
571 spin_unlock(&oxu
->mem_lock
);
574 static struct ehci_qtd
*ehci_qtd_alloc(struct oxu_hcd
*oxu
)
577 struct ehci_qtd
*qtd
= NULL
;
579 spin_lock(&oxu
->mem_lock
);
581 for (i
= 0; i
< QTD_NUM
; i
++)
582 if (!oxu
->qtd_used
[i
])
586 qtd
= (struct ehci_qtd
*) &oxu
->mem
->qtd_pool
[i
];
587 memset(qtd
, 0, sizeof *qtd
);
589 qtd
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
590 qtd
->hw_next
= EHCI_LIST_END
;
591 qtd
->hw_alt_next
= EHCI_LIST_END
;
592 INIT_LIST_HEAD(&qtd
->qtd_list
);
594 qtd
->qtd_dma
= virt_to_phys(qtd
);
596 oxu
->qtd_used
[i
] = 1;
599 spin_unlock(&oxu
->mem_lock
);
604 static void oxu_qh_free(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
608 spin_lock(&oxu
->mem_lock
);
610 index
= qh
- &oxu
->mem
->qh_pool
[0];
611 oxu
->qh_used
[index
] = 0;
613 spin_unlock(&oxu
->mem_lock
);
616 static void qh_destroy(struct kref
*kref
)
618 struct ehci_qh
*qh
= container_of(kref
, struct ehci_qh
, kref
);
619 struct oxu_hcd
*oxu
= qh
->oxu
;
621 /* clean qtds first, and know this is not linked */
622 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
623 oxu_dbg(oxu
, "unused qh not empty!\n");
627 oxu_qtd_free(oxu
, qh
->dummy
);
628 oxu_qh_free(oxu
, qh
);
631 static struct ehci_qh
*oxu_qh_alloc(struct oxu_hcd
*oxu
)
634 struct ehci_qh
*qh
= NULL
;
636 spin_lock(&oxu
->mem_lock
);
638 for (i
= 0; i
< QHEAD_NUM
; i
++)
639 if (!oxu
->qh_used
[i
])
643 qh
= (struct ehci_qh
*) &oxu
->mem
->qh_pool
[i
];
644 memset(qh
, 0, sizeof *qh
);
646 kref_init(&qh
->kref
);
648 qh
->qh_dma
= virt_to_phys(qh
);
649 INIT_LIST_HEAD(&qh
->qtd_list
);
651 /* dummy td enables safe urb queuing */
652 qh
->dummy
= ehci_qtd_alloc(oxu
);
653 if (qh
->dummy
== NULL
) {
654 oxu_dbg(oxu
, "no dummy td\n");
663 spin_unlock(&oxu
->mem_lock
);
668 /* to share a qh (cpu threads, or hc) */
669 static inline struct ehci_qh
*qh_get(struct ehci_qh
*qh
)
675 static inline void qh_put(struct ehci_qh
*qh
)
677 kref_put(&qh
->kref
, qh_destroy
);
680 static void oxu_murb_free(struct oxu_hcd
*oxu
, struct oxu_murb
*murb
)
684 spin_lock(&oxu
->mem_lock
);
686 index
= murb
- &oxu
->murb_pool
[0];
687 oxu
->murb_used
[index
] = 0;
689 spin_unlock(&oxu
->mem_lock
);
692 static struct oxu_murb
*oxu_murb_alloc(struct oxu_hcd
*oxu
)
696 struct oxu_murb
*murb
= NULL
;
698 spin_lock(&oxu
->mem_lock
);
700 for (i
= 0; i
< MURB_NUM
; i
++)
701 if (!oxu
->murb_used
[i
])
705 murb
= &(oxu
->murb_pool
)[i
];
707 oxu
->murb_used
[i
] = 1;
710 spin_unlock(&oxu
->mem_lock
);
715 /* The queue heads and transfer descriptors are managed from pools tied
716 * to each of the "per device" structures.
717 * This is the initialisation and cleanup code.
719 static void ehci_mem_cleanup(struct oxu_hcd
*oxu
)
721 kfree(oxu
->murb_pool
);
722 oxu
->murb_pool
= NULL
;
728 del_timer(&oxu
->urb_timer
);
730 oxu
->periodic
= NULL
;
732 /* shadow periodic table */
737 /* Remember to add cleanup code (above) if you add anything here.
739 static int ehci_mem_init(struct oxu_hcd
*oxu
, gfp_t flags
)
743 for (i
= 0; i
< oxu
->periodic_size
; i
++)
744 oxu
->mem
->frame_list
[i
] = EHCI_LIST_END
;
745 for (i
= 0; i
< QHEAD_NUM
; i
++)
747 for (i
= 0; i
< QTD_NUM
; i
++)
748 oxu
->qtd_used
[i
] = 0;
750 oxu
->murb_pool
= kcalloc(MURB_NUM
, sizeof(struct oxu_murb
), flags
);
754 for (i
= 0; i
< MURB_NUM
; i
++)
755 oxu
->murb_used
[i
] = 0;
757 oxu
->async
= oxu_qh_alloc(oxu
);
761 oxu
->periodic
= (__le32
*) &oxu
->mem
->frame_list
;
762 oxu
->periodic_dma
= virt_to_phys(oxu
->periodic
);
764 for (i
= 0; i
< oxu
->periodic_size
; i
++)
765 oxu
->periodic
[i
] = EHCI_LIST_END
;
767 /* software shadow of hardware table */
768 oxu
->pshadow
= kcalloc(oxu
->periodic_size
, sizeof(void *), flags
);
769 if (oxu
->pshadow
!= NULL
)
773 oxu_dbg(oxu
, "couldn't init memory\n");
774 ehci_mem_cleanup(oxu
);
778 /* Fill a qtd, returning how much of the buffer we were able to queue up.
780 static int qtd_fill(struct ehci_qtd
*qtd
, dma_addr_t buf
, size_t len
,
781 int token
, int maxpacket
)
786 /* one buffer entry per 4K ... first might be short or unaligned */
787 qtd
->hw_buf
[0] = cpu_to_le32((u32
)addr
);
788 qtd
->hw_buf_hi
[0] = cpu_to_le32((u32
)(addr
>> 32));
789 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
790 if (likely(len
< count
)) /* ... iff needed */
796 /* per-qtd limit: from 16K to 20K (best alignment) */
797 for (i
= 1; count
< len
&& i
< 5; i
++) {
799 qtd
->hw_buf
[i
] = cpu_to_le32((u32
)addr
);
800 qtd
->hw_buf_hi
[i
] = cpu_to_le32((u32
)(addr
>> 32));
802 if ((count
+ 0x1000) < len
)
808 /* short packets may only terminate transfers */
810 count
-= (count
% maxpacket
);
812 qtd
->hw_token
= cpu_to_le32((count
<< 16) | token
);
818 static inline void qh_update(struct oxu_hcd
*oxu
,
819 struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
821 /* writes to an active overlay are unsafe */
822 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
824 qh
->hw_qtd_next
= QTD_NEXT(qtd
->qtd_dma
);
825 qh
->hw_alt_next
= EHCI_LIST_END
;
827 /* Except for control endpoints, we make hardware maintain data
828 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
829 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
832 if (!(qh
->hw_info1
& cpu_to_le32(1 << 14))) {
833 unsigned is_out
, epnum
;
835 is_out
= !(qtd
->hw_token
& cpu_to_le32(1 << 8));
836 epnum
= (le32_to_cpup(&qh
->hw_info1
) >> 8) & 0x0f;
837 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
838 qh
->hw_token
&= ~cpu_to_le32(QTD_TOGGLE
);
839 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
843 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
845 qh
->hw_token
&= cpu_to_le32(QTD_TOGGLE
| QTD_STS_PING
);
848 /* If it weren't for a common silicon quirk (writing the dummy into the qh
849 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
850 * recovery (including urb dequeue) would need software changes to a QH...
852 static void qh_refresh(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
854 struct ehci_qtd
*qtd
;
856 if (list_empty(&qh
->qtd_list
))
859 qtd
= list_entry(qh
->qtd_list
.next
,
860 struct ehci_qtd
, qtd_list
);
861 /* first qtd may already be partially processed */
862 if (cpu_to_le32(qtd
->qtd_dma
) == qh
->hw_current
)
867 qh_update(oxu
, qh
, qtd
);
870 static void qtd_copy_status(struct oxu_hcd
*oxu
, struct urb
*urb
,
871 size_t length
, u32 token
)
873 /* count IN/OUT bytes, not SETUP (even short packets) */
874 if (likely(QTD_PID(token
) != 2))
875 urb
->actual_length
+= length
- QTD_LENGTH(token
);
877 /* don't modify error codes */
878 if (unlikely(urb
->status
!= -EINPROGRESS
))
881 /* force cleanup after short read; not always an error */
882 if (unlikely(IS_SHORT_READ(token
)))
883 urb
->status
= -EREMOTEIO
;
885 /* serious "can't proceed" faults reported by the hardware */
886 if (token
& QTD_STS_HALT
) {
887 if (token
& QTD_STS_BABBLE
) {
888 /* FIXME "must" disable babbling device's port too */
889 urb
->status
= -EOVERFLOW
;
890 } else if (token
& QTD_STS_MMF
) {
891 /* fs/ls interrupt xfer missed the complete-split */
892 urb
->status
= -EPROTO
;
893 } else if (token
& QTD_STS_DBE
) {
894 urb
->status
= (QTD_PID(token
) == 1) /* IN ? */
895 ? -ENOSR
/* hc couldn't read data */
896 : -ECOMM
; /* hc couldn't write data */
897 } else if (token
& QTD_STS_XACT
) {
898 /* timeout, bad crc, wrong PID, etc; retried */
900 urb
->status
= -EPIPE
;
902 oxu_dbg(oxu
, "devpath %s ep%d%s 3strikes\n",
904 usb_pipeendpoint(urb
->pipe
),
905 usb_pipein(urb
->pipe
) ? "in" : "out");
906 urb
->status
= -EPROTO
;
908 /* CERR nonzero + no errors + halt --> stall */
909 } else if (QTD_CERR(token
))
910 urb
->status
= -EPIPE
;
912 urb
->status
= -EPROTO
;
914 oxu_vdbg(oxu
, "dev%d ep%d%s qtd token %08x --> status %d\n",
915 usb_pipedevice(urb
->pipe
),
916 usb_pipeendpoint(urb
->pipe
),
917 usb_pipein(urb
->pipe
) ? "in" : "out",
922 static void ehci_urb_done(struct oxu_hcd
*oxu
, struct urb
*urb
)
923 __releases(oxu
->lock
)
924 __acquires(oxu
->lock
)
926 if (likely(urb
->hcpriv
!= NULL
)) {
927 struct ehci_qh
*qh
= (struct ehci_qh
*) urb
->hcpriv
;
929 /* S-mask in a QH means it's an interrupt urb */
930 if ((qh
->hw_info2
& cpu_to_le32(QH_SMASK
)) != 0) {
932 /* ... update hc-wide periodic stats (for usbfs) */
933 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
--;
939 switch (urb
->status
) {
940 case -EINPROGRESS
: /* success */
944 case -EREMOTEIO
: /* fault or normal */
945 if (!(urb
->transfer_flags
& URB_SHORT_NOT_OK
))
948 case -ECONNRESET
: /* canceled */
954 oxu_dbg(oxu
, "%s %s urb %p ep%d%s status %d len %d/%d\n",
955 __func__
, urb
->dev
->devpath
, urb
,
956 usb_pipeendpoint(urb
->pipe
),
957 usb_pipein(urb
->pipe
) ? "in" : "out",
959 urb
->actual_length
, urb
->transfer_buffer_length
);
962 /* complete() can reenter this HCD */
963 spin_unlock(&oxu
->lock
);
964 usb_hcd_giveback_urb(oxu_to_hcd(oxu
), urb
, urb
->status
);
965 spin_lock(&oxu
->lock
);
968 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
969 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
971 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
972 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
);
974 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
976 /* Process and free completed qtds for a qh, returning URBs to drivers.
977 * Chases up to qh->hw_current. Returns number of completions called,
978 * indicating how much "real" work we did.
980 static unsigned qh_completions(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
982 struct ehci_qtd
*last
= NULL
, *end
= qh
->dummy
;
983 struct list_head
*entry
, *tmp
;
988 struct oxu_murb
*murb
= NULL
;
990 if (unlikely(list_empty(&qh
->qtd_list
)))
993 /* completions (or tasks on other cpus) must never clobber HALT
994 * till we've gone through and cleaned everything up, even when
995 * they add urbs to this qh's queue or mark them for unlinking.
