ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / drivers / usb / host / xhci.c
blob2083fc2179b2a52862b89543a6b08b5d82bfdc7e
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
30 #include "xhci.h"
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
57 u32 result;
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd *xhci)
77 u32 halted;
78 u32 cmd;
79 u32 mask;
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 microframes of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
100 int xhci_halt(struct xhci_hcd *xhci)
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
105 return handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 * Set the run bit and wait for the host to be running.
112 static int xhci_start(struct xhci_hcd *xhci)
114 u32 temp;
115 int ret;
117 temp = xhci_readl(xhci, &xhci->op_regs->command);
118 temp |= (CMD_RUN);
119 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
120 temp);
121 xhci_writel(xhci, temp, &xhci->op_regs->command);
124 * Wait for the HCHalted Status bit to be 0 to indicate the host is
125 * running.
127 ret = handshake(xhci, &xhci->op_regs->status,
128 STS_HALT, 0, XHCI_MAX_HALT_USEC);
129 if (ret == -ETIMEDOUT)
130 xhci_err(xhci, "Host took too long to start, "
131 "waited %u microseconds.\n",
132 XHCI_MAX_HALT_USEC);
133 return ret;
137 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
139 * This resets pipelines, timers, counters, state machines, etc.
140 * Transactions will be terminated immediately, and operational registers
141 * will be set to their defaults.
143 int xhci_reset(struct xhci_hcd *xhci)
145 u32 command;
146 u32 state;
147 int ret;
149 state = xhci_readl(xhci, &xhci->op_regs->status);
150 if ((state & STS_HALT) == 0) {
151 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
152 return 0;
155 xhci_dbg(xhci, "// Reset the HC\n");
156 command = xhci_readl(xhci, &xhci->op_regs->command);
157 command |= CMD_RESET;
158 xhci_writel(xhci, command, &xhci->op_regs->command);
159 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
160 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
162 ret = handshake(xhci, &xhci->op_regs->command,
163 CMD_RESET, 0, 250 * 1000);
164 if (ret)
165 return ret;
167 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
169 * xHCI cannot write to any doorbells or operational registers other
170 * than status until the "Controller Not Ready" flag is cleared.
172 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 * Free IRQs
177 * free all IRQs request
179 static void xhci_free_irq(struct xhci_hcd *xhci)
181 int i;
182 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
184 /* return if using legacy interrupt */
185 if (xhci_to_hcd(xhci)->irq >= 0)
186 return;
188 if (xhci->msix_entries) {
189 for (i = 0; i < xhci->msix_count; i++)
190 if (xhci->msix_entries[i].vector)
191 free_irq(xhci->msix_entries[i].vector,
192 xhci_to_hcd(xhci));
193 } else if (pdev->irq >= 0)
194 free_irq(pdev->irq, xhci_to_hcd(xhci));
196 return;
200 * Set up MSI
202 static int xhci_setup_msi(struct xhci_hcd *xhci)
204 int ret;
205 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
207 ret = pci_enable_msi(pdev);
208 if (ret) {
209 xhci_err(xhci, "failed to allocate MSI entry\n");
210 return ret;
213 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
214 0, "xhci_hcd", xhci_to_hcd(xhci));
215 if (ret) {
216 xhci_err(xhci, "disable MSI interrupt\n");
217 pci_disable_msi(pdev);
220 return ret;
224 * Set up MSI-X
226 static int xhci_setup_msix(struct xhci_hcd *xhci)
228 int i, ret = 0;
229 struct usb_hcd *hcd = xhci_to_hcd(xhci);
230 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
233 * calculate number of msi-x vectors supported.
234 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
235 * with max number of interrupters based on the xhci HCSPARAMS1.
236 * - num_online_cpus: maximum msi-x vectors per CPUs core.
237 * Add additional 1 vector to ensure always available interrupt.
239 xhci->msix_count = min(num_online_cpus() + 1,
240 HCS_MAX_INTRS(xhci->hcs_params1));
242 xhci->msix_entries =
243 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
244 GFP_KERNEL);
245 if (!xhci->msix_entries) {
246 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
247 return -ENOMEM;
250 for (i = 0; i < xhci->msix_count; i++) {
251 xhci->msix_entries[i].entry = i;
252 xhci->msix_entries[i].vector = 0;
255 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
256 if (ret) {
257 xhci_err(xhci, "Failed to enable MSI-X\n");
258 goto free_entries;
261 for (i = 0; i < xhci->msix_count; i++) {
262 ret = request_irq(xhci->msix_entries[i].vector,
263 (irq_handler_t)xhci_msi_irq,
264 0, "xhci_hcd", xhci_to_hcd(xhci));
265 if (ret)
266 goto disable_msix;
269 hcd->msix_enabled = 1;
270 return ret;
272 disable_msix:
273 xhci_err(xhci, "disable MSI-X interrupt\n");
274 xhci_free_irq(xhci);
275 pci_disable_msix(pdev);
276 free_entries:
277 kfree(xhci->msix_entries);
278 xhci->msix_entries = NULL;
279 return ret;
282 /* Free any IRQs and disable MSI-X */
283 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
285 struct usb_hcd *hcd = xhci_to_hcd(xhci);
286 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
288 xhci_free_irq(xhci);
290 if (xhci->msix_entries) {
291 pci_disable_msix(pdev);
292 kfree(xhci->msix_entries);
293 xhci->msix_entries = NULL;
294 } else {
295 pci_disable_msi(pdev);
298 hcd->msix_enabled = 0;
299 return;
303 * Initialize memory for HCD and xHC (one-time init).
305 * Program the PAGESIZE register, initialize the device context array, create
306 * device contexts (?), set up a command ring segment (or two?), create event
307 * ring (one for now).
309 int xhci_init(struct usb_hcd *hcd)
311 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
312 int retval = 0;
314 xhci_dbg(xhci, "xhci_init\n");
315 spin_lock_init(&xhci->lock);
316 if (link_quirk) {
317 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
318 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
319 } else {
320 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
322 retval = xhci_mem_init(xhci, GFP_KERNEL);
323 xhci_dbg(xhci, "Finished xhci_init\n");
325 return retval;
328 /*-------------------------------------------------------------------------*/
331 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
332 static void xhci_event_ring_work(unsigned long arg)
334 unsigned long flags;
335 int temp;
336 u64 temp_64;
337 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
338 int i, j;
340 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
342 spin_lock_irqsave(&xhci->lock, flags);
343 temp = xhci_readl(xhci, &xhci->op_regs->status);
344 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
345 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
346 xhci_dbg(xhci, "HW died, polling stopped.\n");
347 spin_unlock_irqrestore(&xhci->lock, flags);
348 return;
351 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
352 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
353 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
354 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
355 xhci->error_bitmask = 0;
356 xhci_dbg(xhci, "Event ring:\n");
357 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
358 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
359 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
360 temp_64 &= ~ERST_PTR_MASK;
361 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
362 xhci_dbg(xhci, "Command ring:\n");
363 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
364 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
365 xhci_dbg_cmd_ptrs(xhci);
366 for (i = 0; i < MAX_HC_SLOTS; ++i) {
367 if (!xhci->devs[i])
368 continue;
369 for (j = 0; j < 31; ++j) {
370 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
374 if (xhci->noops_submitted != NUM_TEST_NOOPS)
375 if (xhci_setup_one_noop(xhci))
376 xhci_ring_cmd_db(xhci);
377 spin_unlock_irqrestore(&xhci->lock, flags);
379 if (!xhci->zombie)
380 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
381 else
382 xhci_dbg(xhci, "Quit polling the event ring.\n");
384 #endif
387 * Start the HC after it was halted.
389 * This function is called by the USB core when the HC driver is added.
390 * Its opposite is xhci_stop().
392 * xhci_init() must be called once before this function can be called.
393 * Reset the HC, enable device slot contexts, program DCBAAP, and
394 * set command ring pointer and event ring pointer.
396 * Setup MSI-X vectors and enable interrupts.
398 int xhci_run(struct usb_hcd *hcd)
400 u32 temp;
401 u64 temp_64;
402 u32 ret;
403 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
404 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
405 void (*doorbell)(struct xhci_hcd *) = NULL;
407 hcd->uses_new_polling = 1;
409 xhci_dbg(xhci, "xhci_run\n");
410 /* unregister the legacy interrupt */
411 if (hcd->irq)
412 free_irq(hcd->irq, hcd);
413 hcd->irq = -1;
415 ret = xhci_setup_msix(xhci);
416 if (ret)
417 /* fall back to msi*/
418 ret = xhci_setup_msi(xhci);
420 if (ret) {
421 /* fall back to legacy interrupt*/
422 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
423 hcd->irq_descr, hcd);
424 if (ret) {
425 xhci_err(xhci, "request interrupt %d failed\n",
426 pdev->irq);
427 return ret;
429 hcd->irq = pdev->irq;
432 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
433 init_timer(&xhci->event_ring_timer);
434 xhci->event_ring_timer.data = (unsigned long) xhci;
435 xhci->event_ring_timer.function = xhci_event_ring_work;
436 /* Poll the event ring */
437 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
438 xhci->zombie = 0;
439 xhci_dbg(xhci, "Setting event ring polling timer\n");
440 add_timer(&xhci->event_ring_timer);
441 #endif
443 xhci_dbg(xhci, "Command ring memory map follows:\n");
444 xhci_debug_ring(xhci, xhci->cmd_ring);
445 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
446 xhci_dbg_cmd_ptrs(xhci);
448 xhci_dbg(xhci, "ERST memory map follows:\n");
449 xhci_dbg_erst(xhci, &xhci->erst);
450 xhci_dbg(xhci, "Event ring:\n");
451 xhci_debug_ring(xhci, xhci->event_ring);
452 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
453 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
454 temp_64 &= ~ERST_PTR_MASK;
455 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
457 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
458 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
459 temp &= ~ER_IRQ_INTERVAL_MASK;
460 temp |= (u32) 160;
461 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
463 /* Set the HCD state before we enable the irqs */
464 hcd->state = HC_STATE_RUNNING;
465 temp = xhci_readl(xhci, &xhci->op_regs->command);
466 temp |= (CMD_EIE);
467 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
468 temp);
469 xhci_writel(xhci, temp, &xhci->op_regs->command);
471 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
472 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
473 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
474 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
475 &xhci->ir_set->irq_pending);
476 xhci_print_ir_set(xhci, 0);
478 if (NUM_TEST_NOOPS > 0)
479 doorbell = xhci_setup_one_noop(xhci);
480 if (xhci->quirks & XHCI_NEC_HOST)
481 xhci_queue_vendor_command(xhci, 0, 0, 0,
482 TRB_TYPE(TRB_NEC_GET_FW));
484 if (xhci_start(xhci)) {
485 xhci_halt(xhci);
486 return -ENODEV;
489 if (doorbell)
490 (*doorbell)(xhci);
491 if (xhci->quirks & XHCI_NEC_HOST)
492 xhci_ring_cmd_db(xhci);
494 xhci_dbg(xhci, "Finished xhci_run\n");
495 return 0;
499 * Stop xHCI driver.
