4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
61 * dentry->d_inode->i_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
78 int sysctl_vfs_cache_pressure __read_mostly
= 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
81 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
84 EXPORT_SYMBOL(rename_lock
);
86 static struct kmem_cache
*dentry_cache __read_mostly
;
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
99 static unsigned int d_hash_mask __read_mostly
;
100 static unsigned int d_hash_shift __read_mostly
;
102 struct dcache_hash_bucket
{
103 struct hlist_bl_head head
;
105 static struct dcache_hash_bucket
*dentry_hashtable __read_mostly
;
107 static inline struct dcache_hash_bucket
*d_hash(struct dentry
*parent
,
110 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
111 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 static inline void spin_lock_bucket(struct dcache_hash_bucket
*b
)
117 bit_spin_lock(0, (unsigned long *)&b
->head
.first
);
120 static inline void spin_unlock_bucket(struct dcache_hash_bucket
*b
)
122 __bit_spin_unlock(0, (unsigned long *)&b
->head
.first
);
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat
= {
130 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
133 static int get_nr_dentry(void)
137 for_each_possible_cpu(i
)
138 sum
+= per_cpu(nr_dentry
, i
);
139 return sum
< 0 ? 0 : sum
;
142 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
143 size_t *lenp
, loff_t
*ppos
)
145 dentry_stat
.nr_dentry
= get_nr_dentry();
146 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
150 static void __d_free(struct rcu_head
*head
)
152 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
154 WARN_ON(!list_empty(&dentry
->d_alias
));
155 if (dname_external(dentry
))
156 kfree(dentry
->d_name
.name
);
157 kmem_cache_free(dentry_cache
, dentry
);
163 static void d_free(struct dentry
*dentry
)
165 BUG_ON(dentry
->d_count
);
166 this_cpu_dec(nr_dentry
);
167 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
168 dentry
->d_op
->d_release(dentry
);
170 /* if dentry was never inserted into hash, immediate free is OK */
171 if (hlist_bl_unhashed(&dentry
->d_hash
))
172 __d_free(&dentry
->d_u
.d_rcu
);
174 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * @dentry: the target dentry
180 * After this call, in-progress rcu-walk path lookup will fail. This
181 * should be called after unhashing, and after changing d_inode (if
182 * the dentry has not already been unhashed).
184 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
186 assert_spin_locked(&dentry
->d_lock
);
187 /* Go through a barrier */
188 write_seqcount_barrier(&dentry
->d_seq
);
192 * Release the dentry's inode, using the filesystem
193 * d_iput() operation if defined. Dentry has no refcount
196 static void dentry_iput(struct dentry
* dentry
)
197 __releases(dentry
->d_lock
)
198 __releases(dentry
->d_inode
->i_lock
)
200 struct inode
*inode
= dentry
->d_inode
;
202 dentry
->d_inode
= NULL
;
203 list_del_init(&dentry
->d_alias
);
204 spin_unlock(&dentry
->d_lock
);
205 spin_unlock(&inode
->i_lock
);
207 fsnotify_inoderemove(inode
);
208 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
209 dentry
->d_op
->d_iput(dentry
, inode
);
213 spin_unlock(&dentry
->d_lock
);
218 * Release the dentry's inode, using the filesystem
219 * d_iput() operation if defined. dentry remains in-use.
221 static void dentry_unlink_inode(struct dentry
* dentry
)
222 __releases(dentry
->d_lock
)
223 __releases(dentry
->d_inode
->i_lock
)
225 struct inode
*inode
= dentry
->d_inode
;
226 dentry
->d_inode
= NULL
;
227 list_del_init(&dentry
->d_alias
);
228 dentry_rcuwalk_barrier(dentry
);
229 spin_unlock(&dentry
->d_lock
);
230 spin_unlock(&inode
->i_lock
);
232 fsnotify_inoderemove(inode
);
233 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
234 dentry
->d_op
->d_iput(dentry
, inode
);
240 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
242 static void dentry_lru_add(struct dentry
*dentry
)
244 if (list_empty(&dentry
->d_lru
)) {
245 spin_lock(&dcache_lru_lock
);
246 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
247 dentry
->d_sb
->s_nr_dentry_unused
++;
248 dentry_stat
.nr_unused
++;
249 spin_unlock(&dcache_lru_lock
);
253 static void __dentry_lru_del(struct dentry
*dentry
)
255 list_del_init(&dentry
->d_lru
);
256 dentry
->d_sb
->s_nr_dentry_unused
--;
257 dentry_stat
.nr_unused
--;
260 static void dentry_lru_del(struct dentry
*dentry
)
262 if (!list_empty(&dentry
->d_lru
)) {
263 spin_lock(&dcache_lru_lock
);
264 __dentry_lru_del(dentry
);
265 spin_unlock(&dcache_lru_lock
);
269 static void dentry_lru_move_tail(struct dentry
*dentry
)
271 spin_lock(&dcache_lru_lock
);
272 if (list_empty(&dentry
->d_lru
)) {
273 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
274 dentry
->d_sb
->s_nr_dentry_unused
++;
275 dentry_stat
.nr_unused
++;
277 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
279 spin_unlock(&dcache_lru_lock
);
283 * d_kill - kill dentry and return parent
284 * @dentry: dentry to kill
285 * @parent: parent dentry
287 * The dentry must already be unhashed and removed from the LRU.
289 * If this is the root of the dentry tree, return NULL.
291 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
294 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
295 __releases(dentry
->d_lock
)
296 __releases(parent
->d_lock
)
297 __releases(dentry
->d_inode
->i_lock
)
299 list_del(&dentry
->d_u
.d_child
);
301 * Inform try_to_ascend() that we are no longer attached to the
304 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
306 spin_unlock(&parent
->d_lock
);
309 * dentry_iput drops the locks, at which point nobody (except
310 * transient RCU lookups) can reach this dentry.