997 * NOTE: unlinking expects to be done in queue order.
999 state
= qh
->qh_state
;
1000 qh
->qh_state
= QH_STATE_COMPLETING
;
1001 stopped
= (state
== QH_STATE_IDLE
);
1003 /* remove de-activated QTDs from front of queue.
1004 * after faults (including short reads), cleanup this urb
1005 * then let the queue advance.
1006 * if queue is stopped, handles unlinks.
1008 list_for_each_safe(entry
, tmp
, &qh
->qtd_list
) {
1009 struct ehci_qtd
*qtd
;
1013 qtd
= list_entry(entry
, struct ehci_qtd
, qtd_list
);
1016 /* Clean up any state from previous QTD ...*/
1018 if (likely(last
->urb
!= urb
)) {
1019 if (last
->urb
->complete
== NULL
) {
1020 murb
= (struct oxu_murb
*) last
->urb
;
1021 last
->urb
= murb
->main
;
1023 ehci_urb_done(oxu
, last
->urb
);
1026 oxu_murb_free(oxu
, murb
);
1028 ehci_urb_done(oxu
, last
->urb
);
1032 oxu_qtd_free(oxu
, last
);
1036 /* ignore urbs submitted during completions we reported */
1040 /* hardware copies qtd out of qh overlay */
1042 token
= le32_to_cpu(qtd
->hw_token
);
1044 /* always clean up qtds the hc de-activated */
1045 if ((token
& QTD_STS_ACTIVE
) == 0) {
1047 if ((token
& QTD_STS_HALT
) != 0) {
1050 /* magic dummy for some short reads; qh won't advance.
1051 * that silicon quirk can kick in with this dummy too.
1053 } else if (IS_SHORT_READ(token
) &&
1054 !(qtd
->hw_alt_next
& EHCI_LIST_END
)) {
1059 /* stop scanning when we reach qtds the hc is using */
1060 } else if (likely(!stopped
&&
1061 HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))) {
1067 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)))
1068 urb
->status
= -ESHUTDOWN
;
1070 /* ignore active urbs unless some previous qtd
1071 * for the urb faulted (including short read) or
1072 * its urb was canceled. we may patch qh or qtds.
1074 if (likely(urb
->status
== -EINPROGRESS
))
1077 /* issue status after short control reads */
1078 if (unlikely(do_status
!= 0)
1079 && QTD_PID(token
) == 0 /* OUT */) {
1084 /* token in overlay may be most current */
1085 if (state
== QH_STATE_IDLE
1086 && cpu_to_le32(qtd
->qtd_dma
)
1088 token
= le32_to_cpu(qh
->hw_token
);
1090 /* force halt for unlinked or blocked qh, so we'll
1091 * patch the qh later and so that completions can't
1092 * activate it while we "know" it's stopped.
1094 if ((HALT_BIT
& qh
->hw_token
) == 0) {
1096 qh
->hw_token
|= HALT_BIT
;
1101 /* Remove it from the queue */
1102 qtd_copy_status(oxu
, urb
->complete
?
1103 urb
: ((struct oxu_murb
*) urb
)->main
,
1104 qtd
->length
, token
);
1105 if ((usb_pipein(qtd
->urb
->pipe
)) &&
1106 (NULL
!= qtd
->transfer_buffer
))
1107 memcpy(qtd
->transfer_buffer
, qtd
->buffer
, qtd
->length
);
1108 do_status
= (urb
->status
== -EREMOTEIO
)
1109 && usb_pipecontrol(urb
->pipe
);
1111 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
1112 last
= list_entry(qtd
->qtd_list
.prev
,
1113 struct ehci_qtd
, qtd_list
);
1114 last
->hw_next
= qtd
->hw_next
;
1116 list_del(&qtd
->qtd_list
);
1120 /* last urb's completion might still need calling */
1121 if (likely(last
!= NULL
)) {
1122 if (last
->urb
->complete
== NULL
) {
1123 murb
= (struct oxu_murb
*) last
->urb
;
1124 last
->urb
= murb
->main
;
1126 ehci_urb_done(oxu
, last
->urb
);
1129 oxu_murb_free(oxu
, murb
);
1131 ehci_urb_done(oxu
, last
->urb
);
1134 oxu_qtd_free(oxu
, last
);
1137 /* restore original state; caller must unlink or relink */
1138 qh
->qh_state
= state
;
1140 /* be sure the hardware's done with the qh before refreshing
1141 * it after fault cleanup, or recovering from silicon wrongly
1142 * overlaying the dummy qtd (which reduces DMA chatter).
1144 if (stopped
!= 0 || qh
->hw_qtd_next
== EHCI_LIST_END
) {
1147 qh_refresh(oxu
, qh
);
1149 case QH_STATE_LINKED
:
1150 /* should be rare for periodic transfers,
1151 * except maybe high bandwidth ...
1153 if ((cpu_to_le32(QH_SMASK
)
1154 & qh
->hw_info2
) != 0) {
1155 intr_deschedule(oxu
, qh
);
1156 (void) qh_schedule(oxu
, qh
);
1158 unlink_async(oxu
, qh
);
1160 /* otherwise, unlink already started */
1167 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1168 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1169 /* ... and packet size, for any kind of endpoint descriptor */
1170 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1172 /* Reverse of qh_urb_transaction: free a list of TDs.
1173 * used for cleanup after errors, before HC sees an URB's TDs.
1175 static void qtd_list_free(struct oxu_hcd
*oxu
,
1176 struct urb
*urb
, struct list_head
*qtd_list
)
1178 struct list_head
*entry
, *temp
;
1180 list_for_each_safe(entry
, temp
, qtd_list
) {
1181 struct ehci_qtd
*qtd
;
1183 qtd
= list_entry(entry
, struct ehci_qtd
, qtd_list
);
1184 list_del(&qtd
->qtd_list
);
1185 oxu_qtd_free(oxu
, qtd
);
1189 /* Create a list of filled qtds for this URB; won't link into qh.
1191 static struct list_head
*qh_urb_transaction(struct oxu_hcd
*oxu
,
1193 struct list_head
*head
,
1196 struct ehci_qtd
*qtd
, *qtd_prev
;
1201 void *transfer_buf
= NULL
;
1205 * URBs map to sequences of QTDs: one logical transaction
1207 qtd
= ehci_qtd_alloc(oxu
);
1210 list_add_tail(&qtd
->qtd_list
, head
);
1213 token
= QTD_STS_ACTIVE
;
1214 token
|= (EHCI_TUNE_CERR
<< 10);
1215 /* for split transactions, SplitXState initialized to zero */
1217 len
= urb
->transfer_buffer_length
;
1218 is_input
= usb_pipein(urb
->pipe
);
1219 if (!urb
->transfer_buffer
&& urb
->transfer_buffer_length
&& is_input
)
1220 urb
->transfer_buffer
= phys_to_virt(urb
->transfer_dma
);
1222 if (usb_pipecontrol(urb
->pipe
)) {
1224 ret
= oxu_buf_alloc(oxu
, qtd
, sizeof(struct usb_ctrlrequest
));
1228 qtd_fill(qtd
, qtd
->buffer_dma
, sizeof(struct usb_ctrlrequest
),
1229 token
| (2 /* "setup" */ << 8), 8);
1230 memcpy(qtd
->buffer
, qtd
->urb
->setup_packet
,
1231 sizeof(struct usb_ctrlrequest
));
1233 /* ... and always at least one more pid */
1234 token
^= QTD_TOGGLE
;
1236 qtd
= ehci_qtd_alloc(oxu
);
1240 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1241 list_add_tail(&qtd
->qtd_list
, head
);
1243 /* for zero length DATA stages, STATUS is always IN */
1245 token
|= (1 /* "in" */ << 8);
1249 * Data transfer stage: buffer setup
1252 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1256 buf
= qtd
->buffer_dma
;
1257 transfer_buf
= urb
->transfer_buffer
;
1260 memcpy(qtd
->buffer
, qtd
->urb
->transfer_buffer
, len
);
1263 token
|= (1 /* "in" */ << 8);
1264 /* else it's already initted to "out" pid (0 << 8) */
1266 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
1269 * buffer gets wrapped in one or more qtds;
1270 * last one may be "short" (including zero len)
1271 * and may serve as a control status ack
1276 this_qtd_len
= qtd_fill(qtd
, buf
, len
, token
, maxpacket
);
1277 qtd
->transfer_buffer
= transfer_buf
;
1278 len
-= this_qtd_len
;
1279 buf
+= this_qtd_len
;
1280 transfer_buf
+= this_qtd_len
;
1282 qtd
->hw_alt_next
= oxu
->async
->hw_alt_next
;
1284 /* qh makes control packets use qtd toggle; maybe switch it */
1285 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
1286 token
^= QTD_TOGGLE
;
1288 if (likely(len
<= 0))
1292 qtd
= ehci_qtd_alloc(oxu
);
1295 if (likely(len
> 0)) {
1296 ret
= oxu_buf_alloc(oxu
, qtd
, len
);
1301 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1302 list_add_tail(&qtd
->qtd_list
, head
);
1305 /* unless the bulk/interrupt caller wants a chance to clean
1306 * up after short reads, hc should advance qh past this urb
1308 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
1309 || usb_pipecontrol(urb
->pipe
)))
1310 qtd
->hw_alt_next
= EHCI_LIST_END
;
1313 * control requests may need a terminating data "status" ack;
1314 * bulk ones may need a terminating short packet (zero length).
1316 if (likely(urb
->transfer_buffer_length
!= 0)) {
1319 if (usb_pipecontrol(urb
->pipe
)) {
1321 token
^= 0x0100; /* "in" <--> "out" */
1322 token
|= QTD_TOGGLE
; /* force DATA1 */
1323 } else if (usb_pipebulk(urb
->pipe
)
1324 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
1325 && !(urb
->transfer_buffer_length
% maxpacket
)) {
1330 qtd
= ehci_qtd_alloc(oxu
);
1334 qtd_prev
->hw_next
= QTD_NEXT(qtd
->qtd_dma
);
1335 list_add_tail(&qtd
->qtd_list
, head
);
1337 /* never any data in such packets */
1338 qtd_fill(qtd
, 0, 0, token
, 0);
1342 /* by default, enable interrupt on urb completion */
1343 qtd
->hw_token
|= cpu_to_le32(QTD_IOC
);
1347 qtd_list_free(oxu
, urb
, head
);
1351 /* Each QH holds a qtd list; a QH is used for everything except iso.
1353 * For interrupt urbs, the scheduler must set the microframe scheduling
1354 * mask(s) each time the QH gets scheduled. For highspeed, that's
1355 * just one microframe in the s-mask. For split interrupt transactions
1356 * there are additional complications: c-mask, maybe FSTNs.
1358 static struct ehci_qh
*qh_make(struct oxu_hcd
*oxu
,
1359 struct urb
*urb
, gfp_t flags
)
1361 struct ehci_qh
*qh
= oxu_qh_alloc(oxu
);
1362 u32 info1
= 0, info2
= 0;
1370 * init endpoint/device data for this QH
1372 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
1373 info1
|= usb_pipedevice(urb
->pipe
) << 0;
1375 is_input
= usb_pipein(urb
->pipe
);
1376 type
= usb_pipetype(urb
->pipe
);
1377 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
1379 /* Compute interrupt scheduling parameters just once, and save.
1380 * - allowing for high bandwidth, how many nsec/uframe are used?
1381 * - split transactions need a second CSPLIT uframe; same question
1382 * - splits also need a schedule gap (for full/low speed I/O)
1383 * - qh has a polling interval
1385 * For control/bulk requests, the HC or TT handles these.
1387 if (type
== PIPE_INTERRUPT
) {
1388 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
1390 hb_mult(maxp
) * max_packet(maxp
)));
1391 qh
->start
= NO_FRAME
;
1393 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
1397 qh
->period
= urb
->interval
>> 3;
1398 if (qh
->period
== 0 && urb
->interval
!= 1) {
1399 /* NOTE interval 2 or 4 uframes could work.
1400 * But interval 1 scheduling is simpler, and
1401 * includes high bandwidth.