501 * This function is called by the USB core when the HC driver is removed.
502 * Its opposite is xhci_run().
504 * Disable device contexts, disable IRQs, and quiesce the HC.
505 * Reset the HC, finish any completed transactions, and cleanup memory.
507 void xhci_stop(struct usb_hcd *hcd)
509 u32 temp;
510 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
512 spin_lock_irq(&xhci->lock);
513 xhci_halt(xhci);
514 xhci_reset(xhci);
515 spin_unlock_irq(&xhci->lock);
517 xhci_cleanup_msix(xhci);
519 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
520 /* Tell the event ring poll function not to reschedule */
521 xhci->zombie = 1;
522 del_timer_sync(&xhci->event_ring_timer);
523 #endif
525 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
526 temp = xhci_readl(xhci, &xhci->op_regs->status);
527 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
528 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
529 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
530 &xhci->ir_set->irq_pending);
531 xhci_print_ir_set(xhci, 0);
533 xhci_dbg(xhci, "cleaning up memory\n");
534 xhci_mem_cleanup(xhci);
535 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
536 xhci_readl(xhci, &xhci->op_regs->status));
540 * Shutdown HC (not bus-specific)
542 * This is called when the machine is rebooting or halting. We assume that the
543 * machine will be powered off, and the HC's internal state will be reset.
544 * Don't bother to free memory.
546 void xhci_shutdown(struct usb_hcd *hcd)
548 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
550 spin_lock_irq(&xhci->lock);
551 xhci_halt(xhci);
552 spin_unlock_irq(&xhci->lock);
554 xhci_cleanup_msix(xhci);
556 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
557 xhci_readl(xhci, &xhci->op_regs->status));
560 #ifdef CONFIG_PM
561 static void xhci_save_registers(struct xhci_hcd *xhci)
563 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
564 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
565 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
566 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
567 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
569 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
570 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
571 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
574 static void xhci_restore_registers(struct xhci_hcd *xhci)
576 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
577 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
578 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
579 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
580 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
581 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
582 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
583 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
586 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
588 u64 val_64;
590 /* step 2: initialize command ring buffer */
591 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
592 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
593 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
594 xhci->cmd_ring->dequeue) &
595 (u64) ~CMD_RING_RSVD_BITS) |
596 xhci->cmd_ring->cycle_state;
597 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
598 (long unsigned long) val_64);
599 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
603 * The whole command ring must be cleared to zero when we suspend the host.
605 * The host doesn't save the command ring pointer in the suspend well, so we
606 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
607 * aligned, because of the reserved bits in the command ring dequeue pointer
608 * register. Therefore, we can't just set the dequeue pointer back in the
609 * middle of the ring (TRBs are 16-byte aligned).
611 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
613 struct xhci_ring *ring;
614 struct xhci_segment *seg;
616 ring = xhci->cmd_ring;
617 seg = ring->deq_seg;
618 do {
619 memset(seg->trbs, 0, SEGMENT_SIZE);
620 seg = seg->next;
621 } while (seg != ring->deq_seg);
623 /* Reset the software enqueue and dequeue pointers */
624 ring->deq_seg = ring->first_seg;
625 ring->dequeue = ring->first_seg->trbs;
626 ring->enq_seg = ring->deq_seg;
627 ring->enqueue = ring->dequeue;
630 * Ring is now zeroed, so the HW should look for change of ownership
631 * when the cycle bit is set to 1.
633 ring->cycle_state = 1;
636 * Reset the hardware dequeue pointer.
637 * Yes, this will need to be re-written after resume, but we're paranoid
638 * and want to make sure the hardware doesn't access bogus memory
639 * because, say, the BIOS or an SMI started the host without changing
640 * the command ring pointers.
642 xhci_set_cmd_ring_deq(xhci);
646 * Stop HC (not bus-specific)
648 * This is called when the machine transition into S3/S4 mode.
651 int xhci_suspend(struct xhci_hcd *xhci)
653 int rc = 0;
654 struct usb_hcd *hcd = xhci_to_hcd(xhci);
655 u32 command;
656 int i;
658 spin_lock_irq(&xhci->lock);
659 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
660 /* step 1: stop endpoint */
661 /* skipped assuming that port suspend has done */
663 /* step 2: clear Run/Stop bit */
664 command = xhci_readl(xhci, &xhci->op_regs->command);
665 command &= ~CMD_RUN;
666 xhci_writel(xhci, command, &xhci->op_regs->command);
667 if (handshake(xhci, &xhci->op_regs->status,
668 STS_HALT, STS_HALT, 100*100)) {
669 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
670 spin_unlock_irq(&xhci->lock);
671 return -ETIMEDOUT;
673 xhci_clear_command_ring(xhci);
675 /* step 3: save registers */
676 xhci_save_registers(xhci);
678 /* step 4: set CSS flag */
679 command = xhci_readl(xhci, &xhci->op_regs->command);
680 command |= CMD_CSS;
681 xhci_writel(xhci, command, &xhci->op_regs->command);
682 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
683 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
684 spin_unlock_irq(&xhci->lock);
685 return -ETIMEDOUT;
687 spin_unlock_irq(&xhci->lock);
689 /* step 5: remove core well power */
690 /* synchronize irq when using MSI-X */
691 if (xhci->msix_entries) {
692 for (i = 0; i < xhci->msix_count; i++)
693 synchronize_irq(xhci->msix_entries[i].vector);
696 return rc;
700 * start xHC (not bus-specific)
702 * This is called when the machine transition from S3/S4 mode.
705 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
707 u32 command, temp = 0;
708 struct usb_hcd *hcd = xhci_to_hcd(xhci);
709 int old_state, retval;
711 old_state = hcd->state;
712 if (time_before(jiffies, xhci->next_statechange))
713 msleep(100);
715 spin_lock_irq(&xhci->lock);
717 if (!hibernated) {
718 /* step 1: restore register */
719 xhci_restore_registers(xhci);
720 /* step 2: initialize command ring buffer */
721 xhci_set_cmd_ring_deq(xhci);
722 /* step 3: restore state and start state*/
723 /* step 3: set CRS flag */
724 command = xhci_readl(xhci, &xhci->op_regs->command);
725 command |= CMD_CRS;
726 xhci_writel(xhci, command, &xhci->op_regs->command);
727 if (handshake(xhci, &xhci->op_regs->status,
728 STS_RESTORE, 0, 10*100)) {
729 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
730 spin_unlock_irq(&xhci->lock);
731 return -ETIMEDOUT;
733 temp = xhci_readl(xhci, &xhci->op_regs->status);
736 /* If restore operation fails, re-initialize the HC during resume */
737 if ((temp & STS_SRE) || hibernated) {
738 usb_root_hub_lost_power(hcd->self.root_hub);
740 xhci_dbg(xhci, "Stop HCD\n");
741 xhci_halt(xhci);
742 xhci_reset(xhci);
743 spin_unlock_irq(&xhci->lock);
744 xhci_cleanup_msix(xhci);
746 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
747 /* Tell the event ring poll function not to reschedule */
748 xhci->zombie = 1;
749 del_timer_sync(&xhci->event_ring_timer);
750 #endif
752 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
753 temp = xhci_readl(xhci, &xhci->op_regs->status);
754 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
755 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
756 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
757 &xhci->ir_set->irq_pending);
758 xhci_print_ir_set(xhci, 0);
760 xhci_dbg(xhci, "cleaning up memory\n");
761 xhci_mem_cleanup(xhci);
762 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
763 xhci_readl(xhci, &xhci->op_regs->status));
765 xhci_dbg(xhci, "Initialize the HCD\n");
766 retval = xhci_init(hcd);
767 if (retval)
768 return retval;
770 xhci_dbg(xhci, "Start the HCD\n");
771 retval = xhci_run(hcd);
772 if (!retval)
773 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
774 hcd->state = HC_STATE_SUSPENDED;
775 return retval;
778 /* step 4: set Run/Stop bit */
779 command = xhci_readl(xhci, &xhci->op_regs->command);
780 command |= CMD_RUN;
781 xhci_writel(xhci, command, &xhci->op_regs->command);
782 handshake(xhci, &xhci->op_regs->status, STS_HALT,
783 0, 250 * 1000);
785 /* step 5: walk topology and initialize portsc,
786 * portpmsc and portli
788 /* this is done in bus_resume */
790 /* step 6: restart each of the previously
791 * Running endpoints by ringing their doorbells
794 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
795 if (!hibernated)
796 hcd->state = old_state;
797 else
798 hcd->state = HC_STATE_SUSPENDED;
800 spin_unlock_irq(&xhci->lock);
801 return 0;
803 #endif /* CONFIG_PM */
805 /*-------------------------------------------------------------------------*/
808 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
809 * HCDs. Find the index for an endpoint given its descriptor. Use the return
810 * value to right shift 1 for the bitmask.