317 * d_drop - drop a dentry
318 * @dentry: dentry to drop
320 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
321 * be found through a VFS lookup any more. Note that this is different from
322 * deleting the dentry - d_delete will try to mark the dentry negative if
323 * possible, giving a successful _negative_ lookup, while d_drop will
324 * just make the cache lookup fail.
326 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
327 * reason (NFS timeouts or autofs deletes).
329 * __d_drop requires dentry->d_lock.
331 void __d_drop(struct dentry
*dentry
)
333 if (!(dentry
->d_flags
& DCACHE_UNHASHED
)) {
334 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
)) {
336 (unsigned long *)&dentry
->d_sb
->s_anon
.first
);
337 dentry
->d_flags
|= DCACHE_UNHASHED
;
338 hlist_bl_del_init(&dentry
->d_hash
);
340 (unsigned long *)&dentry
->d_sb
->s_anon
.first
);
342 struct dcache_hash_bucket
*b
;
343 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
346 * We may not actually need to put DCACHE_UNHASHED
347 * manipulations under the hash lock, but follow
348 * the principle of least surprise.
350 dentry
->d_flags
|= DCACHE_UNHASHED
;
351 hlist_bl_del_rcu(&dentry
->d_hash
);
352 spin_unlock_bucket(b
);
353 dentry_rcuwalk_barrier(dentry
);
357 EXPORT_SYMBOL(__d_drop
);
359 void d_drop(struct dentry
*dentry
)
361 spin_lock(&dentry
->d_lock
);
363 spin_unlock(&dentry
->d_lock
);
365 EXPORT_SYMBOL(d_drop
);
368 * Finish off a dentry we've decided to kill.
369 * dentry->d_lock must be held, returns with it unlocked.
370 * If ref is non-zero, then decrement the refcount too.
371 * Returns dentry requiring refcount drop, or NULL if we're done.
373 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
374 __releases(dentry
->d_lock
)
377 struct dentry
*parent
;
379 inode
= dentry
->d_inode
;
380 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
382 spin_unlock(&dentry
->d_lock
);
384 return dentry
; /* try again with same dentry */
389 parent
= dentry
->d_parent
;
390 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
392 spin_unlock(&inode
->i_lock
);
398 /* if dentry was on the d_lru list delete it from there */
399 dentry_lru_del(dentry
);
400 /* if it was on the hash then remove it */
402 return d_kill(dentry
, parent
);
408 * This is complicated by the fact that we do not want to put
409 * dentries that are no longer on any hash chain on the unused
410 * list: we'd much rather just get rid of them immediately.
412 * However, that implies that we have to traverse the dentry
413 * tree upwards to the parents which might _also_ now be
414 * scheduled for deletion (it may have been only waiting for
415 * its last child to go away).
417 * This tail recursion is done by hand as we don't want to depend
418 * on the compiler to always get this right (gcc generally doesn't).
419 * Real recursion would eat up our stack space.
423 * dput - release a dentry
424 * @dentry: dentry to release
426 * Release a dentry. This will drop the usage count and if appropriate
427 * call the dentry unlink method as well as removing it from the queues and
428 * releasing its resources. If the parent dentries were scheduled for release
429 * they too may now get deleted.
431 void dput(struct dentry
*dentry
)
437 if (dentry
->d_count
== 1)
439 spin_lock(&dentry
->d_lock
);
440 BUG_ON(!dentry
->d_count
);
441 if (dentry
->d_count
> 1) {
443 spin_unlock(&dentry
->d_lock
);
447 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
448 if (dentry
->d_op
->d_delete(dentry
))
452 /* Unreachable? Get rid of it */
453 if (d_unhashed(dentry
))
456 /* Otherwise leave it cached and ensure it's on the LRU */
457 dentry
->d_flags
|= DCACHE_REFERENCED
;
458 dentry_lru_add(dentry
);
461 spin_unlock(&dentry
->d_lock
);
465 dentry
= dentry_kill(dentry
, 1);
472 * d_invalidate - invalidate a dentry
473 * @dentry: dentry to invalidate
475 * Try to invalidate the dentry if it turns out to be
476 * possible. If there are other dentries that can be
477 * reached through this one we can't delete it and we
478 * return -EBUSY. On success we return 0.
483 int d_invalidate(struct dentry
* dentry
)
486 * If it's already been dropped, return OK.
488 spin_lock(&dentry
->d_lock
);
489 if (d_unhashed(dentry
)) {
490 spin_unlock(&dentry
->d_lock
);
494 * Check whether to do a partial shrink_dcache
495 * to get rid of unused child entries.
497 if (!list_empty(&dentry
->d_subdirs
)) {
498 spin_unlock(&dentry
->d_lock
);
499 shrink_dcache_parent(dentry
);
500 spin_lock(&dentry
->d_lock
);
504 * Somebody else still using it?
506 * If it's a directory, we can't drop it
507 * for fear of somebody re-populating it
508 * with children (even though dropping it
509 * would make it unreachable from the root,
510 * we might still populate it if it was a
511 * working directory or similar).
513 if (dentry
->d_count
> 1) {
514 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
515 spin_unlock(&dentry
->d_lock
);
521 spin_unlock(&dentry
->d_lock
);
524 EXPORT_SYMBOL(d_invalidate
);
526 /* This must be called with d_lock held */
527 static inline void __dget_dlock(struct dentry
*dentry
)
532 static inline void __dget(struct dentry
*dentry
)
534 spin_lock(&dentry
->d_lock
);
535 __dget_dlock(dentry
);
536 spin_unlock(&dentry
->d_lock
);
539 struct dentry
*dget_parent(struct dentry
*dentry
)
545 * Don't need rcu_dereference because we re-check it was correct under
549 ret
= dentry
->d_parent
;
554 spin_lock(&ret
->d_lock
);
555 if (unlikely(ret
!= dentry
->d_parent
)) {
556 spin_unlock(&ret
->d_lock
);
561 BUG_ON(!ret
->d_count
);
563 spin_unlock(&ret
->d_lock
);
567 EXPORT_SYMBOL(dget_parent
);
570 * d_find_alias - grab a hashed alias of inode
571 * @inode: inode in question
572 * @want_discon: flag, used by d_splice_alias, to request
573 * that only a DISCONNECTED alias be returned.