1403 dbg("intr period %d uframes, NYET!",
1408 struct usb_tt
*tt
= urb
->dev
->tt
;
1411 /* gap is f(FS/LS transfer times) */
1412 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
1413 is_input
, 0, maxp
) / (125 * 1000);
1415 /* FIXME this just approximates SPLIT/CSPLIT times */
1416 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
1417 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
1418 qh
->usecs
= HS_USECS(1);
1419 } else { /* SPLIT+DATA, gap, CSPLIT */
1420 qh
->usecs
+= HS_USECS(1);
1421 qh
->c_usecs
= HS_USECS(0);
1424 think_time
= tt
? tt
->think_time
: 0;
1425 qh
->tt_usecs
= NS_TO_US(think_time
+
1426 usb_calc_bus_time(urb
->dev
->speed
,
1427 is_input
, 0, max_packet(maxp
)));
1428 qh
->period
= urb
->interval
;
1432 /* support for tt scheduling, and access to toggles */
1436 switch (urb
->dev
->speed
) {
1438 info1
|= (1 << 12); /* EPS "low" */
1441 case USB_SPEED_FULL
:
1442 /* EPS 0 means "full" */
1443 if (type
!= PIPE_INTERRUPT
)
1444 info1
|= (EHCI_TUNE_RL_TT
<< 28);
1445 if (type
== PIPE_CONTROL
) {
1446 info1
|= (1 << 27); /* for TT */
1447 info1
|= 1 << 14; /* toggle from qtd */
1449 info1
|= maxp
<< 16;
1451 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
1452 info2
|= urb
->dev
->ttport
<< 23;
1454 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1458 case USB_SPEED_HIGH
: /* no TT involved */
1459 info1
|= (2 << 12); /* EPS "high" */
1460 if (type
== PIPE_CONTROL
) {
1461 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1462 info1
|= 64 << 16; /* usb2 fixed maxpacket */
1463 info1
|= 1 << 14; /* toggle from qtd */
1464 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1465 } else if (type
== PIPE_BULK
) {
1466 info1
|= (EHCI_TUNE_RL_HS
<< 28);
1467 info1
|= 512 << 16; /* usb2 fixed maxpacket */
1468 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
1469 } else { /* PIPE_INTERRUPT */
1470 info1
|= max_packet(maxp
) << 16;
1471 info2
|= hb_mult(maxp
) << 30;
1475 dbg("bogus dev %p speed %d", urb
->dev
, urb
->dev
->speed
);
1481 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1483 /* init as live, toggle clear, advance to dummy */
1484 qh
->qh_state
= QH_STATE_IDLE
;
1485 qh
->hw_info1
= cpu_to_le32(info1
);
1486 qh
->hw_info2
= cpu_to_le32(info2
);
1487 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
1488 qh_refresh(oxu
, qh
);
1492 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1494 static void qh_link_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1496 __le32 dma
= QH_NEXT(qh
->qh_dma
);
1497 struct ehci_qh
*head
;
1499 /* (re)start the async schedule? */
1501 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1502 if (!head
->qh_next
.qh
) {
1503 u32 cmd
= readl(&oxu
->regs
->command
);
1505 if (!(cmd
& CMD_ASE
)) {
1506 /* in case a clear of CMD_ASE didn't take yet */
1507 (void)handshake(oxu
, &oxu
->regs
->status
,
1509 cmd
|= CMD_ASE
| CMD_RUN
;
1510 writel(cmd
, &oxu
->regs
->command
);
1511 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1512 /* posted write need not be known to HC yet ... */
1516 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1517 if (qh
->qh_state
== QH_STATE_IDLE
)
1518 qh_refresh(oxu
, qh
);
1520 /* splice right after start */
1521 qh
->qh_next
= head
->qh_next
;
1522 qh
->hw_next
= head
->hw_next
;
1525 head
->qh_next
.qh
= qh
;
1526 head
->hw_next
= dma
;
1528 qh
->qh_state
= QH_STATE_LINKED
;
1529 /* qtd completions reported later by interrupt */
1532 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1535 * For control/bulk/interrupt, return QH with these TDs appended.
1536 * Allocates and initializes the QH if necessary.
1537 * Returns null if it can't allocate a QH it needs to.
1538 * If the QH has TDs (urbs) already, that's great.
1540 static struct ehci_qh
*qh_append_tds(struct oxu_hcd
*oxu
,
1541 struct urb
*urb
, struct list_head
*qtd_list
,
1542 int epnum
, void **ptr
)
1544 struct ehci_qh
*qh
= NULL
;
1546 qh
= (struct ehci_qh
*) *ptr
;
1547 if (unlikely(qh
== NULL
)) {
1548 /* can't sleep here, we have oxu->lock... */
1549 qh
= qh_make(oxu
, urb
, GFP_ATOMIC
);
1552 if (likely(qh
!= NULL
)) {
1553 struct ehci_qtd
*qtd
;
1555 if (unlikely(list_empty(qtd_list
)))
1558 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
,
1561 /* control qh may need patching ... */
1562 if (unlikely(epnum
== 0)) {
1564 /* usb_reset_device() briefly reverts to address 0 */
1565 if (usb_pipedevice(urb
->pipe
) == 0)
1566 qh
->hw_info1
&= ~QH_ADDR_MASK
;
1569 /* just one way to queue requests: swap with the dummy qtd.
1570 * only hc or qh_refresh() ever modify the overlay.
1572 if (likely(qtd
!= NULL
)) {
1573 struct ehci_qtd
*dummy
;
1577 /* to avoid racing the HC, use the dummy td instead of
1578 * the first td of our list (becomes new dummy). both
1579 * tds stay deactivated until we're done, when the
1580 * HC is allowed to fetch the old dummy (4.10.2).
1582 token
= qtd
->hw_token
;
1583 qtd
->hw_token
= HALT_BIT
;
1587 dma
= dummy
->qtd_dma
;
1589 dummy
->qtd_dma
= dma
;
1591 list_del(&qtd
->qtd_list
);
1592 list_add(&dummy
->qtd_list
, qtd_list
);
1593 list_splice(qtd_list
, qh
->qtd_list
.prev
);
1595 ehci_qtd_init(qtd
, qtd
->qtd_dma
);
1598 /* hc must see the new dummy at list end */
1600 qtd
= list_entry(qh
->qtd_list
.prev
,
1601 struct ehci_qtd
, qtd_list
);
1602 qtd
->hw_next
= QTD_NEXT(dma
);
1604 /* let the hc process these next qtds */
1605 dummy
->hw_token
= (token
& ~(0x80));
1607 dummy
->hw_token
= token
;
1609 urb
->hcpriv
= qh_get(qh
);
1615 static int submit_async(struct oxu_hcd
*oxu
, struct urb
*urb
,
1616 struct list_head
*qtd_list
, gfp_t mem_flags
)
1618 struct ehci_qtd
*qtd
;
1620 unsigned long flags
;
1621 struct ehci_qh
*qh
= NULL
;
1624 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1625 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1627 #ifdef OXU_URB_TRACE
1628 oxu_dbg(oxu
, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1629 __func__
, urb
->dev
->devpath
, urb
,
1630 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1631 urb
->transfer_buffer_length
,
1632 qtd
, urb
->ep
->hcpriv
);
1635 spin_lock_irqsave(&oxu
->lock
, flags
);
1636 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
1641 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1642 if (unlikely(qh
== NULL
)) {
1647 /* Control/bulk operations through TTs don't need scheduling,
1648 * the HC and TT handle it when the TT has a buffer ready.
1650 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
1651 qh_link_async(oxu
, qh_get(qh
));
1653 spin_unlock_irqrestore(&oxu
->lock
, flags
);
1654 if (unlikely(qh
== NULL
))
1655 qtd_list_free(oxu
, urb
, qtd_list
);
1659 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1661 static void end_unlink_async(struct oxu_hcd
*oxu
)
1663 struct ehci_qh
*qh
= oxu
->reclaim
;
1664 struct ehci_qh
*next
;
1666 timer_action_done(oxu
, TIMER_IAA_WATCHDOG
);
1668 qh
->qh_state
= QH_STATE_IDLE
;
1669 qh
->qh_next
.qh
= NULL
;
1670 qh_put(qh
); /* refcount from reclaim */
1672 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1674 oxu
->reclaim
= next
;
1675 oxu
->reclaim_ready
= 0;
1678 qh_completions(oxu
, qh
);
1680 if (!list_empty(&qh
->qtd_list
)
1681 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
1682 qh_link_async(oxu
, qh
);
1684 qh_put(qh
); /* refcount from async list */
1686 /* it's not free to turn the async schedule on/off; leave it
1687 * active but idle for a while once it empties.
1689 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)
1690 && oxu
->async
->qh_next
.qh
== NULL
)
1691 timer_action(oxu
, TIMER_ASYNC_OFF
);
1695 oxu
->reclaim
= NULL
;
1696 start_unlink_async(oxu
, next
);
1700 /* makes sure the async qh will become idle */
1701 /* caller must own oxu->lock */
1703 static void start_unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1705 int cmd
= readl(&oxu
->regs
->command
);
1706 struct ehci_qh
*prev
;
1709 assert_spin_locked(&oxu
->lock
);
1710 if (oxu
->reclaim
|| (qh
->qh_state
!= QH_STATE_LINKED
1711 && qh
->qh_state
!= QH_STATE_UNLINK_WAIT
))
1715 /* stop async schedule right now? */
1716 if (unlikely(qh
== oxu
->async
)) {
1717 /* can't get here without STS_ASS set */
1718 if (oxu_to_hcd(oxu
)->state
!= HC_STATE_HALT
1720 /* ... and CMD_IAAD clear */
1721 writel(cmd
& ~CMD_ASE
, &oxu
->regs
->command
);
1723 /* handshake later, if we need to */
1724 timer_action_done(oxu
, TIMER_ASYNC_OFF
);
1729 qh
->qh_state
= QH_STATE_UNLINK
;
1730 oxu
->reclaim
= qh
= qh_get(qh
);
1733 while (prev
->qh_next
.qh
!= qh
)
1734 prev
= prev
->qh_next
.qh
;
1736 prev
->hw_next
= qh
->hw_next
;
1737 prev
->qh_next
= qh
->qh_next
;
1740 if (unlikely(oxu_to_hcd(oxu
)->state
== HC_STATE_HALT
)) {
1741 /* if (unlikely(qh->reclaim != 0))
1742 * this will recurse, probably not much
1744 end_unlink_async(oxu
);
1748 oxu
->reclaim_ready
= 0;
1750 writel(cmd
, &oxu
->regs
->command
);
1751 (void) readl(&oxu
->regs
->command
);
1752 timer_action(oxu
, TIMER_IAA_WATCHDOG
);
1755 static void scan_async(struct oxu_hcd
*oxu
)
1758 enum ehci_timer_action action
= TIMER_IO_WATCHDOG
;
1760 if (!++(oxu
->stamp
))
1762 timer_action_done(oxu
, TIMER_ASYNC_SHRINK
);
1764 qh
= oxu
->async
->qh_next
.qh
;
1765 if (likely(qh
!= NULL
)) {
1767 /* clean any finished work for this qh */
1768 if (!list_empty(&qh
->qtd_list
)
1769 && qh
->stamp
!= oxu
->stamp
) {
1772 /* unlinks could happen here; completion
1773 * reporting drops the lock. rescan using
1774 * the latest schedule, but don't rescan
1775 * qhs we already finished (no looping).
1778 qh
->stamp
= oxu
->stamp
;
1779 temp
= qh_completions(oxu
, qh
);
1785 /* unlink idle entries, reducing HC PCI usage as well
1786 * as HCD schedule-scanning costs. delay for any qh
1787 * we just scanned, there's a not-unusual case that it
1788 * doesn't stay idle for long.
1789 * (plus, avoids some kind of re-activation race.)
1791 if (list_empty(&qh
->qtd_list
)) {
1792 if (qh
->stamp
== oxu
->stamp
)
1793 action
= TIMER_ASYNC_SHRINK
;
1794 else if (!oxu
->reclaim
1795 && qh
->qh_state
== QH_STATE_LINKED
)
1796 start_unlink_async(oxu
, qh
);
1799 qh
= qh
->qh_next
.qh
;
1802 if (action
== TIMER_ASYNC_SHRINK
)
1803 timer_action(oxu
, TIMER_ASYNC_SHRINK
);
1807 * periodic_next_shadow - return "next" pointer on shadow list
1808 * @periodic: host pointer to qh/itd/sitd
1809 * @tag: hardware tag for type of this record
1811 static union ehci_shadow
*periodic_next_shadow(union ehci_shadow
*periodic
,
1817 return &periodic
->qh
->qh_next
;
1821 /* caller must hold oxu->lock */
1822 static void periodic_unlink(struct oxu_hcd
*oxu
, unsigned frame
, void *ptr
)
1824 union ehci_shadow
*prev_p
= &oxu
->pshadow
[frame
];
1825 __le32
*hw_p
= &oxu
->periodic
[frame
];
1826 union ehci_shadow here
= *prev_p
;
1828 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1829 while (here
.ptr
&& here
.ptr
!= ptr
) {
1830 prev_p
= periodic_next_shadow(prev_p
, Q_NEXT_TYPE(*hw_p
));
1831 hw_p
= here
.hw_next
;
1834 /* an interrupt entry (at list end) could have been shared */
1838 /* update shadow and hardware lists ... the old "next" pointers
1839 * from ptr may still be in use, the caller updates them.