812 * Index = (epnum * 2) + direction - 1,
813 * where direction = 0 for OUT, 1 for IN.
814 * For control endpoints, the IN index is used (OUT index is unused), so
815 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
817 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
819 unsigned int index;
820 if (usb_endpoint_xfer_control(desc))
821 index = (unsigned int) (usb_endpoint_num(desc)*2);
822 else
823 index = (unsigned int) (usb_endpoint_num(desc)*2) +
824 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
825 return index;
828 /* Find the flag for this endpoint (for use in the control context). Use the
829 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
830 * bit 1, etc.
832 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
834 return 1 << (xhci_get_endpoint_index(desc) + 1);
837 /* Find the flag for this endpoint (for use in the control context). Use the
838 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
839 * bit 1, etc.
841 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
843 return 1 << (ep_index + 1);
846 /* Compute the last valid endpoint context index. Basically, this is the
847 * endpoint index plus one. For slot contexts with more than valid endpoint,
848 * we find the most significant bit set in the added contexts flags.
849 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
850 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
852 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
854 return fls(added_ctxs) - 1;
857 /* Returns 1 if the arguments are OK;
858 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
860 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
861 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
862 const char *func) {
863 struct xhci_hcd *xhci;
864 struct xhci_virt_device *virt_dev;
866 if (!hcd || (check_ep && !ep) || !udev) {
867 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
868 func);
869 return -EINVAL;
871 if (!udev->parent) {
872 printk(KERN_DEBUG "xHCI %s called for root hub\n",
873 func);
874 return 0;
877 if (check_virt_dev) {
878 xhci = hcd_to_xhci(hcd);
879 if (!udev->slot_id || !xhci->devs
880 || !xhci->devs[udev->slot_id]) {
881 printk(KERN_DEBUG "xHCI %s called with unaddressed "
882 "device\n", func);
883 return -EINVAL;
886 virt_dev = xhci->devs[udev->slot_id];
887 if (virt_dev->udev != udev) {
888 printk(KERN_DEBUG "xHCI %s called with udev and "
889 "virt_dev does not match\n", func);
890 return -EINVAL;
894 return 1;
897 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
898 struct usb_device *udev, struct xhci_command *command,
899 bool ctx_change, bool must_succeed);
902 * Full speed devices may have a max packet size greater than 8 bytes, but the
903 * USB core doesn't know that until it reads the first 8 bytes of the
904 * descriptor. If the usb_device's max packet size changes after that point,
905 * we need to issue an evaluate context command and wait on it.
907 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
908 unsigned int ep_index, struct urb *urb)
910 struct xhci_container_ctx *in_ctx;
911 struct xhci_container_ctx *out_ctx;
912 struct xhci_input_control_ctx *ctrl_ctx;
913 struct xhci_ep_ctx *ep_ctx;
914 int max_packet_size;
915 int hw_max_packet_size;
916 int ret = 0;
918 out_ctx = xhci->devs[slot_id]->out_ctx;
919 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
920 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
921 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
922 if (hw_max_packet_size != max_packet_size) {
923 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
924 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
925 max_packet_size);
926 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
927 hw_max_packet_size);
928 xhci_dbg(xhci, "Issuing evaluate context command.\n");
930 /* Set up the modified control endpoint 0 */
931 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
932 xhci->devs[slot_id]->out_ctx, ep_index);
933 in_ctx = xhci->devs[slot_id]->in_ctx;
934 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
935 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
936 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
938 /* Set up the input context flags for the command */
939 /* FIXME: This won't work if a non-default control endpoint
940 * changes max packet sizes.
942 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
943 ctrl_ctx->add_flags = EP0_FLAG;
944 ctrl_ctx->drop_flags = 0;
946 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
947 xhci_dbg_ctx(xhci, in_ctx, ep_index);
948 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
949 xhci_dbg_ctx(xhci, out_ctx, ep_index);
951 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
952 true, false);
954 /* Clean up the input context for later use by bandwidth
955 * functions.
957 ctrl_ctx->add_flags = SLOT_FLAG;
959 return ret;
963 * non-error returns are a promise to giveback() the urb later
964 * we drop ownership so next owner (or urb unlink) can get it
966 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
968 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
969 unsigned long flags;
970 int ret = 0;
971 unsigned int slot_id, ep_index;
972 struct urb_priv *urb_priv;
973 int size, i;
975 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
976 true, true, __func__) <= 0)
977 return -EINVAL;
979 slot_id = urb->dev->slot_id;
980 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
982 if (!HCD_HW_ACCESSIBLE(hcd)) {
983 if (!in_interrupt())
984 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
985 ret = -ESHUTDOWN;
986 goto exit;
989 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
990 size = urb->number_of_packets;
991 else
992 size = 1;
994 urb_priv = kzalloc(sizeof(struct urb_priv) +
995 size * sizeof(struct xhci_td *), mem_flags);
996 if (!urb_priv)
997 return -ENOMEM;
999 for (i = 0; i < size; i++) {
1000 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1001 if (!urb_priv->td[i]) {
1002 urb_priv->length = i;
1003 xhci_urb_free_priv(xhci, urb_priv);
1004 return -ENOMEM;
1008 urb_priv->length = size;
1009 urb_priv->td_cnt = 0;
1010 urb->hcpriv = urb_priv;
1012 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1013 /* Check to see if the max packet size for the default control
1014 * endpoint changed during FS device enumeration
1016 if (urb->dev->speed == USB_SPEED_FULL) {
1017 ret = xhci_check_maxpacket(xhci, slot_id,
1018 ep_index, urb);
1019 if (ret < 0)
1020 return ret;
1023 /* We have a spinlock and interrupts disabled, so we must pass
1024 * atomic context to this function, which may allocate memory.
1026 spin_lock_irqsave(&xhci->lock, flags);
1027 if (xhci->xhc_state & XHCI_STATE_DYING)
1028 goto dying;
1029 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1030 slot_id, ep_index);
1031 spin_unlock_irqrestore(&xhci->lock, flags);
1032 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1033 spin_lock_irqsave(&xhci->lock, flags);
1034 if (xhci->xhc_state & XHCI_STATE_DYING)
1035 goto dying;
1036 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1037 EP_GETTING_STREAMS) {
1038 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1039 "is transitioning to using streams.\n");
1040 ret = -EINVAL;
1041 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1042 EP_GETTING_NO_STREAMS) {
1043 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1044 "is transitioning to "
1045 "not having streams.\n");
1046 ret = -EINVAL;
1047 } else {
1048 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1049 slot_id, ep_index);
1051 spin_unlock_irqrestore(&xhci->lock, flags);
1052 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1053 spin_lock_irqsave(&xhci->lock, flags);
1054 if (xhci->xhc_state & XHCI_STATE_DYING)
1055 goto dying;
1056 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1057 slot_id, ep_index);
1058 spin_unlock_irqrestore(&xhci->lock, flags);
1059 } else {
1060 spin_lock_irqsave(&xhci->lock, flags);
1061 if (xhci->xhc_state & XHCI_STATE_DYING)
1062 goto dying;
1063 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1064 slot_id, ep_index);
1065 spin_unlock_irqrestore(&xhci->lock, flags);
1067 exit:
1068 return ret;
1069 dying:
1070 xhci_urb_free_priv(xhci, urb_priv);
1071 urb->hcpriv = NULL;
1072 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1073 "non-responsive xHCI host.\n",
1074 urb->ep->desc.bEndpointAddress, urb);
1075 spin_unlock_irqrestore(&xhci->lock, flags);
1076 return -ESHUTDOWN;
1079 /* Get the right ring for the given URB.
1080 * If the endpoint supports streams, boundary check the URB's stream ID.
1081 * If the endpoint doesn't support streams, return the singular endpoint ring.
1083 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1084 struct urb *urb)
1086 unsigned int slot_id;
1087 unsigned int ep_index;
1088 unsigned int stream_id;
1089 struct xhci_virt_ep *ep;
1091 slot_id = urb->dev->slot_id;
1092 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1093 stream_id = urb->stream_id;
1094 ep = &xhci->devs[slot_id]->eps[ep_index];
1095 /* Common case: no streams */
1096 if (!(ep->ep_state & EP_HAS_STREAMS))
1097 return ep->ring;
1099 if (stream_id == 0) {
1100 xhci_warn(xhci,
1101 "WARN: Slot ID %u, ep index %u has streams, "
1102 "but URB has no stream ID.\n",
1103 slot_id, ep_index);
1104 return NULL;
1107 if (stream_id < ep->stream_info->num_streams)
1108 return ep->stream_info->stream_rings[stream_id];
1110 xhci_warn(xhci,
1111 "WARN: Slot ID %u, ep index %u has "
1112 "stream IDs 1 to %u allocated, "
1113 "but stream ID %u is requested.\n",
1114 slot_id, ep_index,
1115 ep->stream_info->num_streams - 1,
1116 stream_id);
1117 return NULL;
1121 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1122 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1123 * should pick up where it left off in the TD, unless a Set Transfer Ring
1124 * Dequeue Pointer is issued.