575 * If inode has a hashed alias, or is a directory and has any alias,
576 * acquire the reference to alias and return it. Otherwise return NULL.
577 * Notice that if inode is a directory there can be only one alias and
578 * it can be unhashed only if it has no children, or if it is the root
581 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
582 * any other hashed alias over that one unless @want_discon is set,
583 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
585 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
587 struct dentry
*alias
, *discon_alias
;
591 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
592 spin_lock(&alias
->d_lock
);
593 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
594 if (IS_ROOT(alias
) &&
595 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
596 discon_alias
= alias
;
597 } else if (!want_discon
) {
599 spin_unlock(&alias
->d_lock
);
603 spin_unlock(&alias
->d_lock
);
606 alias
= discon_alias
;
607 spin_lock(&alias
->d_lock
);
608 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
609 if (IS_ROOT(alias
) &&
610 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
612 spin_unlock(&alias
->d_lock
);
616 spin_unlock(&alias
->d_lock
);
622 struct dentry
*d_find_alias(struct inode
*inode
)
624 struct dentry
*de
= NULL
;
626 if (!list_empty(&inode
->i_dentry
)) {
627 spin_lock(&inode
->i_lock
);
628 de
= __d_find_alias(inode
, 0);
629 spin_unlock(&inode
->i_lock
);
633 EXPORT_SYMBOL(d_find_alias
);
636 * Try to kill dentries associated with this inode.
637 * WARNING: you must own a reference to inode.
639 void d_prune_aliases(struct inode
*inode
)
641 struct dentry
*dentry
;
643 spin_lock(&inode
->i_lock
);
644 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
645 spin_lock(&dentry
->d_lock
);
646 if (!dentry
->d_count
) {
647 __dget_dlock(dentry
);
649 spin_unlock(&dentry
->d_lock
);
650 spin_unlock(&inode
->i_lock
);
654 spin_unlock(&dentry
->d_lock
);
656 spin_unlock(&inode
->i_lock
);
658 EXPORT_SYMBOL(d_prune_aliases
);
661 * Try to throw away a dentry - free the inode, dput the parent.
662 * Requires dentry->d_lock is held, and dentry->d_count == 0.
663 * Releases dentry->d_lock.
665 * This may fail if locks cannot be acquired no problem, just try again.
667 static void try_prune_one_dentry(struct dentry
*dentry
)
668 __releases(dentry
->d_lock
)
670 struct dentry
*parent
;
672 parent
= dentry_kill(dentry
, 0);
674 * If dentry_kill returns NULL, we have nothing more to do.
675 * if it returns the same dentry, trylocks failed. In either
676 * case, just loop again.
678 * Otherwise, we need to prune ancestors too. This is necessary
679 * to prevent quadratic behavior of shrink_dcache_parent(), but
680 * is also expected to be beneficial in reducing dentry cache
685 if (parent
== dentry
)
688 /* Prune ancestors. */
691 spin_lock(&dentry
->d_lock
);
692 if (dentry
->d_count
> 1) {
694 spin_unlock(&dentry
->d_lock
);
697 dentry
= dentry_kill(dentry
, 1);
701 static void shrink_dentry_list(struct list_head
*list
)
703 struct dentry
*dentry
;
707 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
708 if (&dentry
->d_lru
== list
)
710 spin_lock(&dentry
->d_lock
);
711 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
712 spin_unlock(&dentry
->d_lock
);
717 * We found an inuse dentry which was not removed from
718 * the LRU because of laziness during lookup. Do not free
719 * it - just keep it off the LRU list.
721 if (dentry
->d_count
) {
722 dentry_lru_del(dentry
);
723 spin_unlock(&dentry
->d_lock
);
729 try_prune_one_dentry(dentry
);
737 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
738 * @sb: superblock to shrink dentry LRU.
739 * @count: number of entries to prune
740 * @flags: flags to control the dentry processing
742 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
744 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
746 /* called from prune_dcache() and shrink_dcache_parent() */
747 struct dentry
*dentry
;
748 LIST_HEAD(referenced
);
753 spin_lock(&dcache_lru_lock
);
754 while (!list_empty(&sb
->s_dentry_lru
)) {
755 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
756 struct dentry
, d_lru
);
757 BUG_ON(dentry
->d_sb
!= sb
);
759 if (!spin_trylock(&dentry
->d_lock
)) {
760 spin_unlock(&dcache_lru_lock
);
766 * If we are honouring the DCACHE_REFERENCED flag and the
767 * dentry has this flag set, don't free it. Clear the flag
768 * and put it back on the LRU.
770 if (flags
& DCACHE_REFERENCED
&&
771 dentry
->d_flags
& DCACHE_REFERENCED
) {
772 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
773 list_move(&dentry
->d_lru
, &referenced
);
774 spin_unlock(&dentry
->d_lock
);
776 list_move_tail(&dentry
->d_lru
, &tmp
);
777 spin_unlock(&dentry
->d_lock
);
781 cond_resched_lock(&dcache_lru_lock
);
783 if (!list_empty(&referenced
))
784 list_splice(&referenced
, &sb
->s_dentry_lru
);
785 spin_unlock(&dcache_lru_lock
);
787 shrink_dentry_list(&tmp
);
793 * prune_dcache - shrink the dcache
794 * @count: number of entries to try to free
796 * Shrink the dcache. This is done when we need more memory, or simply when we
797 * need to unmount something (at which point we need to unuse all dentries).