1841 *prev_p
= *periodic_next_shadow(&here
, Q_NEXT_TYPE(*hw_p
));
1842 *hw_p
= *here
.hw_next
;
1845 /* how many of the uframe's 125 usecs are allocated? */
1846 static unsigned short periodic_usecs(struct oxu_hcd
*oxu
,
1847 unsigned frame
, unsigned uframe
)
1849 __le32
*hw_p
= &oxu
->periodic
[frame
];
1850 union ehci_shadow
*q
= &oxu
->pshadow
[frame
];
1854 switch (Q_NEXT_TYPE(*hw_p
)) {
1857 /* is it in the S-mask? */
1858 if (q
->qh
->hw_info2
& cpu_to_le32(1 << uframe
))
1859 usecs
+= q
->qh
->usecs
;
1860 /* ... or C-mask? */
1861 if (q
->qh
->hw_info2
& cpu_to_le32(1 << (8 + uframe
)))
1862 usecs
+= q
->qh
->c_usecs
;
1863 hw_p
= &q
->qh
->hw_next
;
1864 q
= &q
->qh
->qh_next
;
1870 oxu_err(oxu
, "uframe %d sched overrun: %d usecs\n",
1871 frame
* 8 + uframe
, usecs
);
1876 static int enable_periodic(struct oxu_hcd
*oxu
)
1881 /* did clearing PSE did take effect yet?
1882 * takes effect only at frame boundaries...
1884 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, 0, 9 * 125);
1886 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
1890 cmd
= readl(&oxu
->regs
->command
) | CMD_PSE
;
1891 writel(cmd
, &oxu
->regs
->command
);
1892 /* posted write ... PSS happens later */
1893 oxu_to_hcd(oxu
)->state
= HC_STATE_RUNNING
;
1895 /* make sure ehci_work scans these */
1896 oxu
->next_uframe
= readl(&oxu
->regs
->frame_index
)
1897 % (oxu
->periodic_size
<< 3);
1901 static int disable_periodic(struct oxu_hcd
*oxu
)
1906 /* did setting PSE not take effect yet?
1907 * takes effect only at frame boundaries...
1909 status
= handshake(oxu
, &oxu
->regs
->status
, STS_PSS
, STS_PSS
, 9 * 125);
1911 oxu_to_hcd(oxu
)->state
= HC_STATE_HALT
;
1915 cmd
= readl(&oxu
->regs
->command
) & ~CMD_PSE
;
1916 writel(cmd
, &oxu
->regs
->command
);
1917 /* posted write ... */
1919 oxu
->next_uframe
= -1;
1923 /* periodic schedule slots have iso tds (normal or split) first, then a
1924 * sparse tree for active interrupt transfers.
1926 * this just links in a qh; caller guarantees uframe masks are set right.
1927 * no FSTN support (yet; oxu 0.96+)
1929 static int qh_link_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
1932 unsigned period
= qh
->period
;
1934 dev_dbg(&qh
->dev
->dev
,
1935 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1936 period
, le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
1937 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
1939 /* high bandwidth, or otherwise every microframe */
1943 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
) {
1944 union ehci_shadow
*prev
= &oxu
->pshadow
[i
];
1945 __le32
*hw_p
= &oxu
->periodic
[i
];
1946 union ehci_shadow here
= *prev
;
1949 /* skip the iso nodes at list head */
1951 type
= Q_NEXT_TYPE(*hw_p
);
1952 if (type
== Q_TYPE_QH
)
1954 prev
= periodic_next_shadow(prev
, type
);
1955 hw_p
= &here
.qh
->hw_next
;
1959 /* sorting each branch by period (slow-->fast)
1960 * enables sharing interior tree nodes
1962 while (here
.ptr
&& qh
!= here
.qh
) {
1963 if (qh
->period
> here
.qh
->period
)
1965 prev
= &here
.qh
->qh_next
;
1966 hw_p
= &here
.qh
->hw_next
;
1969 /* link in this qh, unless some earlier pass did that */
1970 if (qh
!= here
.qh
) {
1973 qh
->hw_next
= *hw_p
;
1976 *hw_p
= QH_NEXT(qh
->qh_dma
);
1979 qh
->qh_state
= QH_STATE_LINKED
;
1982 /* update per-qh bandwidth for usbfs */
1983 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
+= qh
->period
1984 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
1987 /* maybe enable periodic schedule processing */
1988 if (!oxu
->periodic_sched
++)
1989 return enable_periodic(oxu
);
1994 static void qh_unlink_periodic(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2000 * IF this isn't high speed
2001 * and this qh is active in the current uframe
2002 * (and overlay token SplitXstate is false?)
2004 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2007 /* high bandwidth, or otherwise part of every microframe */
2008 period
= qh
->period
;
2012 for (i
= qh
->start
; i
< oxu
->periodic_size
; i
+= period
)
2013 periodic_unlink(oxu
, i
, qh
);
2015 /* update per-qh bandwidth for usbfs */
2016 oxu_to_hcd(oxu
)->self
.bandwidth_allocated
-= qh
->period
2017 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
2020 dev_dbg(&qh
->dev
->dev
,
2021 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2023 le32_to_cpup(&qh
->hw_info2
) & (QH_CMASK
| QH_SMASK
),
2024 qh
, qh
->start
, qh
->usecs
, qh
->c_usecs
);
2026 /* qh->qh_next still "live" to HC */
2027 qh
->qh_state
= QH_STATE_UNLINK
;
2028 qh
->qh_next
.ptr
= NULL
;
2031 /* maybe turn off periodic schedule */
2032 oxu
->periodic_sched
--;
2033 if (!oxu
->periodic_sched
)
2034 (void) disable_periodic(oxu
);
2037 static void intr_deschedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2041 qh_unlink_periodic(oxu
, qh
);
2043 /* simple/paranoid: always delay, expecting the HC needs to read
2044 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2045 * expect khubd to clean up after any CSPLITs we won't issue.
2046 * active high speed queues may need bigger delays...
2048 if (list_empty(&qh
->qtd_list
)
2049 || (cpu_to_le32(QH_CMASK
) & qh
->hw_info2
) != 0)
2052 wait
= 55; /* worst case: 3 * 1024 */
2055 qh
->qh_state
= QH_STATE_IDLE
;
2056 qh
->hw_next
= EHCI_LIST_END
;
2060 static int check_period(struct oxu_hcd
*oxu
,
2061 unsigned frame
, unsigned uframe
,
2062 unsigned period
, unsigned usecs
)
2066 /* complete split running into next frame?
2067 * given FSTN support, we could sometimes check...
2073 * 80% periodic == 100 usec/uframe available
2074 * convert "usecs we need" to "max already claimed"
2076 usecs
= 100 - usecs
;
2078 /* we "know" 2 and 4 uframe intervals were rejected; so
2079 * for period 0, check _every_ microframe in the schedule.
2081 if (unlikely(period
== 0)) {
2083 for (uframe
= 0; uframe
< 7; uframe
++) {
2084 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2085 if (claimed
> usecs
)
2088 } while ((frame
+= 1) < oxu
->periodic_size
);
2090 /* just check the specified uframe, at that period */
2093 claimed
= periodic_usecs(oxu
, frame
, uframe
);
2094 if (claimed
> usecs
)
2096 } while ((frame
+= period
) < oxu
->periodic_size
);
2102 static int check_intr_schedule(struct oxu_hcd
*oxu
,
2103 unsigned frame
, unsigned uframe
,
2104 const struct ehci_qh
*qh
, __le32
*c_maskp
)
2106 int retval
= -ENOSPC
;
2108 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
2111 if (!check_period(oxu
, frame
, uframe
, qh
->period
, qh
->usecs
))
2123 /* "first fit" scheduling policy used the first time through,
2124 * or when the previous schedule slot can't be re-used.
2126 static int qh_schedule(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2131 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
2133 qh_refresh(oxu
, qh
);
2134 qh
->hw_next
= EHCI_LIST_END
;
2137 /* reuse the previous schedule slots, if we can */
2138 if (frame
< qh
->period
) {
2139 uframe
= ffs(le32_to_cpup(&qh
->hw_info2
) & QH_SMASK
);
2140 status
= check_intr_schedule(oxu
, frame
, --uframe
,
2148 /* else scan the schedule to find a group of slots such that all
2149 * uframes have enough periodic bandwidth available.
2152 /* "normal" case, uframing flexible except with splits */
2154 frame
= qh
->period
- 1;
2156 for (uframe
= 0; uframe
< 8; uframe
++) {
2157 status
= check_intr_schedule(oxu
,
2163 } while (status
&& frame
--);
2165 /* qh->period == 0 means every uframe */
2168 status
= check_intr_schedule(oxu
, 0, 0, qh
, &c_mask
);
2174 /* reset S-frame and (maybe) C-frame masks */
2175 qh
->hw_info2
&= cpu_to_le32(~(QH_CMASK
| QH_SMASK
));
2176 qh
->hw_info2
|= qh
->period
2177 ? cpu_to_le32(1 << uframe
)
2178 : cpu_to_le32(QH_SMASK
);
2179 qh
->hw_info2
|= c_mask
;
2181 oxu_dbg(oxu
, "reused qh %p schedule\n", qh
);
2183 /* stuff into the periodic schedule */
2184 status
= qh_link_periodic(oxu
, qh
);
2189 static int intr_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2190 struct list_head
*qtd_list
, gfp_t mem_flags
)
2193 unsigned long flags
;
2196 struct list_head empty
;
2198 /* get endpoint and transfer/schedule data */
2199 epnum
= urb
->ep
->desc
.bEndpointAddress
;
2201 spin_lock_irqsave(&oxu
->lock
, flags
);
2203 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu
)))) {
2204 status
= -ESHUTDOWN
;
2208 /* get qh and force any scheduling errors */
2209 INIT_LIST_HEAD(&empty
);
2210 qh
= qh_append_tds(oxu
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
2215 if (qh
->qh_state
== QH_STATE_IDLE
) {
2216 status
= qh_schedule(oxu
, qh
);
2221 /* then queue the urb's tds to the qh */
2222 qh
= qh_append_tds(oxu
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
2225 /* ... update usbfs periodic stats */
2226 oxu_to_hcd(oxu
)->self
.bandwidth_int_reqs
++;
2229 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2231 qtd_list_free(oxu
, urb
, qtd_list
);
2236 static inline int itd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2239 oxu_dbg(oxu
, "iso support is missing!\n");
2243 static inline int sitd_submit(struct oxu_hcd
*oxu
, struct urb
*urb
,
2246 oxu_dbg(oxu
, "split iso support is missing!\n");
2250 static void scan_periodic(struct oxu_hcd
*oxu
)
2252 unsigned frame
, clock
, now_uframe
, mod
;
2255 mod
= oxu
->periodic_size
<< 3;
2258 * When running, scan from last scan point up to "now"
2259 * else clean up by scanning everything that's left.
2260 * Touches as few pages as possible: cache-friendly.