1126 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1127 * the ring. Since the ring is a contiguous structure, they can't be physically
1128 * removed. Instead, there are two options:
1130 * 1) If the HC is in the middle of processing the URB to be canceled, we
1131 * simply move the ring's dequeue pointer past those TRBs using the Set
1132 * Transfer Ring Dequeue Pointer command. This will be the common case,
1133 * when drivers timeout on the last submitted URB and attempt to cancel.
1135 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1136 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1137 * HC will need to invalidate the any TRBs it has cached after the stop
1138 * endpoint command, as noted in the xHCI 0.95 errata.
1140 * 3) The TD may have completed by the time the Stop Endpoint Command
1141 * completes, so software needs to handle that case too.
1143 * This function should protect against the TD enqueueing code ringing the
1144 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1145 * It also needs to account for multiple cancellations on happening at the same
1146 * time for the same endpoint.
1148 * Note that this function can be called in any context, or so says
1149 * usb_hcd_unlink_urb()
1151 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1153 unsigned long flags;
1154 int ret, i;
1155 u32 temp;
1156 struct xhci_hcd *xhci;
1157 struct urb_priv *urb_priv;
1158 struct xhci_td *td;
1159 unsigned int ep_index;
1160 struct xhci_ring *ep_ring;
1161 struct xhci_virt_ep *ep;
1163 xhci = hcd_to_xhci(hcd);
1164 spin_lock_irqsave(&xhci->lock, flags);
1165 /* Make sure the URB hasn't completed or been unlinked already */
1166 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1167 if (ret || !urb->hcpriv)
1168 goto done;
1169 temp = xhci_readl(xhci, &xhci->op_regs->status);
1170 if (temp == 0xffffffff) {
1171 xhci_dbg(xhci, "HW died, freeing TD.\n");
1172 urb_priv = urb->hcpriv;
1174 usb_hcd_unlink_urb_from_ep(hcd, urb);
1175 spin_unlock_irqrestore(&xhci->lock, flags);
1176 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
1177 xhci_urb_free_priv(xhci, urb_priv);
1178 return ret;
1180 if (xhci->xhc_state & XHCI_STATE_DYING) {
1181 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1182 "non-responsive xHCI host.\n",
1183 urb->ep->desc.bEndpointAddress, urb);
1184 /* Let the stop endpoint command watchdog timer (which set this
1185 * state) finish cleaning up the endpoint TD lists. We must
1186 * have caught it in the middle of dropping a lock and giving
1187 * back an URB.
1189 goto done;
1192 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1193 xhci_dbg(xhci, "Event ring:\n");
1194 xhci_debug_ring(xhci, xhci->event_ring);
1195 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1196 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1197 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1198 if (!ep_ring) {
1199 ret = -EINVAL;
1200 goto done;
1203 xhci_dbg(xhci, "Endpoint ring:\n");
1204 xhci_debug_ring(xhci, ep_ring);
1206 urb_priv = urb->hcpriv;
1208 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1209 td = urb_priv->td[i];
1210 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1213 /* Queue a stop endpoint command, but only if this is
1214 * the first cancellation to be handled.
1216 if (!(ep->ep_state & EP_HALT_PENDING)) {
1217 ep->ep_state |= EP_HALT_PENDING;
1218 ep->stop_cmds_pending++;
1219 ep->stop_cmd_timer.expires = jiffies +
1220 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1221 add_timer(&ep->stop_cmd_timer);
1222 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1223 xhci_ring_cmd_db(xhci);
1225 done:
1226 spin_unlock_irqrestore(&xhci->lock, flags);
1227 return ret;
1230 /* Drop an endpoint from a new bandwidth configuration for this device.
1231 * Only one call to this function is allowed per endpoint before
1232 * check_bandwidth() or reset_bandwidth() must be called.
1233 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1234 * add the endpoint to the schedule with possibly new parameters denoted by a
1235 * different endpoint descriptor in usb_host_endpoint.
1236 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1237 * not allowed.
1239 * The USB core will not allow URBs to be queued to an endpoint that is being
1240 * disabled, so there's no need for mutual exclusion to protect
1241 * the xhci->devs[slot_id] structure.
1243 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1244 struct usb_host_endpoint *ep)
1246 struct xhci_hcd *xhci;
1247 struct xhci_container_ctx *in_ctx, *out_ctx;
1248 struct xhci_input_control_ctx *ctrl_ctx;
1249 struct xhci_slot_ctx *slot_ctx;
1250 unsigned int last_ctx;
1251 unsigned int ep_index;
1252 struct xhci_ep_ctx *ep_ctx;
1253 u32 drop_flag;
1254 u32 new_add_flags, new_drop_flags, new_slot_info;
1255 int ret;
1257 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1258 if (ret <= 0)
1259 return ret;
1260 xhci = hcd_to_xhci(hcd);
1261 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1263 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1264 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1265 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1266 __func__, drop_flag);
1267 return 0;
1270 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1271 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1272 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1273 ep_index = xhci_get_endpoint_index(&ep->desc);
1274 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1275 /* If the HC already knows the endpoint is disabled,
1276 * or the HCD has noted it is disabled, ignore this request
1278 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
1279 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
1280 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1281 __func__, ep);
1282 return 0;
1285 ctrl_ctx->drop_flags |= drop_flag;
1286 new_drop_flags = ctrl_ctx->drop_flags;
1288 ctrl_ctx->add_flags &= ~drop_flag;
1289 new_add_flags = ctrl_ctx->add_flags;
1291 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
1292 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1293 /* Update the last valid endpoint context, if we deleted the last one */
1294 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
1295 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1296 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1298 new_slot_info = slot_ctx->dev_info;
1300 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1302 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1303 (unsigned int) ep->desc.bEndpointAddress,
1304 udev->slot_id,
1305 (unsigned int) new_drop_flags,
1306 (unsigned int) new_add_flags,
1307 (unsigned int) new_slot_info);
1308 return 0;
1311 /* Add an endpoint to a new possible bandwidth configuration for this device.
1312 * Only one call to this function is allowed per endpoint before
1313 * check_bandwidth() or reset_bandwidth() must be called.
1314 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1315 * add the endpoint to the schedule with possibly new parameters denoted by a
1316 * different endpoint descriptor in usb_host_endpoint.
1317 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1318 * not allowed.
1320 * The USB core will not allow URBs to be queued to an endpoint until the
1321 * configuration or alt setting is installed in the device, so there's no need
1322 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1324 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1325 struct usb_host_endpoint *ep)
1327 struct xhci_hcd *xhci;
1328 struct xhci_container_ctx *in_ctx, *out_ctx;
1329 unsigned int ep_index;
1330 struct xhci_ep_ctx *ep_ctx;
1331 struct xhci_slot_ctx *slot_ctx;
1332 struct xhci_input_control_ctx *ctrl_ctx;
1333 u32 added_ctxs;
1334 unsigned int last_ctx;
1335 u32 new_add_flags, new_drop_flags, new_slot_info;
1336 int ret = 0;
1338 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1339 if (ret <= 0) {
1340 /* So we won't queue a reset ep command for a root hub */
1341 ep->hcpriv = NULL;
1342 return ret;
1344 xhci = hcd_to_xhci(hcd);
1346 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1347 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1348 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1349 /* FIXME when we have to issue an evaluate endpoint command to
1350 * deal with ep0 max packet size changing once we get the
1351 * descriptors
1353 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1354 __func__, added_ctxs);
1355 return 0;
1358 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1359 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1360 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1361 ep_index = xhci_get_endpoint_index(&ep->desc);
1362 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1363 /* If the HCD has already noted the endpoint is enabled,
1364 * ignore this request.
1366 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
1367 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1368 __func__, ep);
1369 return 0;
1373 * Configuration and alternate setting changes must be done in
1374 * process context, not interrupt context (or so documenation
1375 * for usb_set_interface() and usb_set_configuration() claim).
1377 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1378 udev, ep, GFP_NOIO) < 0) {
1379 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1380 __func__, ep->desc.bEndpointAddress);
1381 return -ENOMEM;
1384 ctrl_ctx->add_flags |= added_ctxs;
1385 new_add_flags = ctrl_ctx->add_flags;
1387 /* If xhci_endpoint_disable() was called for this endpoint, but the
1388 * xHC hasn't been notified yet through the check_bandwidth() call,
1389 * this re-adds a new state for the endpoint from the new endpoint
1390 * descriptors. We must drop and re-add this endpoint, so we leave the
1391 * drop flags alone.
1393 new_drop_flags = ctrl_ctx->drop_flags;
1395 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1396 /* Update the last valid endpoint context, if we just added one past */
1397 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1398 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1399 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1401 new_slot_info = slot_ctx->dev_info;
1403 /* Store the usb_device pointer for later use */
1404 ep->hcpriv = udev;
1406 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1407 (unsigned int) ep->desc.bEndpointAddress,
1408 udev->slot_id,
1409 (unsigned int) new_drop_flags,
1410 (unsigned int) new_add_flags,
1411 (unsigned int) new_slot_info);
1412 return 0;
1415 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1417 struct xhci_input_control_ctx *ctrl_ctx;
1418 struct xhci_ep_ctx *ep_ctx;
1419 struct xhci_slot_ctx *slot_ctx;
1420 int i;
1422 /* When a device's add flag and drop flag are zero, any subsequent
1423 * configure endpoint command will leave that endpoint's state
1424 * untouched. Make sure we don't leave any old state in the input
1425 * endpoint contexts.