799 * This function may fail to free any resources if all the dentries are in use.
801 static void prune_dcache(int count
)
803 struct super_block
*sb
, *p
= NULL
;
805 int unused
= dentry_stat
.nr_unused
;
809 if (unused
== 0 || count
== 0)
814 prune_ratio
= unused
/ count
;
816 list_for_each_entry(sb
, &super_blocks
, s_list
) {
817 if (list_empty(&sb
->s_instances
))
819 if (sb
->s_nr_dentry_unused
== 0)
822 /* Now, we reclaim unused dentrins with fairness.
823 * We reclaim them same percentage from each superblock.
824 * We calculate number of dentries to scan on this sb
825 * as follows, but the implementation is arranged to avoid
827 * number of dentries to scan on this sb =
828 * count * (number of dentries on this sb /
829 * number of dentries in the machine)
831 spin_unlock(&sb_lock
);
832 if (prune_ratio
!= 1)
833 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
835 w_count
= sb
->s_nr_dentry_unused
;
838 * We need to be sure this filesystem isn't being unmounted,
839 * otherwise we could race with generic_shutdown_super(), and
840 * end up holding a reference to an inode while the filesystem
841 * is unmounted. So we try to get s_umount, and make sure
844 if (down_read_trylock(&sb
->s_umount
)) {
845 if ((sb
->s_root
!= NULL
) &&
846 (!list_empty(&sb
->s_dentry_lru
))) {
847 __shrink_dcache_sb(sb
, &w_count
,
851 up_read(&sb
->s_umount
);
858 /* more work left to do? */
864 spin_unlock(&sb_lock
);
868 * shrink_dcache_sb - shrink dcache for a superblock
871 * Shrink the dcache for the specified super block. This is used to free
872 * the dcache before unmounting a file system.
874 void shrink_dcache_sb(struct super_block
*sb
)
878 spin_lock(&dcache_lru_lock
);
879 while (!list_empty(&sb
->s_dentry_lru
)) {
880 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
881 spin_unlock(&dcache_lru_lock
);
882 shrink_dentry_list(&tmp
);
883 spin_lock(&dcache_lru_lock
);
885 spin_unlock(&dcache_lru_lock
);
887 EXPORT_SYMBOL(shrink_dcache_sb
);
890 * destroy a single subtree of dentries for unmount
891 * - see the comments on shrink_dcache_for_umount() for a description of the
894 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
896 struct dentry
*parent
;
897 unsigned detached
= 0;
899 BUG_ON(!IS_ROOT(dentry
));
901 /* detach this root from the system */
902 spin_lock(&dentry
->d_lock
);
903 dentry_lru_del(dentry
);
905 spin_unlock(&dentry
->d_lock
);
908 /* descend to the first leaf in the current subtree */
909 while (!list_empty(&dentry
->d_subdirs
)) {
912 /* this is a branch with children - detach all of them
913 * from the system in one go */
914 spin_lock(&dentry
->d_lock
);
915 list_for_each_entry(loop
, &dentry
->d_subdirs
,
917 spin_lock_nested(&loop
->d_lock
,
918 DENTRY_D_LOCK_NESTED
);
919 dentry_lru_del(loop
);
921 spin_unlock(&loop
->d_lock
);
923 spin_unlock(&dentry
->d_lock
);
925 /* move to the first child */
926 dentry
= list_entry(dentry
->d_subdirs
.next
,
927 struct dentry
, d_u
.d_child
);
930 /* consume the dentries from this leaf up through its parents
931 * until we find one with children or run out altogether */
935 if (dentry
->d_count
!= 0) {
937 "BUG: Dentry %p{i=%lx,n=%s}"
939 " [unmount of %s %s]\n",
942 dentry
->d_inode
->i_ino
: 0UL,
945 dentry
->d_sb
->s_type
->name
,
950 if (IS_ROOT(dentry
)) {
952 list_del(&dentry
->d_u
.d_child
);
954 parent
= dentry
->d_parent
;
955 spin_lock(&parent
->d_lock
);
957 list_del(&dentry
->d_u
.d_child
);
958 spin_unlock(&parent
->d_lock
);
963 inode
= dentry
->d_inode
;
965 dentry
->d_inode
= NULL
;
966 list_del_init(&dentry
->d_alias
);
967 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
968 dentry
->d_op
->d_iput(dentry
, inode
);
975 /* finished when we fall off the top of the tree,
976 * otherwise we ascend to the parent and move to the
977 * next sibling if there is one */
981 } while (list_empty(&dentry
->d_subdirs
));
983 dentry
= list_entry(dentry
->d_subdirs
.next
,
984 struct dentry
, d_u
.d_child
);
989 * destroy the dentries attached to a superblock on unmounting
990 * - we don't need to use dentry->d_lock because:
991 * - the superblock is detached from all mountings and open files, so the
992 * dentry trees will not be rearranged by the VFS
993 * - s_umount is write-locked, so the memory pressure shrinker will ignore
994 * any dentries belonging to this superblock that it comes across
995 * - the filesystem itself is no longer permitted to rearrange the dentries
998 void shrink_dcache_for_umount(struct super_block
*sb
)
1000 struct dentry
*dentry
;
1002 if (down_read_trylock(&sb
->s_umount
))
1005 dentry
= sb
->s_root
;
1007 spin_lock(&dentry
->d_lock
);
1009 spin_unlock(&dentry
->d_lock
);
1010 shrink_dcache_for_umount_subtree(dentry
);
1012 while (!hlist_bl_empty(&sb
->s_anon
)) {
1013 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1014 shrink_dcache_for_umount_subtree(dentry
);
1019 * This tries to ascend one level of parenthood, but
1020 * we can race with renaming, so we need to re-check
1021 * the parenthood after dropping the lock and check
1022 * that the sequence number still matches.