2262 now_uframe
= oxu
->next_uframe
;
2263 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2264 clock
= readl(&oxu
->regs
->frame_index
);
2266 clock
= now_uframe
+ mod
- 1;
2270 union ehci_shadow q
, *q_p
;
2274 /* don't scan past the live uframe */
2275 frame
= now_uframe
>> 3;
2276 if (frame
== (clock
>> 3))
2277 uframes
= now_uframe
& 0x07;
2279 /* safe to scan the whole frame at once */
2285 /* scan each element in frame's queue for completions */
2286 q_p
= &oxu
->pshadow
[frame
];
2287 hw_p
= &oxu
->periodic
[frame
];
2289 type
= Q_NEXT_TYPE(*hw_p
);
2292 while (q
.ptr
!= NULL
) {
2293 union ehci_shadow temp
;
2296 live
= HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
);
2299 /* handle any completions */
2300 temp
.qh
= qh_get(q
.qh
);
2301 type
= Q_NEXT_TYPE(q
.qh
->hw_next
);
2303 modified
= qh_completions(oxu
, temp
.qh
);
2304 if (unlikely(list_empty(&temp
.qh
->qtd_list
)))
2305 intr_deschedule(oxu
, temp
.qh
);
2309 dbg("corrupt type %d frame %d shadow %p",
2310 type
, frame
, q
.ptr
);
2314 /* assume completion callbacks modify the queue */
2315 if (unlikely(modified
))
2319 /* Stop when we catch up to the HC */
2321 /* FIXME: this assumes we won't get lapped when
2322 * latencies climb; that should be rare, but...
2323 * detect it, and just go all the way around.
2324 * FLR might help detect this case, so long as latencies
2325 * don't exceed periodic_size msec (default 1.024 sec).
2328 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2330 if (now_uframe
== clock
) {
2333 if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
))
2335 oxu
->next_uframe
= now_uframe
;
2336 now
= readl(&oxu
->regs
->frame_index
) % mod
;
2337 if (now_uframe
== now
)
2340 /* rescan the rest of this frame, then ... */
2349 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2350 * The firmware seems to think that powering off is a wakeup event!
2351 * This routine turns off remote wakeup and everything else, on all ports.
2353 static void ehci_turn_off_all_ports(struct oxu_hcd
*oxu
)
2355 int port
= HCS_N_PORTS(oxu
->hcs_params
);
2358 writel(PORT_RWC_BITS
, &oxu
->regs
->port_status
[port
]);
2361 static void ehci_port_power(struct oxu_hcd
*oxu
, int is_on
)
2365 if (!HCS_PPC(oxu
->hcs_params
))
2368 oxu_dbg(oxu
, "...power%s ports...\n", is_on
? "up" : "down");
2369 for (port
= HCS_N_PORTS(oxu
->hcs_params
); port
> 0; )
2370 (void) oxu_hub_control(oxu_to_hcd(oxu
),
2371 is_on
? SetPortFeature
: ClearPortFeature
,
2372 USB_PORT_FEAT_POWER
,
2377 /* Called from some interrupts, timers, and so on.
2378 * It calls driver completion functions, after dropping oxu->lock.
2380 static void ehci_work(struct oxu_hcd
*oxu
)
2382 timer_action_done(oxu
, TIMER_IO_WATCHDOG
);
2383 if (oxu
->reclaim_ready
)
2384 end_unlink_async(oxu
);
2386 /* another CPU may drop oxu->lock during a schedule scan while
2387 * it reports urb completions. this flag guards against bogus
2388 * attempts at re-entrant schedule scanning.
2394 if (oxu
->next_uframe
!= -1)
2398 /* the IO watchdog guards against hardware or driver bugs that
2399 * misplace IRQs, and should let us run completely without IRQs.
2400 * such lossage has been observed on both VT6202 and VT8235.
2402 if (HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) &&
2403 (oxu
->async
->qh_next
.ptr
!= NULL
||
2404 oxu
->periodic_sched
!= 0))
2405 timer_action(oxu
, TIMER_IO_WATCHDOG
);
2408 static void unlink_async(struct oxu_hcd
*oxu
, struct ehci_qh
*qh
)
2410 /* if we need to use IAA and it's busy, defer */
2411 if (qh
->qh_state
== QH_STATE_LINKED
2413 && HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
)) {
2414 struct ehci_qh
*last
;
2416 for (last
= oxu
->reclaim
;
2418 last
= last
->reclaim
)
2420 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
2423 /* bypass IAA if the hc can't care */
2424 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu
)->state
) && oxu
->reclaim
)
2425 end_unlink_async(oxu
);
2427 /* something else might have unlinked the qh by now */
2428 if (qh
->qh_state
== QH_STATE_LINKED
)
2429 start_unlink_async(oxu
, qh
);
2433 * USB host controller methods
2436 static irqreturn_t
oxu210_hcd_irq(struct usb_hcd
*hcd
)
2438 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2439 u32 status
, pcd_status
= 0;
2442 spin_lock(&oxu
->lock
);
2444 status
= readl(&oxu
->regs
->status
);
2446 /* e.g. cardbus physical eject */
2447 if (status
== ~(u32
) 0) {
2448 oxu_dbg(oxu
, "device removed\n");
2452 status
&= INTR_MASK
;
2453 if (!status
) { /* irq sharing? */
2454 spin_unlock(&oxu
->lock
);
2458 /* clear (just) interrupts */
2459 writel(status
, &oxu
->regs
->status
);
2460 readl(&oxu
->regs
->command
); /* unblock posted write */
2463 #ifdef OXU_VERBOSE_DEBUG
2464 /* unrequested/ignored: Frame List Rollover */
2465 dbg_status(oxu
, "irq", status
);
2468 /* INT, ERR, and IAA interrupt rates can be throttled */
2470 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2471 if (likely((status
& (STS_INT
|STS_ERR
)) != 0))
2474 /* complete the unlinking of some qh [4.15.2.3] */
2475 if (status
& STS_IAA
) {
2476 oxu
->reclaim_ready
= 1;
2480 /* remote wakeup [4.3.1] */
2481 if (status
& STS_PCD
) {
2482 unsigned i
= HCS_N_PORTS(oxu
->hcs_params
);
2483 pcd_status
= status
;
2485 /* resume root hub? */
2486 if (!(readl(&oxu
->regs
->command
) & CMD_RUN
))
2487 usb_hcd_resume_root_hub(hcd
);
2490 int pstatus
= readl(&oxu
->regs
->port_status
[i
]);
2492 if (pstatus
& PORT_OWNER
)
2494 if (!(pstatus
& PORT_RESUME
)
2495 || oxu
->reset_done
[i
] != 0)
2498 /* start 20 msec resume signaling from this port,
2499 * and make khubd collect PORT_STAT_C_SUSPEND to
2500 * stop that signaling.
2502 oxu
->reset_done
[i
] = jiffies
+ msecs_to_jiffies(20);
2503 oxu_dbg(oxu
, "port %d remote wakeup\n", i
+ 1);
2504 mod_timer(&hcd
->rh_timer
, oxu
->reset_done
[i
]);
2508 /* PCI errors [4.15.2.4] */
2509 if (unlikely((status
& STS_FATAL
) != 0)) {
2510 /* bogus "fatal" IRQs appear on some chips... why? */
2511 status
= readl(&oxu
->regs
->status
);
2512 dbg_cmd(oxu
, "fatal", readl(&oxu
->regs
->command
));
2513 dbg_status(oxu
, "fatal", status
);
2514 if (status
& STS_HALT
) {
2515 oxu_err(oxu
, "fatal error\n");
2518 writel(0, &oxu
->regs
->configured_flag
);
2519 /* generic layer kills/unlinks all urbs, then
2520 * uses oxu_stop to clean up the rest
2528 spin_unlock(&oxu
->lock
);
2529 if (pcd_status
& STS_PCD
)
2530 usb_hcd_poll_rh_status(hcd
);
2534 static irqreturn_t
oxu_irq(struct usb_hcd
*hcd
)
2536 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2537 int ret
= IRQ_HANDLED
;
2539 u32 status
= oxu_readl(hcd
->regs
, OXU_CHIPIRQSTATUS
);
2540 u32 enable
= oxu_readl(hcd
->regs
, OXU_CHIPIRQEN_SET
);
2542 /* Disable all interrupt */
2543 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_CLR
, enable
);
2545 if ((oxu
->is_otg
&& (status
& OXU_USBOTGI
)) ||
2546 (!oxu
->is_otg
&& (status
& OXU_USBSPHI
)))
2547 oxu210_hcd_irq(hcd
);
2551 /* Enable all interrupt back */
2552 oxu_writel(hcd
->regs
, OXU_CHIPIRQEN_SET
, enable
);
2557 static void oxu_watchdog(unsigned long param
)
2559 struct oxu_hcd
*oxu
= (struct oxu_hcd
*) param
;
2560 unsigned long flags
;
2562 spin_lock_irqsave(&oxu
->lock
, flags
);
2564 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2566 u32 status
= readl(&oxu
->regs
->status
);
2567 if (status
& STS_IAA
) {
2568 oxu_vdbg(oxu
, "lost IAA\n");
2569 writel(STS_IAA
, &oxu
->regs
->status
);
2570 oxu
->reclaim_ready
= 1;
2574 /* stop async processing after it's idled a bit */
2575 if (test_bit(TIMER_ASYNC_OFF
, &oxu
->actions
))
2576 start_unlink_async(oxu
, oxu
->async
);
2578 /* oxu could run by timer, without IRQs ... */
2581 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2584 /* One-time init, only for memory state.
2586 static int oxu_hcd_init(struct usb_hcd
*hcd
)
2588 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2593 spin_lock_init(&oxu
->lock
);
2595 init_timer(&oxu
->watchdog
);
2596 oxu
->watchdog
.function
= oxu_watchdog
;
2597 oxu
->watchdog
.data
= (unsigned long) oxu
;
2600 * hw default: 1K periodic list heads, one per frame.
2601 * periodic_size can shrink by USBCMD update if hcc_params allows.
2603 oxu
->periodic_size
= DEFAULT_I_TDPS
;
2604 retval
= ehci_mem_init(oxu
, GFP_KERNEL
);
2608 /* controllers may cache some of the periodic schedule ... */
2609 hcc_params
= readl(&oxu
->caps
->hcc_params
);
2610 if (HCC_ISOC_CACHE(hcc_params
)) /* full frame cache */
2612 else /* N microframes cached */
2613 oxu
->i_thresh
= 2 + HCC_ISOC_THRES(hcc_params
);
2615 oxu
->reclaim
= NULL
;
2616 oxu
->reclaim_ready
= 0;
2617 oxu
->next_uframe
= -1;
2620 * dedicate a qh for the async ring head, since we couldn't unlink
2621 * a 'real' qh without stopping the async schedule [4.8]. use it
2622 * as the 'reclamation list head' too.
2623 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2624 * from automatically advancing to the next td after short reads.
2626 oxu
->async
->qh_next
.qh
= NULL
;
2627 oxu
->async
->hw_next
= QH_NEXT(oxu
->async
->qh_dma
);
2628 oxu
->async
->hw_info1
= cpu_to_le32(QH_HEAD
);
2629 oxu
->async
->hw_token
= cpu_to_le32(QTD_STS_HALT
);
2630 oxu
->async
->hw_qtd_next
= EHCI_LIST_END
;
2631 oxu
->async
->qh_state
= QH_STATE_LINKED
;
2632 oxu
->async
->hw_alt_next
= QTD_NEXT(oxu
->async
->dummy
->qtd_dma
);
2634 /* clear interrupt enables, set irq latency */
2635 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
2636 log2_irq_thresh
= 0;
2637 temp
= 1 << (16 + log2_irq_thresh
);
2638 if (HCC_CANPARK(hcc_params
)) {
2639 /* HW default park == 3, on hardware that supports it (like
2640 * NVidia and ALI silicon), maximizes throughput on the async
2641 * schedule by avoiding QH fetches between transfers.
2643 * With fast usb storage devices and NForce2, "park" seems to
2644 * make problems: throughput reduction (!), data errors...
2647 park
= min(park
, (unsigned) 3);
2651 oxu_dbg(oxu
, "park %d\n", park
);
2653 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
2654 /* periodic schedule size can be smaller than default */
2656 temp
|= (EHCI_TUNE_FLS
<< 2);
2658 oxu
->command
= temp
;
2663 /* Called during probe() after chip reset completes.
2665 static int oxu_reset(struct usb_hcd
*hcd
)
2667 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2670 spin_lock_init(&oxu
->mem_lock
);
2671 INIT_LIST_HEAD(&oxu
->urb_list
);
2675 hcd
->self
.controller
->dma_mask
= NULL
;
2678 oxu
->caps
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
;
2679 oxu
->regs
= hcd
->regs
+ OXU_OTG_CAP_OFFSET
+ \
2680 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
2682 oxu
->mem
= hcd
->regs
+ OXU_SPH_MEM
;
2684 oxu
->caps
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
;
2685 oxu
->regs
= hcd
->regs
+ OXU_SPH_CAP_OFFSET
+ \
2686 HC_LENGTH(readl(&oxu
->caps
->hc_capbase
));
2688 oxu
->mem
= hcd
->regs
+ OXU_OTG_MEM
;
2691 oxu
->hcs_params
= readl(&oxu
->caps
->hcs_params
);
2694 ret
= oxu_hcd_init(hcd
);
2701 static int oxu_run(struct usb_hcd
*hcd
)
2703 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2705 u32 temp
, hcc_params
;
2707 hcd
->uses_new_polling
= 1;
2709 /* EHCI spec section 4.1 */
2710 retval
= ehci_reset(oxu
);
2712 ehci_mem_cleanup(oxu
);
2715 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
2716 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
2718 /* hcc_params controls whether oxu->regs->segment must (!!!)