1427 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1428 ctrl_ctx->drop_flags = 0;
1429 ctrl_ctx->add_flags = 0;
1430 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1431 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1432 /* Endpoint 0 is always valid */
1433 slot_ctx->dev_info |= LAST_CTX(1);
1434 for (i = 1; i < 31; ++i) {
1435 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1436 ep_ctx->ep_info = 0;
1437 ep_ctx->ep_info2 = 0;
1438 ep_ctx->deq = 0;
1439 ep_ctx->tx_info = 0;
1443 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1444 struct usb_device *udev, int *cmd_status)
1446 int ret;
1448 switch (*cmd_status) {
1449 case COMP_ENOMEM:
1450 dev_warn(&udev->dev, "Not enough host controller resources "
1451 "for new device state.\n");
1452 ret = -ENOMEM;
1453 /* FIXME: can we allocate more resources for the HC? */
1454 break;
1455 case COMP_BW_ERR:
1456 dev_warn(&udev->dev, "Not enough bandwidth "
1457 "for new device state.\n");
1458 ret = -ENOSPC;
1459 /* FIXME: can we go back to the old state? */
1460 break;
1461 case COMP_TRB_ERR:
1462 /* the HCD set up something wrong */
1463 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1464 "add flag = 1, "
1465 "and endpoint is not disabled.\n");
1466 ret = -EINVAL;
1467 break;
1468 case COMP_SUCCESS:
1469 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1470 ret = 0;
1471 break;
1472 default:
1473 xhci_err(xhci, "ERROR: unexpected command completion "
1474 "code 0x%x.\n", *cmd_status);
1475 ret = -EINVAL;
1476 break;
1478 return ret;
1481 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1482 struct usb_device *udev, int *cmd_status)
1484 int ret;
1485 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1487 switch (*cmd_status) {
1488 case COMP_EINVAL:
1489 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1490 "context command.\n");
1491 ret = -EINVAL;
1492 break;
1493 case COMP_EBADSLT:
1494 dev_warn(&udev->dev, "WARN: slot not enabled for"
1495 "evaluate context command.\n");
1496 case COMP_CTX_STATE:
1497 dev_warn(&udev->dev, "WARN: invalid context state for "
1498 "evaluate context command.\n");
1499 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1500 ret = -EINVAL;
1501 break;
1502 case COMP_SUCCESS:
1503 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1504 ret = 0;
1505 break;
1506 default:
1507 xhci_err(xhci, "ERROR: unexpected command completion "
1508 "code 0x%x.\n", *cmd_status);
1509 ret = -EINVAL;
1510 break;
1512 return ret;
1515 /* Issue a configure endpoint command or evaluate context command
1516 * and wait for it to finish.
1518 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1519 struct usb_device *udev,
1520 struct xhci_command *command,
1521 bool ctx_change, bool must_succeed)
1523 int ret;
1524 int timeleft;
1525 unsigned long flags;
1526 struct xhci_container_ctx *in_ctx;
1527 struct completion *cmd_completion;
1528 int *cmd_status;
1529 struct xhci_virt_device *virt_dev;
1531 spin_lock_irqsave(&xhci->lock, flags);
1532 virt_dev = xhci->devs[udev->slot_id];
1533 if (command) {
1534 in_ctx = command->in_ctx;
1535 cmd_completion = command->completion;
1536 cmd_status = &command->status;
1537 command->command_trb = xhci->cmd_ring->enqueue;
1539 /* Enqueue pointer can be left pointing to the link TRB,
1540 * we must handle that
1542 if ((command->command_trb->link.control & TRB_TYPE_BITMASK)
1543 == TRB_TYPE(TRB_LINK))
1544 command->command_trb =
1545 xhci->cmd_ring->enq_seg->next->trbs;
1547 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1548 } else {
1549 in_ctx = virt_dev->in_ctx;
1550 cmd_completion = &virt_dev->cmd_completion;
1551 cmd_status = &virt_dev->cmd_status;
1553 init_completion(cmd_completion);
1555 if (!ctx_change)
1556 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1557 udev->slot_id, must_succeed);
1558 else
1559 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1560 udev->slot_id);
1561 if (ret < 0) {
1562 if (command)
1563 list_del(&command->cmd_list);
1564 spin_unlock_irqrestore(&xhci->lock, flags);
1565 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1566 return -ENOMEM;
1568 xhci_ring_cmd_db(xhci);
1569 spin_unlock_irqrestore(&xhci->lock, flags);
1571 /* Wait for the configure endpoint command to complete */
1572 timeleft = wait_for_completion_interruptible_timeout(
1573 cmd_completion,
1574 USB_CTRL_SET_TIMEOUT);
1575 if (timeleft <= 0) {
1576 xhci_warn(xhci, "%s while waiting for %s command\n",
1577 timeleft == 0 ? "Timeout" : "Signal",
1578 ctx_change == 0 ?
1579 "configure endpoint" :
1580 "evaluate context");
1581 /* FIXME cancel the configure endpoint command */
1582 return -ETIME;
1585 if (!ctx_change)
1586 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1587 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1590 /* Called after one or more calls to xhci_add_endpoint() or
1591 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1592 * to call xhci_reset_bandwidth().
1594 * Since we are in the middle of changing either configuration or
1595 * installing a new alt setting, the USB core won't allow URBs to be
1596 * enqueued for any endpoint on the old config or interface. Nothing
1597 * else should be touching the xhci->devs[slot_id] structure, so we
1598 * don't need to take the xhci->lock for manipulating that.
1600 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1602 int i;
1603 int ret = 0;
1604 struct xhci_hcd *xhci;
1605 struct xhci_virt_device *virt_dev;
1606 struct xhci_input_control_ctx *ctrl_ctx;
1607 struct xhci_slot_ctx *slot_ctx;
1609 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1610 if (ret <= 0)
1611 return ret;
1612 xhci = hcd_to_xhci(hcd);
1614 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1615 virt_dev = xhci->devs[udev->slot_id];
1617 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1618 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1619 ctrl_ctx->add_flags |= SLOT_FLAG;
1620 ctrl_ctx->add_flags &= ~EP0_FLAG;
1621 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1622 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1623 xhci_dbg(xhci, "New Input Control Context:\n");
1624 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1625 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1626 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1628 ret = xhci_configure_endpoint(xhci, udev, NULL,
1629 false, false);
1630 if (ret) {
1631 /* Callee should call reset_bandwidth() */
1632 return ret;
1635 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1636 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1637 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1639 xhci_zero_in_ctx(xhci, virt_dev);
1640 /* Install new rings and free or cache any old rings */
1641 for (i = 1; i < 31; ++i) {
1642 if (!virt_dev->eps[i].new_ring)
1643 continue;
1644 /* Only cache or free the old ring if it exists.
1645 * It may not if this is the first add of an endpoint.
1647 if (virt_dev->eps[i].ring) {
1648 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1650 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1651 virt_dev->eps[i].new_ring = NULL;
1654 return ret;
1657 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1659 struct xhci_hcd *xhci;
1660 struct xhci_virt_device *virt_dev;
1661 int i, ret;
1663 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1664 if (ret <= 0)
1665 return;
1666 xhci = hcd_to_xhci(hcd);
1668 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669 virt_dev = xhci->devs[udev->slot_id];
1670 /* Free any rings allocated for added endpoints */
1671 for (i = 0; i < 31; ++i) {
1672 if (virt_dev->eps[i].new_ring) {
1673 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1674 virt_dev->eps[i].new_ring = NULL;
1677 xhci_zero_in_ctx(xhci, virt_dev);
1680 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1681 struct xhci_container_ctx *in_ctx,
1682 struct xhci_container_ctx *out_ctx,
1683 u32 add_flags, u32 drop_flags)
1685 struct xhci_input_control_ctx *ctrl_ctx;
1686 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1687 ctrl_ctx->add_flags = add_flags;
1688 ctrl_ctx->drop_flags = drop_flags;
1689 xhci_slot_copy(xhci, in_ctx, out_ctx);
1690 ctrl_ctx->add_flags |= SLOT_FLAG;
1692 xhci_dbg(xhci, "Input Context:\n");
1693 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1696 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1697 unsigned int slot_id, unsigned int ep_index,
1698 struct xhci_dequeue_state *deq_state)
1700 struct xhci_container_ctx *in_ctx;
1701 struct xhci_ep_ctx *ep_ctx;
1702 u32 added_ctxs;
1703 dma_addr_t addr;
1705 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1706 xhci->devs[slot_id]->out_ctx, ep_index);
1707 in_ctx = xhci->devs[slot_id]->in_ctx;
1708 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1709 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1710 deq_state->new_deq_ptr);
1711 if (addr == 0) {
1712 xhci_warn(xhci, "WARN Cannot submit config ep after "
1713 "reset ep command\n");
1714 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1715 deq_state->new_deq_seg,
1716 deq_state->new_deq_ptr);
1717 return;
1719 ep_ctx->deq = addr | deq_state->new_cycle_state;
1721 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1722 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1723 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1726 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1727 struct usb_device *udev, unsigned int ep_index)
1729 struct xhci_dequeue_state deq_state;
1730 struct xhci_virt_ep *ep;
1732 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1733 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1734 /* We need to move the HW's dequeue pointer past this TD,
1735 * or it will attempt to resend it on the next doorbell ring.
1737 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1738 ep_index, ep->stopped_stream, ep->stopped_td,
1739 &deq_state);
1741 /* HW with the reset endpoint quirk will use the saved dequeue state to
1742 * issue a configure endpoint command later.