1024 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1026 struct dentry
*new = old
->d_parent
;
1029 spin_unlock(&old
->d_lock
);
1030 spin_lock(&new->d_lock
);
1033 * might go back up the wrong parent if we have had a rename
1036 if (new != old
->d_parent
||
1037 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
1038 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1039 spin_unlock(&new->d_lock
);
1048 * Search for at least 1 mount point in the dentry's subdirs.
1049 * We descend to the next level whenever the d_subdirs
1050 * list is non-empty and continue searching.
1054 * have_submounts - check for mounts over a dentry
1055 * @parent: dentry to check.
1057 * Return true if the parent or its subdirectories contain
1060 int have_submounts(struct dentry
*parent
)
1062 struct dentry
*this_parent
;
1063 struct list_head
*next
;
1067 seq
= read_seqbegin(&rename_lock
);
1069 this_parent
= parent
;
1071 if (d_mountpoint(parent
))
1073 spin_lock(&this_parent
->d_lock
);
1075 next
= this_parent
->d_subdirs
.next
;
1077 while (next
!= &this_parent
->d_subdirs
) {
1078 struct list_head
*tmp
= next
;
1079 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1082 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1083 /* Have we found a mount point ? */
1084 if (d_mountpoint(dentry
)) {
1085 spin_unlock(&dentry
->d_lock
);
1086 spin_unlock(&this_parent
->d_lock
);
1089 if (!list_empty(&dentry
->d_subdirs
)) {
1090 spin_unlock(&this_parent
->d_lock
);
1091 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1092 this_parent
= dentry
;
1093 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1096 spin_unlock(&dentry
->d_lock
);
1099 * All done at this level ... ascend and resume the search.
1101 if (this_parent
!= parent
) {
1102 struct dentry
*child
= this_parent
;
1103 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1106 next
= child
->d_u
.d_child
.next
;
1109 spin_unlock(&this_parent
->d_lock
);
1110 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1113 write_sequnlock(&rename_lock
);
1114 return 0; /* No mount points found in tree */
1116 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1119 write_sequnlock(&rename_lock
);
1124 write_seqlock(&rename_lock
);
1127 EXPORT_SYMBOL(have_submounts
);
1130 * Search the dentry child list for the specified parent,
1131 * and move any unused dentries to the end of the unused
1132 * list for prune_dcache(). We descend to the next level
1133 * whenever the d_subdirs list is non-empty and continue
1136 * It returns zero iff there are no unused children,
1137 * otherwise it returns the number of children moved to
1138 * the end of the unused list. This may not be the total
1139 * number of unused children, because select_parent can
1140 * drop the lock and return early due to latency
1143 static int select_parent(struct dentry
* parent
)
1145 struct dentry
*this_parent
;
1146 struct list_head
*next
;
1151 seq
= read_seqbegin(&rename_lock
);
1153 this_parent
= parent
;
1154 spin_lock(&this_parent
->d_lock
);
1156 next
= this_parent
->d_subdirs
.next
;
1158 while (next
!= &this_parent
->d_subdirs
) {
1159 struct list_head
*tmp
= next
;
1160 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1163 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1166 * move only zero ref count dentries to the end
1167 * of the unused list for prune_dcache
1169 if (!dentry
->d_count
) {
1170 dentry_lru_move_tail(dentry
);
1173 dentry_lru_del(dentry
);
1177 * We can return to the caller if we have found some (this
1178 * ensures forward progress). We'll be coming back to find
1181 if (found
&& need_resched()) {
1182 spin_unlock(&dentry
->d_lock
);
1187 * Descend a level if the d_subdirs list is non-empty.
1189 if (!list_empty(&dentry
->d_subdirs
)) {
1190 spin_unlock(&this_parent
->d_lock
);
1191 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1192 this_parent
= dentry
;
1193 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1197 spin_unlock(&dentry
->d_lock
);
1200 * All done at this level ... ascend and resume the search.
1202 if (this_parent
!= parent
) {
1203 struct dentry
*child
= this_parent
;
1204 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1207 next
= child
->d_u
.d_child
.next
;
1211 spin_unlock(&this_parent
->d_lock
);
1212 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1215 write_sequnlock(&rename_lock
);
1222 write_seqlock(&rename_lock
);
1227 * shrink_dcache_parent - prune dcache
1228 * @parent: parent of entries to prune
1230 * Prune the dcache to remove unused children of the parent dentry.
1233 void shrink_dcache_parent(struct dentry
* parent
)
1235 struct super_block
*sb
= parent
->d_sb
;
1238 while ((found
= select_parent(parent
)) != 0)
1239 __shrink_dcache_sb(sb
, &found
, 0);
1241 EXPORT_SYMBOL(shrink_dcache_parent
);
1244 * Scan `nr' dentries and return the number which remain.
1246 * We need to avoid reentering the filesystem if the caller is performing a
1247 * GFP_NOFS allocation attempt. One example deadlock is:
1249 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1250 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1251 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1253 * In this case we return -1 to tell the caller that we baled.
1255 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
1258 if (!(gfp_mask
& __GFP_FS
))
1263 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1266 static struct shrinker dcache_shrinker
= {
1267 .shrink
= shrink_dcache_memory
,
1268 .seeks
= DEFAULT_SEEKS
,
1272 * d_alloc - allocate a dcache entry
1273 * @parent: parent of entry to allocate
1274 * @name: qstr of the name
1276 * Allocates a dentry. It returns %NULL if there is insufficient memory
1277 * available. On a success the dentry is returned. The name passed in is
1278 * copied and the copy passed in may be reused after this call.