2719 * be used; it constrains QH/ITD/SITD and QTD locations.
2720 * pci_pool consistent memory always uses segment zero.
2721 * streaming mappings for I/O buffers, like pci_map_single(),
2722 * can return segments above 4GB, if the device allows.
2724 * NOTE: the dma mask is visible through dma_supported(), so
2725 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2726 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2727 * host side drivers though.
2729 hcc_params
= readl(&oxu
->caps
->hcc_params
);
2730 if (HCC_64BIT_ADDR(hcc_params
))
2731 writel(0, &oxu
->regs
->segment
);
2733 oxu
->command
&= ~(CMD_LRESET
| CMD_IAAD
| CMD_PSE
|
2734 CMD_ASE
| CMD_RESET
);
2735 oxu
->command
|= CMD_RUN
;
2736 writel(oxu
->command
, &oxu
->regs
->command
);
2737 dbg_cmd(oxu
, "init", oxu
->command
);
2740 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2741 * are explicitly handed to companion controller(s), so no TT is
2742 * involved with the root hub. (Except where one is integrated,
2743 * and there's no companion controller unless maybe for USB OTG.)
2745 hcd
->state
= HC_STATE_RUNNING
;
2746 writel(FLAG_CF
, &oxu
->regs
->configured_flag
);
2747 readl(&oxu
->regs
->command
); /* unblock posted writes */
2749 temp
= HC_VERSION(readl(&oxu
->caps
->hc_capbase
));
2750 oxu_info(oxu
, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2751 ((oxu
->sbrn
& 0xf0)>>4), (oxu
->sbrn
& 0x0f),
2752 temp
>> 8, temp
& 0xff, DRIVER_VERSION
,
2753 ignore_oc
? ", overcurrent ignored" : "");
2755 writel(INTR_MASK
, &oxu
->regs
->intr_enable
); /* Turn On Interrupts */
2760 static void oxu_stop(struct usb_hcd
*hcd
)
2762 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2764 /* Turn off port power on all root hub ports. */
2765 ehci_port_power(oxu
, 0);
2767 /* no more interrupts ... */
2768 del_timer_sync(&oxu
->watchdog
);
2770 spin_lock_irq(&oxu
->lock
);
2771 if (HC_IS_RUNNING(hcd
->state
))
2775 writel(0, &oxu
->regs
->intr_enable
);
2776 spin_unlock_irq(&oxu
->lock
);
2778 /* let companion controllers work when we aren't */
2779 writel(0, &oxu
->regs
->configured_flag
);
2781 /* root hub is shut down separately (first, when possible) */
2782 spin_lock_irq(&oxu
->lock
);
2785 spin_unlock_irq(&oxu
->lock
);
2786 ehci_mem_cleanup(oxu
);
2788 dbg_status(oxu
, "oxu_stop completed", readl(&oxu
->regs
->status
));
2791 /* Kick in for silicon on any bus (not just pci, etc).
2792 * This forcibly disables dma and IRQs, helping kexec and other cases
2793 * where the next system software may expect clean state.
2795 static void oxu_shutdown(struct usb_hcd
*hcd
)
2797 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2799 (void) ehci_halt(oxu
);
2800 ehci_turn_off_all_ports(oxu
);
2802 /* make BIOS/etc use companion controller during reboot */
2803 writel(0, &oxu
->regs
->configured_flag
);
2805 /* unblock posted writes */
2806 readl(&oxu
->regs
->configured_flag
);
2809 /* Non-error returns are a promise to giveback() the urb later
2810 * we drop ownership so next owner (or urb unlink) can get it
2812 * urb + dev is in hcd.self.controller.urb_list
2813 * we're queueing TDs onto software and hardware lists
2815 * hcd-specific init for hcpriv hasn't been done yet
2817 * NOTE: control, bulk, and interrupt share the same code to append TDs
2818 * to a (possibly active) QH, and the same QH scanning code.
2820 static int __oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
2823 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2824 struct list_head qtd_list
;
2826 INIT_LIST_HEAD(&qtd_list
);
2828 switch (usb_pipetype(urb
->pipe
)) {
2832 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
2834 return submit_async(oxu
, urb
, &qtd_list
, mem_flags
);
2836 case PIPE_INTERRUPT
:
2837 if (!qh_urb_transaction(oxu
, urb
, &qtd_list
, mem_flags
))
2839 return intr_submit(oxu
, urb
, &qtd_list
, mem_flags
);
2841 case PIPE_ISOCHRONOUS
:
2842 if (urb
->dev
->speed
== USB_SPEED_HIGH
)
2843 return itd_submit(oxu
, urb
, mem_flags
);
2845 return sitd_submit(oxu
, urb
, mem_flags
);
2849 /* This function is responsible for breaking URBs with big data size
2850 * into smaller size and processing small urbs in sequence.
2852 static int oxu_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
2855 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2857 int transfer_buffer_length
;
2858 void *transfer_buffer
;
2862 /* If not bulk pipe just enqueue the URB */
2863 if (!usb_pipebulk(urb
->pipe
))
2864 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
2866 /* Otherwise we should verify the USB transfer buffer size! */
2867 transfer_buffer
= urb
->transfer_buffer
;
2868 transfer_buffer_length
= urb
->transfer_buffer_length
;
2870 num
= urb
->transfer_buffer_length
/ 4096;
2871 rem
= urb
->transfer_buffer_length
% 4096;
2875 /* If URB is smaller than 4096 bytes just enqueue it! */
2877 return __oxu_urb_enqueue(hcd
, urb
, mem_flags
);
2879 /* Ok, we have more job to do! :) */
2881 for (i
= 0; i
< num
- 1; i
++) {
2882 /* Get free micro URB poll till a free urb is recieved */
2885 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
2890 /* Coping the urb */
2891 memcpy(murb
, urb
, sizeof(struct urb
));
2893 murb
->transfer_buffer_length
= 4096;
2894 murb
->transfer_buffer
= transfer_buffer
+ i
* 4096;
2896 /* Null pointer for the encodes that this is a micro urb */
2897 murb
->complete
= NULL
;
2899 ((struct oxu_murb
*) murb
)->main
= urb
;
2900 ((struct oxu_murb
*) murb
)->last
= 0;
2902 /* This loop is to guarantee urb to be processed when there's
2903 * not enough resources at a particular time by retrying.
2906 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
2912 /* Last urb requires special handling */
2914 /* Get free micro URB poll till a free urb is recieved */
2916 murb
= (struct urb
*) oxu_murb_alloc(oxu
);
2921 /* Coping the urb */
2922 memcpy(murb
, urb
, sizeof(struct urb
));
2924 murb
->transfer_buffer_length
= rem
> 0 ? rem
: 4096;
2925 murb
->transfer_buffer
= transfer_buffer
+ (num
- 1) * 4096;
2927 /* Null pointer for the encodes that this is a micro urb */
2928 murb
->complete
= NULL
;
2930 ((struct oxu_murb
*) murb
)->main
= urb
;
2931 ((struct oxu_murb
*) murb
)->last
= 1;
2934 ret
= __oxu_urb_enqueue(hcd
, murb
, mem_flags
);
2942 /* Remove from hardware lists.
2943 * Completions normally happen asynchronously
2945 static int oxu_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2947 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
2949 unsigned long flags
;
2951 spin_lock_irqsave(&oxu
->lock
, flags
);
2952 switch (usb_pipetype(urb
->pipe
)) {
2956 qh
= (struct ehci_qh
*) urb
->hcpriv
;
2959 unlink_async(oxu
, qh
);
2962 case PIPE_INTERRUPT
:
2963 qh
= (struct ehci_qh
*) urb
->hcpriv
;
2966 switch (qh
->qh_state
) {
2967 case QH_STATE_LINKED
:
2968 intr_deschedule(oxu
, qh
);
2971 qh_completions(oxu
, qh
);
2974 oxu_dbg(oxu
, "bogus qh %p state %d\n",
2979 /* reschedule QH iff another request is queued */
2980 if (!list_empty(&qh
->qtd_list
)
2981 && HC_IS_RUNNING(hcd
->state
)) {
2984 status
= qh_schedule(oxu
, qh
);
2985 spin_unlock_irqrestore(&oxu
->lock
, flags
);
2988 /* shouldn't happen often, but ...
2989 * FIXME kill those tds' urbs
2991 err("can't reschedule qh %p, err %d",
2999 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3003 /* Bulk qh holds the data toggle */
3004 static void oxu_endpoint_disable(struct usb_hcd
*hcd
,
3005 struct usb_host_endpoint
*ep
)
3007 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3008 unsigned long flags
;
3009 struct ehci_qh
*qh
, *tmp
;
3011 /* ASSERT: any requests/urbs are being unlinked */
3012 /* ASSERT: nobody can be submitting urbs for this any more */
3015 spin_lock_irqsave(&oxu
->lock
, flags
);
3020 /* endpoints can be iso streams. for now, we don't
3021 * accelerate iso completions ... so spin a while.
3023 if (qh
->hw_info1
== 0) {
3024 oxu_vdbg(oxu
, "iso delay\n");
3028 if (!HC_IS_RUNNING(hcd
->state
))
3029 qh
->qh_state
= QH_STATE_IDLE
;
3030 switch (qh
->qh_state
) {
3031 case QH_STATE_LINKED
:
3032 for (tmp
= oxu
->async
->qh_next
.qh
;
3034 tmp
= tmp
->qh_next
.qh
)
3036 /* periodic qh self-unlinks on empty */
3039 unlink_async(oxu
, qh
);
3041 case QH_STATE_UNLINK
: /* wait for hw to finish? */
3043 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3044 schedule_timeout_uninterruptible(1);
3046 case QH_STATE_IDLE
: /* fully unlinked */
3047 if (list_empty(&qh
->qtd_list
)) {
3051 /* else FALL THROUGH */
3054 /* caller was supposed to have unlinked any requests;
3055 * that's not our job. just leak this memory.
3057 oxu_err(oxu
, "qh %p (#%02x) state %d%s\n",
3058 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
3059 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
3064 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3067 static int oxu_get_frame(struct usb_hcd
*hcd
)
3069 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3071 return (readl(&oxu
->regs
->frame_index
) >> 3) %
3075 /* Build "status change" packet (one or two bytes) from HC registers */
3076 static int oxu_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3078 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3079 u32 temp
, mask
, status
= 0;
3080 int ports
, i
, retval
= 1;
3081 unsigned long flags
;
3083 /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3084 if (!HC_IS_RUNNING(hcd
->state
))
3087 /* init status to no-changes */
3089 ports
= HCS_N_PORTS(oxu
->hcs_params
);
3095 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3096 * causing massive log spam unless we completely ignore them. It
3097 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3098 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3099 * PORT_POWER; that's surprising, but maybe within-spec.
3102 mask
= PORT_CSC
| PORT_PEC
| PORT_OCC
;
3104 mask
= PORT_CSC
| PORT_PEC
;
3106 /* no hub change reports (bit 0) for now (power, ...) */
3108 /* port N changes (bit N)? */
3109 spin_lock_irqsave(&oxu
->lock
, flags
);
3110 for (i
= 0; i
< ports
; i
++) {
3111 temp
= readl(&oxu
->regs
->port_status
[i
]);
3114 * Return status information even for ports with OWNER set.
3115 * Otherwise khubd wouldn't see the disconnect event when a
3116 * high-speed device is switched over to the companion
3117 * controller by the user.