1744 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1745 xhci_dbg(xhci, "Queueing new dequeue state\n");
1746 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1747 ep_index, ep->stopped_stream, &deq_state);
1748 } else {
1749 /* Better hope no one uses the input context between now and the
1750 * reset endpoint completion!
1751 * XXX: No idea how this hardware will react when stream rings
1752 * are enabled.
1754 xhci_dbg(xhci, "Setting up input context for "
1755 "configure endpoint command\n");
1756 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1757 ep_index, &deq_state);
1761 /* Deal with stalled endpoints. The core should have sent the control message
1762 * to clear the halt condition. However, we need to make the xHCI hardware
1763 * reset its sequence number, since a device will expect a sequence number of
1764 * zero after the halt condition is cleared.
1765 * Context: in_interrupt
1767 void xhci_endpoint_reset(struct usb_hcd *hcd,
1768 struct usb_host_endpoint *ep)
1770 struct xhci_hcd *xhci;
1771 struct usb_device *udev;
1772 unsigned int ep_index;
1773 unsigned long flags;
1774 int ret;
1775 struct xhci_virt_ep *virt_ep;
1777 xhci = hcd_to_xhci(hcd);
1778 udev = (struct usb_device *) ep->hcpriv;
1779 /* Called with a root hub endpoint (or an endpoint that wasn't added
1780 * with xhci_add_endpoint()
1782 if (!ep->hcpriv)
1783 return;
1784 ep_index = xhci_get_endpoint_index(&ep->desc);
1785 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1786 if (!virt_ep->stopped_td) {
1787 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1788 ep->desc.bEndpointAddress);
1789 return;
1791 if (usb_endpoint_xfer_control(&ep->desc)) {
1792 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1793 return;
1796 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1797 spin_lock_irqsave(&xhci->lock, flags);
1798 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1800 * Can't change the ring dequeue pointer until it's transitioned to the
1801 * stopped state, which is only upon a successful reset endpoint
1802 * command. Better hope that last command worked!
1804 if (!ret) {
1805 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1806 kfree(virt_ep->stopped_td);
1807 xhci_ring_cmd_db(xhci);
1809 virt_ep->stopped_td = NULL;
1810 virt_ep->stopped_trb = NULL;
1811 virt_ep->stopped_stream = 0;
1812 spin_unlock_irqrestore(&xhci->lock, flags);
1814 if (ret)
1815 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1818 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1819 struct usb_device *udev, struct usb_host_endpoint *ep,
1820 unsigned int slot_id)
1822 int ret;
1823 unsigned int ep_index;
1824 unsigned int ep_state;
1826 if (!ep)
1827 return -EINVAL;
1828 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1829 if (ret <= 0)
1830 return -EINVAL;
1831 if (ep->ss_ep_comp.bmAttributes == 0) {
1832 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1833 " descriptor for ep 0x%x does not support streams\n",
1834 ep->desc.bEndpointAddress);
1835 return -EINVAL;
1838 ep_index = xhci_get_endpoint_index(&ep->desc);
1839 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1840 if (ep_state & EP_HAS_STREAMS ||
1841 ep_state & EP_GETTING_STREAMS) {
1842 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1843 "already has streams set up.\n",
1844 ep->desc.bEndpointAddress);
1845 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1846 "dynamic stream context array reallocation.\n");
1847 return -EINVAL;
1849 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1850 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1851 "endpoint 0x%x; URBs are pending.\n",
1852 ep->desc.bEndpointAddress);
1853 return -EINVAL;
1855 return 0;
1858 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1859 unsigned int *num_streams, unsigned int *num_stream_ctxs)
1861 unsigned int max_streams;
1863 /* The stream context array size must be a power of two */
1864 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
1866 * Find out how many primary stream array entries the host controller
1867 * supports. Later we may use secondary stream arrays (similar to 2nd
1868 * level page entries), but that's an optional feature for xHCI host
1869 * controllers. xHCs must support at least 4 stream IDs.
1871 max_streams = HCC_MAX_PSA(xhci->hcc_params);
1872 if (*num_stream_ctxs > max_streams) {
1873 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1874 max_streams);
1875 *num_stream_ctxs = max_streams;
1876 *num_streams = max_streams;
1880 /* Returns an error code if one of the endpoint already has streams.
1881 * This does not change any data structures, it only checks and gathers
1882 * information.
1884 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1885 struct usb_device *udev,
1886 struct usb_host_endpoint **eps, unsigned int num_eps,
1887 unsigned int *num_streams, u32 *changed_ep_bitmask)
1889 unsigned int max_streams;
1890 unsigned int endpoint_flag;
1891 int i;
1892 int ret;
1894 for (i = 0; i < num_eps; i++) {
1895 ret = xhci_check_streams_endpoint(xhci, udev,
1896 eps[i], udev->slot_id);
1897 if (ret < 0)
1898 return ret;
1900 max_streams = USB_SS_MAX_STREAMS(
1901 eps[i]->ss_ep_comp.bmAttributes);
1902 if (max_streams < (*num_streams - 1)) {
1903 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1904 eps[i]->desc.bEndpointAddress,
1905 max_streams);
1906 *num_streams = max_streams+1;
1909 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1910 if (*changed_ep_bitmask & endpoint_flag)
1911 return -EINVAL;
1912 *changed_ep_bitmask |= endpoint_flag;
1914 return 0;
1917 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1918 struct usb_device *udev,
1919 struct usb_host_endpoint **eps, unsigned int num_eps)
1921 u32 changed_ep_bitmask = 0;
1922 unsigned int slot_id;
1923 unsigned int ep_index;
1924 unsigned int ep_state;
1925 int i;
1927 slot_id = udev->slot_id;
1928 if (!xhci->devs[slot_id])
1929 return 0;
1931 for (i = 0; i < num_eps; i++) {
1932 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
1933 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1934 /* Are streams already being freed for the endpoint? */
1935 if (ep_state & EP_GETTING_NO_STREAMS) {
1936 xhci_warn(xhci, "WARN Can't disable streams for "
1937 "endpoint 0x%x\n, "
1938 "streams are being disabled already.",
1939 eps[i]->desc.bEndpointAddress);
1940 return 0;
1942 /* Are there actually any streams to free? */
1943 if (!(ep_state & EP_HAS_STREAMS) &&
1944 !(ep_state & EP_GETTING_STREAMS)) {
1945 xhci_warn(xhci, "WARN Can't disable streams for "
1946 "endpoint 0x%x\n, "
1947 "streams are already disabled!",
1948 eps[i]->desc.bEndpointAddress);
1949 xhci_warn(xhci, "WARN xhci_free_streams() called "
1950 "with non-streams endpoint\n");
1951 return 0;
1953 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
1955 return changed_ep_bitmask;
1959 * The USB device drivers use this function (though the HCD interface in USB
1960 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
1961 * coordinate mass storage command queueing across multiple endpoints (basically
1962 * a stream ID == a task ID).
1964 * Setting up streams involves allocating the same size stream context array
1965 * for each endpoint and issuing a configure endpoint command for all endpoints.
1967 * Don't allow the call to succeed if one endpoint only supports one stream
1968 * (which means it doesn't support streams at all).
1970 * Drivers may get less stream IDs than they asked for, if the host controller
1971 * hardware or endpoints claim they can't support the number of requested
1972 * stream IDs.
1974 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
1975 struct usb_host_endpoint **eps, unsigned int num_eps,
1976 unsigned int num_streams, gfp_t mem_flags)
1978 int i, ret;
1979 struct xhci_hcd *xhci;
1980 struct xhci_virt_device *vdev;
1981 struct xhci_command *config_cmd;
1982 unsigned int ep_index;
1983 unsigned int num_stream_ctxs;
1984 unsigned long flags;
1985 u32 changed_ep_bitmask = 0;
1987 if (!eps)
1988 return -EINVAL;
1990 /* Add one to the number of streams requested to account for
1991 * stream 0 that is reserved for xHCI usage.
1993 num_streams += 1;
1994 xhci = hcd_to_xhci(hcd);
1995 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
1996 num_streams);
1998 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1999 if (!config_cmd) {
2000 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2001 return -ENOMEM;
2004 /* Check to make sure all endpoints are not already configured for
2005 * streams. While we're at it, find the maximum number of streams that
2006 * all the endpoints will support and check for duplicate endpoints.
2008 spin_lock_irqsave(&xhci->lock, flags);
2009 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2010 num_eps, &num_streams, &changed_ep_bitmask);
2011 if (ret < 0) {
2012 xhci_free_command(xhci, config_cmd);
2013 spin_unlock_irqrestore(&xhci->lock, flags);
2014 return ret;
2016 if (num_streams <= 1) {
2017 xhci_warn(xhci, "WARN: endpoints can't handle "
2018 "more than one stream.\n");
2019 xhci_free_command(xhci, config_cmd);
2020 spin_unlock_irqrestore(&xhci->lock, flags);
2021 return -EINVAL;
2023 vdev = xhci->devs[udev->slot_id];
2024 /* Mark each endpoint as being in transistion, so
2025 * xhci_urb_enqueue() will reject all URBs.
2027 for (i = 0; i < num_eps; i++) {
2028 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2029 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2031 spin_unlock_irqrestore(&xhci->lock, flags);
2033 /* Setup internal data structures and allocate HW data structures for
2034 * streams (but don't install the HW structures in the input context
2035 * until we're sure all memory allocation succeeded).