1281 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1283 struct dentry
*dentry
;
1286 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1290 if (name
->len
> DNAME_INLINE_LEN
-1) {
1291 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1293 kmem_cache_free(dentry_cache
, dentry
);
1297 dname
= dentry
->d_iname
;
1299 dentry
->d_name
.name
= dname
;
1301 dentry
->d_name
.len
= name
->len
;
1302 dentry
->d_name
.hash
= name
->hash
;
1303 memcpy(dname
, name
->name
, name
->len
);
1304 dname
[name
->len
] = 0;
1306 dentry
->d_count
= 1;
1307 dentry
->d_flags
= DCACHE_UNHASHED
;
1308 spin_lock_init(&dentry
->d_lock
);
1309 seqcount_init(&dentry
->d_seq
);
1310 dentry
->d_inode
= NULL
;
1311 dentry
->d_parent
= NULL
;
1312 dentry
->d_sb
= NULL
;
1313 dentry
->d_op
= NULL
;
1314 dentry
->d_fsdata
= NULL
;
1315 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1316 INIT_LIST_HEAD(&dentry
->d_lru
);
1317 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1318 INIT_LIST_HEAD(&dentry
->d_alias
);
1319 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1322 spin_lock(&parent
->d_lock
);
1324 * don't need child lock because it is not subject
1325 * to concurrency here
1327 __dget_dlock(parent
);
1328 dentry
->d_parent
= parent
;
1329 dentry
->d_sb
= parent
->d_sb
;
1330 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1331 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1332 spin_unlock(&parent
->d_lock
);
1335 this_cpu_inc(nr_dentry
);
1339 EXPORT_SYMBOL(d_alloc
);
1341 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1343 struct dentry
*dentry
= d_alloc(NULL
, name
);
1346 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1347 dentry
->d_parent
= dentry
;
1348 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1352 EXPORT_SYMBOL(d_alloc_pseudo
);
1354 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1359 q
.len
= strlen(name
);
1360 q
.hash
= full_name_hash(q
.name
, q
.len
);
1361 return d_alloc(parent
, &q
);
1363 EXPORT_SYMBOL(d_alloc_name
);
1365 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1367 WARN_ON_ONCE(dentry
->d_op
);
1368 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1370 DCACHE_OP_REVALIDATE
|
1371 DCACHE_OP_DELETE
));
1376 dentry
->d_flags
|= DCACHE_OP_HASH
;
1378 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1379 if (op
->d_revalidate
)
1380 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1382 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1385 EXPORT_SYMBOL(d_set_d_op
);
1387 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1389 spin_lock(&dentry
->d_lock
);
1391 if (unlikely(IS_AUTOMOUNT(inode
)))
1392 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1393 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1395 dentry
->d_inode
= inode
;
1396 dentry_rcuwalk_barrier(dentry
);
1397 spin_unlock(&dentry
->d_lock
);
1398 fsnotify_d_instantiate(dentry
, inode
);
1402 * d_instantiate - fill in inode information for a dentry
1403 * @entry: dentry to complete
1404 * @inode: inode to attach to this dentry
1406 * Fill in inode information in the entry.
1408 * This turns negative dentries into productive full members
1411 * NOTE! This assumes that the inode count has been incremented
1412 * (or otherwise set) by the caller to indicate that it is now
1413 * in use by the dcache.
1416 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1418 BUG_ON(!list_empty(&entry
->d_alias
));
1420 spin_lock(&inode
->i_lock
);
1421 __d_instantiate(entry
, inode
);
1423 spin_unlock(&inode
->i_lock
);
1424 security_d_instantiate(entry
, inode
);
1426 EXPORT_SYMBOL(d_instantiate
);
1429 * d_instantiate_unique - instantiate a non-aliased dentry
1430 * @entry: dentry to instantiate
1431 * @inode: inode to attach to this dentry
1433 * Fill in inode information in the entry. On success, it returns NULL.
1434 * If an unhashed alias of "entry" already exists, then we return the
1435 * aliased dentry instead and drop one reference to inode.
1437 * Note that in order to avoid conflicts with rename() etc, the caller
1438 * had better be holding the parent directory semaphore.
1440 * This also assumes that the inode count has been incremented
1441 * (or otherwise set) by the caller to indicate that it is now
1442 * in use by the dcache.
1444 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1445 struct inode
*inode
)
1447 struct dentry
*alias
;
1448 int len
= entry
->d_name
.len
;
1449 const char *name
= entry
->d_name
.name
;
1450 unsigned int hash
= entry
->d_name
.hash
;
1453 __d_instantiate(entry
, NULL
);
1457 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1458 struct qstr
*qstr
= &alias
->d_name
;
1461 * Don't need alias->d_lock here, because aliases with
1462 * d_parent == entry->d_parent are not subject to name or
1463 * parent changes, because the parent inode i_mutex is held.
1465 if (qstr
->hash
!= hash
)
1467 if (alias
->d_parent
!= entry
->d_parent
)
1469 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1475 __d_instantiate(entry
, inode
);
1479 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1481 struct dentry
*result
;
1483 BUG_ON(!list_empty(&entry
->d_alias
));
1486 spin_lock(&inode
->i_lock
);
1487 result
= __d_instantiate_unique(entry
, inode
);
1489 spin_unlock(&inode
->i_lock
);
1492 security_d_instantiate(entry
, inode
);
1496 BUG_ON(!d_unhashed(result
));
1501 EXPORT_SYMBOL(d_instantiate_unique
);
1504 * d_alloc_root - allocate root dentry
1505 * @root_inode: inode to allocate the root for
1507 * Allocate a root ("/") dentry for the inode given. The inode is
1508 * instantiated and returned. %NULL is returned if there is insufficient
1509 * memory or the inode passed is %NULL.