3120 if (!(temp
& PORT_CONNECT
))
3121 oxu
->reset_done
[i
] = 0;
3122 if ((temp
& mask
) != 0 || ((temp
& PORT_RESUME
) != 0 &&
3123 time_after_eq(jiffies
, oxu
->reset_done
[i
]))) {
3125 buf
[0] |= 1 << (i
+ 1);
3127 buf
[1] |= 1 << (i
- 7);
3131 /* FIXME autosuspend idle root hubs */
3132 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3133 return status
? retval
: 0;
3136 /* Returns the speed of a device attached to a port on the root hub. */
3137 static inline unsigned int oxu_port_speed(struct oxu_hcd
*oxu
,
3138 unsigned int portsc
)
3140 switch ((portsc
>> 26) & 3) {
3144 return USB_PORT_STAT_LOW_SPEED
;
3147 return USB_PORT_STAT_HIGH_SPEED
;
3151 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3152 static int oxu_hub_control(struct usb_hcd
*hcd
, u16 typeReq
,
3153 u16 wValue
, u16 wIndex
, char *buf
, u16 wLength
)
3155 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3156 int ports
= HCS_N_PORTS(oxu
->hcs_params
);
3157 u32 __iomem
*status_reg
= &oxu
->regs
->port_status
[wIndex
- 1];
3159 unsigned long flags
;
3164 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3165 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3166 * (track current state ourselves) ... blink for diagnostics,
3167 * power, "this is the one", etc. EHCI spec supports this.
3170 spin_lock_irqsave(&oxu
->lock
, flags
);
3172 case ClearHubFeature
:
3174 case C_HUB_LOCAL_POWER
:
3175 case C_HUB_OVER_CURRENT
:
3176 /* no hub-wide feature/status flags */
3182 case ClearPortFeature
:
3183 if (!wIndex
|| wIndex
> ports
)
3186 temp
= readl(status_reg
);
3189 * Even if OWNER is set, so the port is owned by the
3190 * companion controller, khubd needs to be able to clear
3191 * the port-change status bits (especially
3192 * USB_PORT_STAT_C_CONNECTION).
3196 case USB_PORT_FEAT_ENABLE
:
3197 writel(temp
& ~PORT_PE
, status_reg
);
3199 case USB_PORT_FEAT_C_ENABLE
:
3200 writel((temp
& ~PORT_RWC_BITS
) | PORT_PEC
, status_reg
);
3202 case USB_PORT_FEAT_SUSPEND
:
3203 if (temp
& PORT_RESET
)
3205 if (temp
& PORT_SUSPEND
) {
3206 if ((temp
& PORT_PE
) == 0)
3208 /* resume signaling for 20 msec */
3209 temp
&= ~(PORT_RWC_BITS
| PORT_WAKE_BITS
);
3210 writel(temp
| PORT_RESUME
, status_reg
);
3211 oxu
->reset_done
[wIndex
] = jiffies
3212 + msecs_to_jiffies(20);
3215 case USB_PORT_FEAT_C_SUSPEND
:
3216 /* we auto-clear this feature */
3218 case USB_PORT_FEAT_POWER
:
3219 if (HCS_PPC(oxu
->hcs_params
))
3220 writel(temp
& ~(PORT_RWC_BITS
| PORT_POWER
),
3223 case USB_PORT_FEAT_C_CONNECTION
:
3224 writel((temp
& ~PORT_RWC_BITS
) | PORT_CSC
, status_reg
);
3226 case USB_PORT_FEAT_C_OVER_CURRENT
:
3227 writel((temp
& ~PORT_RWC_BITS
) | PORT_OCC
, status_reg
);
3229 case USB_PORT_FEAT_C_RESET
:
3230 /* GetPortStatus clears reset */
3235 readl(&oxu
->regs
->command
); /* unblock posted write */
3237 case GetHubDescriptor
:
3238 ehci_hub_descriptor(oxu
, (struct usb_hub_descriptor
*)
3242 /* no hub-wide feature/status flags */
3246 if (!wIndex
|| wIndex
> ports
)
3250 temp
= readl(status_reg
);
3252 /* wPortChange bits */
3253 if (temp
& PORT_CSC
)
3254 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
3255 if (temp
& PORT_PEC
)
3256 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
3257 if ((temp
& PORT_OCC
) && !ignore_oc
)
3258 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
3260 /* whoever resumes must GetPortStatus to complete it!! */
3261 if (temp
& PORT_RESUME
) {
3263 /* Remote Wakeup received? */
3264 if (!oxu
->reset_done
[wIndex
]) {
3265 /* resume signaling for 20 msec */
3266 oxu
->reset_done
[wIndex
] = jiffies
3267 + msecs_to_jiffies(20);
3268 /* check the port again */
3269 mod_timer(&oxu_to_hcd(oxu
)->rh_timer
,
3270 oxu
->reset_done
[wIndex
]);
3273 /* resume completed? */
3274 else if (time_after_eq(jiffies
,
3275 oxu
->reset_done
[wIndex
])) {
3276 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
3277 oxu
->reset_done
[wIndex
] = 0;
3279 /* stop resume signaling */
3280 temp
= readl(status_reg
);
3281 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESUME
),
3283 retval
= handshake(oxu
, status_reg
,
3284 PORT_RESUME
, 0, 2000 /* 2msec */);
3287 "port %d resume error %d\n",
3288 wIndex
+ 1, retval
);
3291 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
3295 /* whoever resets must GetPortStatus to complete it!! */
3296 if ((temp
& PORT_RESET
)
3297 && time_after_eq(jiffies
,
3298 oxu
->reset_done
[wIndex
])) {
3299 status
|= USB_PORT_STAT_C_RESET
<< 16;
3300 oxu
->reset_done
[wIndex
] = 0;
3302 /* force reset to complete */
3303 writel(temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
3305 /* REVISIT: some hardware needs 550+ usec to clear
3306 * this bit; seems too long to spin routinely...
3308 retval
= handshake(oxu
, status_reg
,
3309 PORT_RESET
, 0, 750);
3311 oxu_err(oxu
, "port %d reset error %d\n",
3312 wIndex
+ 1, retval
);
3316 /* see what we found out */
3317 temp
= check_reset_complete(oxu
, wIndex
, status_reg
,
3321 /* transfer dedicated ports to the companion hc */
3322 if ((temp
& PORT_CONNECT
) &&
3323 test_bit(wIndex
, &oxu
->companion_ports
)) {
3324 temp
&= ~PORT_RWC_BITS
;
3326 writel(temp
, status_reg
);
3327 oxu_dbg(oxu
, "port %d --> companion\n", wIndex
+ 1);
3328 temp
= readl(status_reg
);
3332 * Even if OWNER is set, there's no harm letting khubd
3333 * see the wPortStatus values (they should all be 0 except
3334 * for PORT_POWER anyway).
3337 if (temp
& PORT_CONNECT
) {
3338 status
|= USB_PORT_STAT_CONNECTION
;
3339 /* status may be from integrated TT */
3340 status
|= oxu_port_speed(oxu
, temp
);
3343 status
|= USB_PORT_STAT_ENABLE
;
3344 if (temp
& (PORT_SUSPEND
|PORT_RESUME
))
3345 status
|= USB_PORT_STAT_SUSPEND
;
3347 status
|= USB_PORT_STAT_OVERCURRENT
;
3348 if (temp
& PORT_RESET
)
3349 status
|= USB_PORT_STAT_RESET
;
3350 if (temp
& PORT_POWER
)
3351 status
|= USB_PORT_STAT_POWER
;
3353 #ifndef OXU_VERBOSE_DEBUG
3354 if (status
& ~0xffff) /* only if wPortChange is interesting */
3356 dbg_port(oxu
, "GetStatus", wIndex
+ 1, temp
);
3357 put_unaligned(cpu_to_le32(status
), (__le32
*) buf
);
3361 case C_HUB_LOCAL_POWER
:
3362 case C_HUB_OVER_CURRENT
:
3363 /* no hub-wide feature/status flags */
3369 case SetPortFeature
:
3370 selector
= wIndex
>> 8;
3372 if (!wIndex
|| wIndex
> ports
)
3375 temp
= readl(status_reg
);
3376 if (temp
& PORT_OWNER
)
3379 temp
&= ~PORT_RWC_BITS
;
3381 case USB_PORT_FEAT_SUSPEND
:
3382 if ((temp
& PORT_PE
) == 0
3383 || (temp
& PORT_RESET
) != 0)
3385 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3386 temp
|= PORT_WAKE_BITS
;
3387 writel(temp
| PORT_SUSPEND
, status_reg
);
3389 case USB_PORT_FEAT_POWER
:
3390 if (HCS_PPC(oxu
->hcs_params
))
3391 writel(temp
| PORT_POWER
, status_reg
);
3393 case USB_PORT_FEAT_RESET
:
3394 if (temp
& PORT_RESUME
)
3396 /* line status bits may report this as low speed,
3397 * which can be fine if this root hub has a
3398 * transaction translator built in.
3400 oxu_vdbg(oxu
, "port %d reset\n", wIndex
+ 1);
3405 * caller must wait, then call GetPortStatus
3406 * usb 2.0 spec says 50 ms resets on root
3408 oxu
->reset_done
[wIndex
] = jiffies
3409 + msecs_to_jiffies(50);
3410 writel(temp
, status_reg
);
3413 /* For downstream facing ports (these): one hub port is put
3414 * into test mode according to USB2 11.24.2.13, then the hub
3415 * must be reset (which for root hub now means rmmod+modprobe,
3416 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3417 * about the EHCI-specific stuff.
3419 case USB_PORT_FEAT_TEST
:
3420 if (!selector
|| selector
> 5)
3424 temp
|= selector
<< 16;
3425 writel(temp
, status_reg
);
3431 readl(&oxu
->regs
->command
); /* unblock posted writes */
3436 /* "stall" on error */
3439 spin_unlock_irqrestore(&oxu
->lock
, flags
);
3445 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3447 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3451 oxu_dbg(oxu
, "suspend root hub\n");
3453 if (time_before(jiffies
, oxu
->next_statechange
))
3456 port
= HCS_N_PORTS(oxu
->hcs_params
);
3457 spin_lock_irq(&oxu
->lock
);
3459 /* stop schedules, clean any completed work */
3460 if (HC_IS_RUNNING(hcd
->state
)) {
3462 hcd
->state
= HC_STATE_QUIESCING
;
3464 oxu
->command
= readl(&oxu
->regs
->command
);
3466 oxu
->reclaim_ready
= 1;
3469 /* Unlike other USB host controller types, EHCI doesn't have
3470 * any notion of "global" or bus-wide suspend. The driver has
3471 * to manually suspend all the active unsuspended ports, and
3472 * then manually resume them in the bus_resume() routine.
3474 oxu
->bus_suspended
= 0;
3476 u32 __iomem
*reg
= &oxu
->regs
->port_status
[port
];
3477 u32 t1
= readl(reg
) & ~PORT_RWC_BITS
;
3480 /* keep track of which ports we suspend */
3481 if ((t1
& PORT_PE
) && !(t1
& PORT_OWNER
) &&
3482 !(t1
& PORT_SUSPEND
)) {
3484 set_bit(port
, &oxu
->bus_suspended
);
3487 /* enable remote wakeup on all ports */
3488 if (device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3489 t2
|= PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
;
3491 t2
&= ~(PORT_WKOC_E
|PORT_WKDISC_E
|PORT_WKCONN_E
);
3494 oxu_vdbg(oxu
, "port %d, %08x -> %08x\n",
3500 /* turn off now-idle HC */
3501 del_timer_sync(&oxu
->watchdog
);
3503 hcd
->state
= HC_STATE_SUSPENDED
;
3505 /* allow remote wakeup */
3507 if (!device_may_wakeup(&hcd
->self
.root_hub
->dev
))
3509 writel(mask
, &oxu
->regs
->intr_enable
);
3510 readl(&oxu
->regs
->intr_enable
);
3512 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(10);
3513 spin_unlock_irq(&oxu
->lock
);
3517 /* Caller has locked the root hub, and should reset/reinit on error */
3518 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3520 struct oxu_hcd
*oxu
= hcd_to_oxu(hcd
);
3524 if (time_before(jiffies
, oxu
->next_statechange
))
3526 spin_lock_irq(&oxu
->lock
);
3528 /* Ideally and we've got a real resume here, and no port's power
3529 * was lost. (For PCI, that means Vaux was maintained.) But we
3530 * could instead be restoring a swsusp snapshot -- so that BIOS was
3531 * the last user of the controller, not reset/pm hardware keeping
3532 * state we gave to it.
3534 temp
= readl(&oxu
->regs
->intr_enable
);
3535 oxu_dbg(oxu
, "resume root hub%s\n", temp
? "" : " after power loss");
3537 /* at least some APM implementations will try to deliver
3538 * IRQs right away, so delay them until we're ready.