2037 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2038 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2039 num_stream_ctxs, num_streams);
2041 for (i = 0; i < num_eps; i++) {
2042 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2043 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2044 num_stream_ctxs,
2045 num_streams, mem_flags);
2046 if (!vdev->eps[ep_index].stream_info)
2047 goto cleanup;
2048 /* Set maxPstreams in endpoint context and update deq ptr to
2049 * point to stream context array. FIXME
2053 /* Set up the input context for a configure endpoint command. */
2054 for (i = 0; i < num_eps; i++) {
2055 struct xhci_ep_ctx *ep_ctx;
2057 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2058 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2060 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2061 vdev->out_ctx, ep_index);
2062 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2063 vdev->eps[ep_index].stream_info);
2065 /* Tell the HW to drop its old copy of the endpoint context info
2066 * and add the updated copy from the input context.
2068 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2069 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2071 /* Issue and wait for the configure endpoint command */
2072 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2073 false, false);
2075 /* xHC rejected the configure endpoint command for some reason, so we
2076 * leave the old ring intact and free our internal streams data
2077 * structure.
2079 if (ret < 0)
2080 goto cleanup;
2082 spin_lock_irqsave(&xhci->lock, flags);
2083 for (i = 0; i < num_eps; i++) {
2084 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2085 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2086 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2087 udev->slot_id, ep_index);
2088 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2090 xhci_free_command(xhci, config_cmd);
2091 spin_unlock_irqrestore(&xhci->lock, flags);
2093 /* Subtract 1 for stream 0, which drivers can't use */
2094 return num_streams - 1;
2096 cleanup:
2097 /* If it didn't work, free the streams! */
2098 for (i = 0; i < num_eps; i++) {
2099 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2100 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2101 vdev->eps[ep_index].stream_info = NULL;
2102 /* FIXME Unset maxPstreams in endpoint context and
2103 * update deq ptr to point to normal string ring.
2105 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2106 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2107 xhci_endpoint_zero(xhci, vdev, eps[i]);
2109 xhci_free_command(xhci, config_cmd);
2110 return -ENOMEM;
2113 /* Transition the endpoint from using streams to being a "normal" endpoint
2114 * without streams.
2116 * Modify the endpoint context state, submit a configure endpoint command,
2117 * and free all endpoint rings for streams if that completes successfully.
2119 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2120 struct usb_host_endpoint **eps, unsigned int num_eps,
2121 gfp_t mem_flags)
2123 int i, ret;
2124 struct xhci_hcd *xhci;
2125 struct xhci_virt_device *vdev;
2126 struct xhci_command *command;
2127 unsigned int ep_index;
2128 unsigned long flags;
2129 u32 changed_ep_bitmask;
2131 xhci = hcd_to_xhci(hcd);
2132 vdev = xhci->devs[udev->slot_id];
2134 /* Set up a configure endpoint command to remove the streams rings */
2135 spin_lock_irqsave(&xhci->lock, flags);
2136 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2137 udev, eps, num_eps);
2138 if (changed_ep_bitmask == 0) {
2139 spin_unlock_irqrestore(&xhci->lock, flags);
2140 return -EINVAL;
2143 /* Use the xhci_command structure from the first endpoint. We may have
2144 * allocated too many, but the driver may call xhci_free_streams() for
2145 * each endpoint it grouped into one call to xhci_alloc_streams().
2147 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2148 command = vdev->eps[ep_index].stream_info->free_streams_command;
2149 for (i = 0; i < num_eps; i++) {
2150 struct xhci_ep_ctx *ep_ctx;
2152 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2153 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2154 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2155 EP_GETTING_NO_STREAMS;
2157 xhci_endpoint_copy(xhci, command->in_ctx,
2158 vdev->out_ctx, ep_index);
2159 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2160 &vdev->eps[ep_index]);
2162 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2163 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2164 spin_unlock_irqrestore(&xhci->lock, flags);
2166 /* Issue and wait for the configure endpoint command,
2167 * which must succeed.
2169 ret = xhci_configure_endpoint(xhci, udev, command,
2170 false, true);
2172 /* xHC rejected the configure endpoint command for some reason, so we
2173 * leave the streams rings intact.
2175 if (ret < 0)
2176 return ret;
2178 spin_lock_irqsave(&xhci->lock, flags);
2179 for (i = 0; i < num_eps; i++) {
2180 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2181 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2182 vdev->eps[ep_index].stream_info = NULL;
2183 /* FIXME Unset maxPstreams in endpoint context and
2184 * update deq ptr to point to normal string ring.
2186 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2187 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2189 spin_unlock_irqrestore(&xhci->lock, flags);
2191 return 0;
2195 * This submits a Reset Device Command, which will set the device state to 0,
2196 * set the device address to 0, and disable all the endpoints except the default
2197 * control endpoint. The USB core should come back and call
2198 * xhci_address_device(), and then re-set up the configuration. If this is
2199 * called because of a usb_reset_and_verify_device(), then the old alternate
2200 * settings will be re-installed through the normal bandwidth allocation
2201 * functions.
2203 * Wait for the Reset Device command to finish. Remove all structures
2204 * associated with the endpoints that were disabled. Clear the input device
2205 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2207 * If the virt_dev to be reset does not exist or does not match the udev,
2208 * it means the device is lost, possibly due to the xHC restore error and
2209 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2210 * re-allocate the device.
2212 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2214 int ret, i;
2215 unsigned long flags;
2216 struct xhci_hcd *xhci;
2217 unsigned int slot_id;
2218 struct xhci_virt_device *virt_dev;
2219 struct xhci_command *reset_device_cmd;
2220 int timeleft;
2221 int last_freed_endpoint;
2223 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2224 if (ret <= 0)
2225 return ret;
2226 xhci = hcd_to_xhci(hcd);
2227 slot_id = udev->slot_id;
2228 virt_dev = xhci->devs[slot_id];
2229 if (!virt_dev) {
2230 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2231 "not exist. Re-allocate the device\n", slot_id);
2232 ret = xhci_alloc_dev(hcd, udev);
2233 if (ret == 1)
2234 return 0;
2235 else
2236 return -EINVAL;
2239 if (virt_dev->udev != udev) {
2240 /* If the virt_dev and the udev does not match, this virt_dev
2241 * may belong to another udev.
2242 * Re-allocate the device.
2244 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2245 "not match the udev. Re-allocate the device\n",
2246 slot_id);
2247 ret = xhci_alloc_dev(hcd, udev);
2248 if (ret == 1)
2249 return 0;
2250 else
2251 return -EINVAL;
2254 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2255 /* Allocate the command structure that holds the struct completion.
2256 * Assume we're in process context, since the normal device reset
2257 * process has to wait for the device anyway. Storage devices are
2258 * reset as part of error handling, so use GFP_NOIO instead of
2259 * GFP_KERNEL.
2261 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2262 if (!reset_device_cmd) {
2263 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2264 return -ENOMEM;
2267 /* Attempt to submit the Reset Device command to the command ring */
2268 spin_lock_irqsave(&xhci->lock, flags);
2269 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2271 /* Enqueue pointer can be left pointing to the link TRB,
2272 * we must handle that
2274 if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK)
2275 == TRB_TYPE(TRB_LINK))
2276 reset_device_cmd->command_trb =
2277 xhci->cmd_ring->enq_seg->next->trbs;
2279 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2280 ret = xhci_queue_reset_device(xhci, slot_id);
2281 if (ret) {
2282 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2283 list_del(&reset_device_cmd->cmd_list);
2284 spin_unlock_irqrestore(&xhci->lock, flags);
2285 goto command_cleanup;
2287 xhci_ring_cmd_db(xhci);
2288 spin_unlock_irqrestore(&xhci->lock, flags);
2290 /* Wait for the Reset Device command to finish */
2291 timeleft = wait_for_completion_interruptible_timeout(
2292 reset_device_cmd->completion,
2293 USB_CTRL_SET_TIMEOUT);
2294 if (timeleft <= 0) {
2295 xhci_warn(xhci, "%s while waiting for reset device command\n",
2296 timeleft == 0 ? "Timeout" : "Signal");
2297 spin_lock_irqsave(&xhci->lock, flags);
2298 /* The timeout might have raced with the event ring handler, so
2299 * only delete from the list if the item isn't poisoned.
2301 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2302 list_del(&reset_device_cmd->cmd_list);
2303 spin_unlock_irqrestore(&xhci->lock, flags);
2304 ret = -ETIME;
2305 goto command_cleanup;
2308 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2309 * unless we tried to reset a slot ID that wasn't enabled,
2310 * or the device wasn't in the addressed or configured state.
2312 ret = reset_device_cmd->status;
2313 switch (ret) {
2314 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2315 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2316 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2317 slot_id,
2318 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2319 xhci_info(xhci, "Not freeing device rings.\n");
2320 /* Don't treat this as an error. May change my mind later. */
2321 ret = 0;
2322 goto command_cleanup;
2323 case COMP_SUCCESS:
2324 xhci_dbg(xhci, "Successful reset device command.\n");
2325 break;
2326 default:
2327 if (xhci_is_vendor_info_code(xhci, ret))
2328 break;
2329 xhci_warn(xhci, "Unknown completion code %u for "
2330 "reset device command.\n", ret);
2331 ret = -EINVAL;
2332 goto command_cleanup;
2335 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2336 last_freed_endpoint = 1;
2337 for (i = 1; i < 31; ++i) {
2338 if (!virt_dev->eps[i].ring)
2339 continue;
2340 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2341 last_freed_endpoint = i;
2343 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2344 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2345 ret = 0;
2347 command_cleanup:
2348 xhci_free_command(xhci, reset_device_cmd);
2349 return ret;
2353 * At this point, the struct usb_device is about to go away, the device has
2354 * disconnected, and all traffic has been stopped and the endpoints have been
2355 * disabled. Free any HC data structures associated with that device.