1512 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1514 struct dentry
*res
= NULL
;
1517 static const struct qstr name
= { .name
= "/", .len
= 1 };
1519 res
= d_alloc(NULL
, &name
);
1521 res
->d_sb
= root_inode
->i_sb
;
1522 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1523 res
->d_parent
= res
;
1524 d_instantiate(res
, root_inode
);
1529 EXPORT_SYMBOL(d_alloc_root
);
1531 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1533 struct dentry
*alias
;
1535 if (list_empty(&inode
->i_dentry
))
1537 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1542 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1546 spin_lock(&inode
->i_lock
);
1547 de
= __d_find_any_alias(inode
);
1548 spin_unlock(&inode
->i_lock
);
1554 * d_obtain_alias - find or allocate a dentry for a given inode
1555 * @inode: inode to allocate the dentry for
1557 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1558 * similar open by handle operations. The returned dentry may be anonymous,
1559 * or may have a full name (if the inode was already in the cache).
1561 * When called on a directory inode, we must ensure that the inode only ever
1562 * has one dentry. If a dentry is found, that is returned instead of
1563 * allocating a new one.
1565 * On successful return, the reference to the inode has been transferred
1566 * to the dentry. In case of an error the reference on the inode is released.
1567 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1568 * be passed in and will be the error will be propagate to the return value,
1569 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1571 struct dentry
*d_obtain_alias(struct inode
*inode
)
1573 static const struct qstr anonstring
= { .name
= "" };
1578 return ERR_PTR(-ESTALE
);
1580 return ERR_CAST(inode
);
1582 res
= d_find_any_alias(inode
);
1586 tmp
= d_alloc(NULL
, &anonstring
);
1588 res
= ERR_PTR(-ENOMEM
);
1591 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1594 spin_lock(&inode
->i_lock
);
1595 res
= __d_find_any_alias(inode
);
1597 spin_unlock(&inode
->i_lock
);
1602 /* attach a disconnected dentry */
1603 spin_lock(&tmp
->d_lock
);
1604 tmp
->d_sb
= inode
->i_sb
;
1605 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1606 tmp
->d_inode
= inode
;
1607 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1608 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1609 bit_spin_lock(0, (unsigned long *)&tmp
->d_sb
->s_anon
.first
);
1610 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1611 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1612 __bit_spin_unlock(0, (unsigned long *)&tmp
->d_sb
->s_anon
.first
);
1613 spin_unlock(&tmp
->d_lock
);
1614 spin_unlock(&inode
->i_lock
);
1622 EXPORT_SYMBOL(d_obtain_alias
);
1625 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1626 * @inode: the inode which may have a disconnected dentry
1627 * @dentry: a negative dentry which we want to point to the inode.
1629 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1630 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1631 * and return it, else simply d_add the inode to the dentry and return NULL.
1633 * This is needed in the lookup routine of any filesystem that is exportable
1634 * (via knfsd) so that we can build dcache paths to directories effectively.
1636 * If a dentry was found and moved, then it is returned. Otherwise NULL
1637 * is returned. This matches the expected return value of ->lookup.
1640 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1642 struct dentry
*new = NULL
;
1644 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1645 spin_lock(&inode
->i_lock
);
1646 new = __d_find_alias(inode
, 1);
1648 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1649 spin_unlock(&inode
->i_lock
);
1650 security_d_instantiate(new, inode
);
1651 d_move(new, dentry
);
1654 /* already taking inode->i_lock, so d_add() by hand */
1655 __d_instantiate(dentry
, inode
);
1656 spin_unlock(&inode
->i_lock
);
1657 security_d_instantiate(dentry
, inode
);
1661 d_add(dentry
, inode
);
1664 EXPORT_SYMBOL(d_splice_alias
);
1667 * d_add_ci - lookup or allocate new dentry with case-exact name
1668 * @inode: the inode case-insensitive lookup has found
1669 * @dentry: the negative dentry that was passed to the parent's lookup func
1670 * @name: the case-exact name to be associated with the returned dentry
1672 * This is to avoid filling the dcache with case-insensitive names to the
1673 * same inode, only the actual correct case is stored in the dcache for
1674 * case-insensitive filesystems.
1676 * For a case-insensitive lookup match and if the the case-exact dentry
1677 * already exists in in the dcache, use it and return it.
1679 * If no entry exists with the exact case name, allocate new dentry with
1680 * the exact case, and return the spliced entry.
1682 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1686 struct dentry
*found
;
1690 * First check if a dentry matching the name already exists,
1691 * if not go ahead and create it now.
1693 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1695 new = d_alloc(dentry
->d_parent
, name
);
1701 found
= d_splice_alias(inode
, new);
1710 * If a matching dentry exists, and it's not negative use it.
1712 * Decrement the reference count to balance the iget() done
1715 if (found
->d_inode
) {
1716 if (unlikely(found
->d_inode
!= inode
)) {
1717 /* This can't happen because bad inodes are unhashed. */
1718 BUG_ON(!is_bad_inode(inode
));
1719 BUG_ON(!is_bad_inode(found
->d_inode
));
1726 * Negative dentry: instantiate it unless the inode is a directory and
1727 * already has a dentry.
1729 spin_lock(&inode
->i_lock
);
1730 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1731 __d_instantiate(found
, inode
);
1732 spin_unlock(&inode
->i_lock
);
1733 security_d_instantiate(found
, inode
);
1738 * In case a directory already has a (disconnected) entry grab a
1739 * reference to it, move it in place and use it.
1741 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1743 spin_unlock(&inode
->i_lock
);
1744 security_d_instantiate(found
, inode
);
1752 return ERR_PTR(error
);
1754 EXPORT_SYMBOL(d_add_ci
);
1757 * __d_lookup_rcu - search for a dentry (racy, store-free)
1758 * @parent: parent dentry
1759 * @name: qstr of name we wish to find
1760 * @seq: returns d_seq value at the point where the dentry was found
1761 * @inode: returns dentry->d_inode when the inode was found valid.