3540 writel(0, &oxu
->regs
->intr_enable
);
3542 /* re-init operational registers */
3543 writel(0, &oxu
->regs
->segment
);
3544 writel(oxu
->periodic_dma
, &oxu
->regs
->frame_list
);
3545 writel((u32
) oxu
->async
->qh_dma
, &oxu
->regs
->async_next
);
3547 /* restore CMD_RUN, framelist size, and irq threshold */
3548 writel(oxu
->command
, &oxu
->regs
->command
);
3550 /* Some controller/firmware combinations need a delay during which
3551 * they set up the port statuses. See Bugzilla #8190. */
3554 /* manually resume the ports we suspended during bus_suspend() */
3555 i
= HCS_N_PORTS(oxu
->hcs_params
);
3557 temp
= readl(&oxu
->regs
->port_status
[i
]);
3558 temp
&= ~(PORT_RWC_BITS
3559 | PORT_WKOC_E
| PORT_WKDISC_E
| PORT_WKCONN_E
);
3560 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3561 oxu
->reset_done
[i
] = jiffies
+ msecs_to_jiffies(20);
3562 temp
|= PORT_RESUME
;
3564 writel(temp
, &oxu
->regs
->port_status
[i
]);
3566 i
= HCS_N_PORTS(oxu
->hcs_params
);
3569 temp
= readl(&oxu
->regs
->port_status
[i
]);
3570 if (test_bit(i
, &oxu
->bus_suspended
) && (temp
& PORT_SUSPEND
)) {
3571 temp
&= ~(PORT_RWC_BITS
| PORT_RESUME
);
3572 writel(temp
, &oxu
->regs
->port_status
[i
]);
3573 oxu_vdbg(oxu
, "resumed port %d\n", i
+ 1);
3576 (void) readl(&oxu
->regs
->command
);
3578 /* maybe re-activate the schedule(s) */
3580 if (oxu
->async
->qh_next
.qh
)
3582 if (oxu
->periodic_sched
)
3585 oxu
->command
|= temp
;
3586 writel(oxu
->command
, &oxu
->regs
->command
);
3589 oxu
->next_statechange
= jiffies
+ msecs_to_jiffies(5);
3590 hcd
->state
= HC_STATE_RUNNING
;
3592 /* Now we can safely re-enable irqs */
3593 writel(INTR_MASK
, &oxu
->regs
->intr_enable
);
3595 spin_unlock_irq(&oxu
->lock
);
3601 static int oxu_bus_suspend(struct usb_hcd
*hcd
)
3606 static int oxu_bus_resume(struct usb_hcd
*hcd
)
3611 #endif /* CONFIG_PM */
3613 static const struct hc_driver oxu_hc_driver
= {
3614 .description
= "oxu210hp_hcd",
3615 .product_desc
= "oxu210hp HCD",
3616 .hcd_priv_size
= sizeof(struct oxu_hcd
),
3619 * Generic hardware linkage
3622 .flags
= HCD_MEMORY
| HCD_USB2
,
3625 * Basic lifecycle operations
3630 .shutdown
= oxu_shutdown
,
3633 * Managing i/o requests and associated device resources
3635 .urb_enqueue
= oxu_urb_enqueue
,
3636 .urb_dequeue
= oxu_urb_dequeue
,
3637 .endpoint_disable
= oxu_endpoint_disable
,
3640 * Scheduling support
3642 .get_frame_number
= oxu_get_frame
,
3647 .hub_status_data
= oxu_hub_status_data
,
3648 .hub_control
= oxu_hub_control
,
3649 .bus_suspend
= oxu_bus_suspend
,
3650 .bus_resume
= oxu_bus_resume
,
3657 static void oxu_configuration(struct platform_device
*pdev
, void *base
)
3661 /* Initialize top level registers.
3664 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
3665 oxu_writel(base
, OXU_SOFTRESET
, OXU_SRESET
);
3666 oxu_writel(base
, OXU_HOSTIFCONFIG
, 0x0000037D);
3668 tmp
= oxu_readl(base
, OXU_PIOBURSTREADCTRL
);
3669 oxu_writel(base
, OXU_PIOBURSTREADCTRL
, tmp
| 0x0040);
3671 oxu_writel(base
, OXU_ASO
, OXU_SPHPOEN
| OXU_OVRCCURPUPDEN
|
3672 OXU_COMPARATOR
| OXU_ASO_OP
);
3674 tmp
= oxu_readl(base
, OXU_CLKCTRL_SET
);
3675 oxu_writel(base
, OXU_CLKCTRL_SET
, tmp
| OXU_SYSCLKEN
| OXU_USBOTGCLKEN
);
3677 /* Clear all top interrupt enable */
3678 oxu_writel(base
, OXU_CHIPIRQEN_CLR
, 0xff);
3680 /* Clear all top interrupt status */
3681 oxu_writel(base
, OXU_CHIPIRQSTATUS
, 0xff);
3683 /* Enable all needed top interrupt except OTG SPH core */
3684 oxu_writel(base
, OXU_CHIPIRQEN_SET
, OXU_USBSPHLPWUI
| OXU_USBOTGLPWUI
);
3687 static int oxu_verify_id(struct platform_device
*pdev
, void *base
)
3690 static const char * const bo
[] = {
3697 /* Read controller signature register to find a match */
3698 id
= oxu_readl(base
, OXU_DEVICEID
);
3699 dev_info(&pdev
->dev
, "device ID %x\n", id
);
3700 if ((id
& OXU_REV_MASK
) != (OXU_REV_2100
<< OXU_REV_SHIFT
))
3703 dev_info(&pdev
->dev
, "found device %x %s (%04x:%04x)\n",
3704 id
>> OXU_REV_SHIFT
,
3705 bo
[(id
& OXU_BO_MASK
) >> OXU_BO_SHIFT
],
3706 (id
& OXU_MAJ_REV_MASK
) >> OXU_MAJ_REV_SHIFT
,
3707 (id
& OXU_MIN_REV_MASK
) >> OXU_MIN_REV_SHIFT
);
3712 static const struct hc_driver oxu_hc_driver
;
3713 static struct usb_hcd
*oxu_create(struct platform_device
*pdev
,
3714 unsigned long memstart
, unsigned long memlen
,
3715 void *base
, int irq
, int otg
)
3717 struct device
*dev
= &pdev
->dev
;
3719 struct usb_hcd
*hcd
;
3720 struct oxu_hcd
*oxu
;
3723 /* Set endian mode and host mode */
3724 oxu_writel(base
+ (otg
? OXU_OTG_CORE_OFFSET
: OXU_SPH_CORE_OFFSET
),
3726 OXU_CM_HOST_ONLY
| OXU_ES_LITTLE
| OXU_VBPS
);
3728 hcd
= usb_create_hcd(&oxu_hc_driver
, dev
,
3729 otg
? "oxu210hp_otg" : "oxu210hp_sph");
3731 return ERR_PTR(-ENOMEM
);
3733 hcd
->rsrc_start
= memstart
;
3734 hcd
->rsrc_len
= memlen
;
3737 hcd
->state
= HC_STATE_HALT
;
3739 oxu
= hcd_to_oxu(hcd
);
3742 ret
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
3744 return ERR_PTR(ret
);
3749 static int oxu_init(struct platform_device
*pdev
,
3750 unsigned long memstart
, unsigned long memlen
,
3751 void *base
, int irq
)
3753 struct oxu_info
*info
= platform_get_drvdata(pdev
);
3754 struct usb_hcd
*hcd
;
3757 /* First time configuration at start up */
3758 oxu_configuration(pdev
, base
);
3760 ret
= oxu_verify_id(pdev
, base
);
3762 dev_err(&pdev
->dev
, "no devices found!\n");
3766 /* Create the OTG controller */
3767 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 1);
3769 dev_err(&pdev
->dev
, "cannot create OTG controller!\n");
3771 goto error_create_otg
;
3775 /* Create the SPH host controller */
3776 hcd
= oxu_create(pdev
, memstart
, memlen
, base
, irq
, 0);
3778 dev_err(&pdev
->dev
, "cannot create SPH controller!\n");
3780 goto error_create_sph
;
3784 oxu_writel(base
, OXU_CHIPIRQEN_SET
,
3785 oxu_readl(base
, OXU_CHIPIRQEN_SET
) | 3);
3790 usb_remove_hcd(info
->hcd
[0]);
3791 usb_put_hcd(info
->hcd
[0]);
3797 static int oxu_drv_probe(struct platform_device
*pdev
)
3799 struct resource
*res
;
3801 unsigned long memstart
, memlen
;
3803 struct oxu_info
*info
;
3809 * Get the platform resources
3811 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
3814 "no IRQ! Check %s setup!\n", dev_name(&pdev
->dev
));
3818 dev_dbg(&pdev
->dev
, "IRQ resource %d\n", irq
);
3820 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3822 dev_err(&pdev
->dev
, "no registers address! Check %s setup!\n",
3823 dev_name(&pdev
->dev
));
3826 memstart
= res
->start
;
3827 memlen
= res
->end
- res
->start
+ 1;
3828 dev_dbg(&pdev
->dev
, "MEM resource %lx-%lx\n", memstart
, memlen
);
3829 if (!request_mem_region(memstart
, memlen
,
3830 oxu_hc_driver
.description
)) {
3831 dev_dbg(&pdev
->dev
, "memory area already in use\n");
3835 ret
= set_irq_type(irq
, IRQF_TRIGGER_FALLING
);
3837 dev_err(&pdev
->dev
, "error setting irq type\n");
3839 goto error_set_irq_type
;
3842 base
= ioremap(memstart
, memlen
);
3844 dev_dbg(&pdev
->dev
, "error mapping memory\n");
3849 /* Allocate a driver data struct to hold useful info for both
3852 info
= kzalloc(sizeof(struct oxu_info
), GFP_KERNEL
);
3854 dev_dbg(&pdev
->dev
, "error allocating memory\n");
3858 platform_set_drvdata(pdev
, info
);
3860 ret
= oxu_init(pdev
, memstart
, memlen
, base
, irq
);
3862 dev_dbg(&pdev
->dev
, "cannot init USB devices\n");
3866 dev_info(&pdev
->dev
, "devices enabled and running\n");
3867 platform_set_drvdata(pdev
, info
);
3873 platform_set_drvdata(pdev
, NULL
);
3880 release_mem_region(memstart
, memlen
);
3882 dev_err(&pdev
->dev
, "init %s fail, %d\n", dev_name(&pdev
->dev
), ret
);
3886 static void oxu_remove(struct platform_device
*pdev
, struct usb_hcd
*hcd
)
3888 usb_remove_hcd(hcd
);
3892 static int oxu_drv_remove(struct platform_device
*pdev
)
3894 struct oxu_info
*info
= platform_get_drvdata(pdev
);
3895 unsigned long memstart
= info
->hcd
[0]->rsrc_start
,
3896 memlen
= info
->hcd
[0]->rsrc_len
;
3897 void *base
= info
->hcd
[0]->regs
;
3899 oxu_remove(pdev
, info
->hcd
[0]);
3900 oxu_remove(pdev
, info
->hcd
[1]);
3903 release_mem_region(memstart
, memlen
);
3906 platform_set_drvdata(pdev
, NULL
);
3911 static void oxu_drv_shutdown(struct platform_device
*pdev
)
3913 oxu_drv_remove(pdev
);
3918 static int oxu_drv_suspend(struct device
*dev
)
3920 struct platform_device
*pdev
= to_platform_device(dev
);
3921 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3926 static int oxu_drv_resume(struct device
*dev
)
3928 struct platform_device
*pdev
= to_platform_device(dev
);
3929 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3934 #define oxu_drv_suspend NULL
3935 #define oxu_drv_resume NULL
3938 static struct platform_driver oxu_driver
= {
3939 .probe
= oxu_drv_probe
,
3940 .remove
= oxu_drv_remove
,
3941 .shutdown
= oxu_drv_shutdown
,
3942 .suspend
= oxu_drv_suspend
,
3943 .resume
= oxu_drv_resume
,
3945 .name
= "oxu210hp-hcd",
3946 .bus
= &platform_bus_type
3950 static int __init
oxu_module_init(void)
3954 retval
= platform_driver_register(&oxu_driver
);
3961 static void __exit
oxu_module_cleanup(void)
3963 platform_driver_unregister(&oxu_driver
);
3966 module_init(oxu_module_init
);
3967 module_exit(oxu_module_cleanup
);
3969 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION
);
3970 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3971 MODULE_LICENSE("GPL");