2357 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2359 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2360 struct xhci_virt_device *virt_dev;
2361 unsigned long flags;
2362 u32 state;
2363 int i, ret;
2365 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2366 if (ret <= 0)
2367 return;
2369 virt_dev = xhci->devs[udev->slot_id];
2371 /* Stop any wayward timer functions (which may grab the lock) */
2372 for (i = 0; i < 31; ++i) {
2373 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2374 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2377 spin_lock_irqsave(&xhci->lock, flags);
2378 /* Don't disable the slot if the host controller is dead. */
2379 state = xhci_readl(xhci, &xhci->op_regs->status);
2380 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2381 xhci_free_virt_device(xhci, udev->slot_id);
2382 spin_unlock_irqrestore(&xhci->lock, flags);
2383 return;
2386 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2387 spin_unlock_irqrestore(&xhci->lock, flags);
2388 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2389 return;
2391 xhci_ring_cmd_db(xhci);
2392 spin_unlock_irqrestore(&xhci->lock, flags);
2394 * Event command completion handler will free any data structures
2395 * associated with the slot. XXX Can free sleep?
2400 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2401 * timed out, or allocating memory failed. Returns 1 on success.
2403 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2406 unsigned long flags;
2407 int timeleft;
2408 int ret;
2410 spin_lock_irqsave(&xhci->lock, flags);
2411 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2412 if (ret) {
2413 spin_unlock_irqrestore(&xhci->lock, flags);
2414 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2415 return 0;
2417 xhci_ring_cmd_db(xhci);
2418 spin_unlock_irqrestore(&xhci->lock, flags);
2420 /* XXX: how much time for xHC slot assignment? */
2421 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2422 USB_CTRL_SET_TIMEOUT);
2423 if (timeleft <= 0) {
2424 xhci_warn(xhci, "%s while waiting for a slot\n",
2425 timeleft == 0 ? "Timeout" : "Signal");
2426 /* FIXME cancel the enable slot request */
2427 return 0;
2430 if (!xhci->slot_id) {
2431 xhci_err(xhci, "Error while assigning device slot ID\n");
2432 return 0;
2434 /* xhci_alloc_virt_device() does not touch rings; no need to lock.
2435 * Use GFP_NOIO, since this function can be called from
2436 * xhci_discover_or_reset_device(), which may be called as part of
2437 * mass storage driver error handling.
2439 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2440 /* Disable slot, if we can do it without mem alloc */
2441 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2442 spin_lock_irqsave(&xhci->lock, flags);
2443 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2444 xhci_ring_cmd_db(xhci);
2445 spin_unlock_irqrestore(&xhci->lock, flags);
2446 return 0;
2448 udev->slot_id = xhci->slot_id;
2449 /* Is this a LS or FS device under a HS hub? */
2450 /* Hub or peripherial? */
2451 return 1;
2455 * Issue an Address Device command (which will issue a SetAddress request to
2456 * the device).
2457 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2458 * we should only issue and wait on one address command at the same time.
2460 * We add one to the device address issued by the hardware because the USB core
2461 * uses address 1 for the root hubs (even though they're not really devices).
2463 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2465 unsigned long flags;
2466 int timeleft;
2467 struct xhci_virt_device *virt_dev;
2468 int ret = 0;
2469 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2470 struct xhci_slot_ctx *slot_ctx;
2471 struct xhci_input_control_ctx *ctrl_ctx;
2472 u64 temp_64;
2474 if (!udev->slot_id) {
2475 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2476 return -EINVAL;
2479 virt_dev = xhci->devs[udev->slot_id];
2481 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2483 * If this is the first Set Address since device plug-in or
2484 * virt_device realloaction after a resume with an xHCI power loss,
2485 * then set up the slot context.
2487 if (!slot_ctx->dev_info)
2488 xhci_setup_addressable_virt_dev(xhci, udev);
2489 /* Otherwise, update the control endpoint ring enqueue pointer. */
2490 else
2491 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2492 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2493 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2495 spin_lock_irqsave(&xhci->lock, flags);
2496 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2497 udev->slot_id);
2498 if (ret) {
2499 spin_unlock_irqrestore(&xhci->lock, flags);
2500 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2501 return ret;
2503 xhci_ring_cmd_db(xhci);
2504 spin_unlock_irqrestore(&xhci->lock, flags);
2506 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2507 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2508 USB_CTRL_SET_TIMEOUT);
2509 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2510 * the SetAddress() "recovery interval" required by USB and aborting the
2511 * command on a timeout.
2513 if (timeleft <= 0) {
2514 xhci_warn(xhci, "%s while waiting for a slot\n",
2515 timeleft == 0 ? "Timeout" : "Signal");
2516 /* FIXME cancel the address device command */
2517 return -ETIME;
2520 switch (virt_dev->cmd_status) {
2521 case COMP_CTX_STATE:
2522 case COMP_EBADSLT:
2523 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2524 udev->slot_id);
2525 ret = -EINVAL;
2526 break;
2527 case COMP_TX_ERR:
2528 dev_warn(&udev->dev, "Device not responding to set address.\n");
2529 ret = -EPROTO;
2530 break;
2531 case COMP_SUCCESS:
2532 xhci_dbg(xhci, "Successful Address Device command\n");
2533 break;
2534 default:
2535 xhci_err(xhci, "ERROR: unexpected command completion "
2536 "code 0x%x.\n", virt_dev->cmd_status);
2537 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2538 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2539 ret = -EINVAL;
2540 break;
2542 if (ret) {
2543 return ret;
2545 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2546 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2547 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2548 udev->slot_id,
2549 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2550 (unsigned long long)
2551 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
2552 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2553 (unsigned long long)virt_dev->out_ctx->dma);
2554 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2555 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2556 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2557 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2559 * USB core uses address 1 for the roothubs, so we add one to the
2560 * address given back to us by the HC.
2562 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2563 /* Use kernel assigned address for devices; store xHC assigned
2564 * address locally. */
2565 virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
2566 /* Zero the input context control for later use */
2567 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2568 ctrl_ctx->add_flags = 0;
2569 ctrl_ctx->drop_flags = 0;
2571 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2573 return 0;
2576 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2577 * internal data structures for the device.
2579 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2580 struct usb_tt *tt, gfp_t mem_flags)
2582 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2583 struct xhci_virt_device *vdev;
2584 struct xhci_command *config_cmd;
2585 struct xhci_input_control_ctx *ctrl_ctx;
2586 struct xhci_slot_ctx *slot_ctx;
2587 unsigned long flags;
2588 unsigned think_time;
2589 int ret;
2591 /* Ignore root hubs */
2592 if (!hdev->parent)
2593 return 0;
2595 vdev = xhci->devs[hdev->slot_id];
2596 if (!vdev) {
2597 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2598 return -EINVAL;
2600 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2601 if (!config_cmd) {
2602 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2603 return -ENOMEM;
2606 spin_lock_irqsave(&xhci->lock, flags);
2607 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2608 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2609 ctrl_ctx->add_flags |= SLOT_FLAG;
2610 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2611 slot_ctx->dev_info |= DEV_HUB;
2612 if (tt->multi)
2613 slot_ctx->dev_info |= DEV_MTT;
2614 if (xhci->hci_version > 0x95) {
2615 xhci_dbg(xhci, "xHCI version %x needs hub "
2616 "TT think time and number of ports\n",
2617 (unsigned int) xhci->hci_version);
2618 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
2619 /* Set TT think time - convert from ns to FS bit times.
2620 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2621 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2623 think_time = tt->think_time;
2624 if (think_time != 0)
2625 think_time = (think_time / 666) - 1;
2626 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
2627 } else {
2628 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2629 "TT think time or number of ports\n",
2630 (unsigned int) xhci->hci_version);
2632 slot_ctx->dev_state = 0;
2633 spin_unlock_irqrestore(&xhci->lock, flags);
2635 xhci_dbg(xhci, "Set up %s for hub device.\n",
2636 (xhci->hci_version > 0x95) ?
2637 "configure endpoint" : "evaluate context");
2638 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2639 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2641 /* Issue and wait for the configure endpoint or
2642 * evaluate context command.
2644 if (xhci->hci_version > 0x95)
2645 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2646 false, false);
2647 else
2648 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2649 true, false);
2651 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2652 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2654 xhci_free_command(xhci, config_cmd);
2655 return ret;
2658 int xhci_get_frame(struct usb_hcd *hcd)
2660 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2661 /* EHCI mods by the periodic size. Why? */
2662 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2665 MODULE_DESCRIPTION(DRIVER_DESC);
2666 MODULE_AUTHOR(DRIVER_AUTHOR);
2667 MODULE_LICENSE("GPL");
2669 static int __init xhci_hcd_init(void)
2671 #ifdef CONFIG_PCI
2672 int retval = 0;
2674 retval = xhci_register_pci();
2676 if (retval < 0) {
2677 printk(KERN_DEBUG "Problem registering PCI driver.");
2678 return retval;
2680 #endif
2682 * Check the compiler generated sizes of structures that must be laid
2683 * out in specific ways for hardware access.
2685 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2686 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2687 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2688 /* xhci_device_control has eight fields, and also
2689 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2691 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2692 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2693 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2694 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2695 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2696 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2697 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2698 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2699 return 0;
2701 module_init(xhci_hcd_init);
2703 static void __exit xhci_hcd_cleanup(void)
2705 #ifdef CONFIG_PCI
2706 xhci_unregister_pci();
2707 #endif
2709 module_exit(xhci_hcd_cleanup);