1762 * Returns: dentry, or NULL
1764 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1765 * resolution (store-free path walking) design described in
1766 * Documentation/filesystems/path-lookup.txt.
1768 * This is not to be used outside core vfs.
1770 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1771 * held, and rcu_read_lock held. The returned dentry must not be stored into
1772 * without taking d_lock and checking d_seq sequence count against @seq
1775 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1778 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1779 * the returned dentry, so long as its parent's seqlock is checked after the
1780 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1781 * is formed, giving integrity down the path walk.
1783 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1784 unsigned *seq
, struct inode
**inode
)
1786 unsigned int len
= name
->len
;
1787 unsigned int hash
= name
->hash
;
1788 const unsigned char *str
= name
->name
;
1789 struct dcache_hash_bucket
*b
= d_hash(parent
, hash
);
1790 struct hlist_bl_node
*node
;
1791 struct dentry
*dentry
;
1794 * Note: There is significant duplication with __d_lookup_rcu which is
1795 * required to prevent single threaded performance regressions
1796 * especially on architectures where smp_rmb (in seqcounts) are costly.
1797 * Keep the two functions in sync.
1801 * The hash list is protected using RCU.
1803 * Carefully use d_seq when comparing a candidate dentry, to avoid
1804 * races with d_move().
1806 * It is possible that concurrent renames can mess up our list
1807 * walk here and result in missing our dentry, resulting in the
1808 * false-negative result. d_lookup() protects against concurrent
1809 * renames using rename_lock seqlock.
1811 * See Documentation/vfs/dcache-locking.txt for more details.
1813 hlist_bl_for_each_entry_rcu(dentry
, node
, &b
->head
, d_hash
) {
1818 if (dentry
->d_name
.hash
!= hash
)
1822 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1823 if (dentry
->d_parent
!= parent
)
1825 if (d_unhashed(dentry
))
1827 tlen
= dentry
->d_name
.len
;
1828 tname
= dentry
->d_name
.name
;
1829 i
= dentry
->d_inode
;
1834 * This seqcount check is required to ensure name and
1835 * len are loaded atomically, so as not to walk off the
1836 * edge of memory when walking. If we could load this
1837 * atomically some other way, we could drop this check.
1839 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1841 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1842 if (parent
->d_op
->d_compare(parent
, *inode
,
1847 if (dentry_cmp(tname
, tlen
, str
, len
))
1851 * No extra seqcount check is required after the name
1852 * compare. The caller must perform a seqcount check in
1853 * order to do anything useful with the returned dentry
1863 * d_lookup - search for a dentry
1864 * @parent: parent dentry
1865 * @name: qstr of name we wish to find
1866 * Returns: dentry, or NULL
1868 * d_lookup searches the children of the parent dentry for the name in
1869 * question. If the dentry is found its reference count is incremented and the
1870 * dentry is returned. The caller must use dput to free the entry when it has
1871 * finished using it. %NULL is returned if the dentry does not exist.
1873 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1875 struct dentry
*dentry
;
1879 seq
= read_seqbegin(&rename_lock
);
1880 dentry
= __d_lookup(parent
, name
);
1883 } while (read_seqretry(&rename_lock
, seq
));
1886 EXPORT_SYMBOL(d_lookup
);
1889 * __d_lookup - search for a dentry (racy)
1890 * @parent: parent dentry
1891 * @name: qstr of name we wish to find
1892 * Returns: dentry, or NULL
1894 * __d_lookup is like d_lookup, however it may (rarely) return a
1895 * false-negative result due to unrelated rename activity.
1897 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1898 * however it must be used carefully, eg. with a following d_lookup in
1899 * the case of failure.
1901 * __d_lookup callers must be commented.
1903 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1905 unsigned int len
= name
->len
;
1906 unsigned int hash
= name
->hash
;
1907 const unsigned char *str
= name
->name
;
1908 struct dcache_hash_bucket
*b
= d_hash(parent
, hash
);
1909 struct hlist_bl_node
*node
;
1910 struct dentry
*found
= NULL
;
1911 struct dentry
*dentry
;
1914 * Note: There is significant duplication with __d_lookup_rcu which is
1915 * required to prevent single threaded performance regressions
1916 * especially on architectures where smp_rmb (in seqcounts) are costly.
1917 * Keep the two functions in sync.
1921 * The hash list is protected using RCU.
1923 * Take d_lock when comparing a candidate dentry, to avoid races
1926 * It is possible that concurrent renames can mess up our list
1927 * walk here and result in missing our dentry, resulting in the
1928 * false-negative result. d_lookup() protects against concurrent
1929 * renames using rename_lock seqlock.
1931 * See Documentation/vfs/dcache-locking.txt for more details.
1935 hlist_bl_for_each_entry_rcu(dentry
, node
, &b
->head
, d_hash
) {
1939 if (dentry
->d_name
.hash
!= hash
)
1942 spin_lock(&dentry
->d_lock
);
1943 if (dentry
->d_parent
!= parent
)
1945 if (d_unhashed(dentry
))
1949 * It is safe to compare names since d_move() cannot
1950 * change the qstr (protected by d_lock).
1952 tlen
= dentry
->d_name
.len
;
1953 tname
= dentry
->d_name
.name
;
1954 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1955 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1956 dentry
, dentry
->d_inode
,
1960 if (dentry_cmp(tname
, tlen
, str
, len
))
1966 spin_unlock(&dentry
->d_lock
);
1969 spin_unlock(&dentry
->d_lock
);
1977 * d_hash_and_lookup - hash the qstr then search for a dentry
1978 * @dir: Directory to search in
1979 * @name: qstr of name we wish to find
1981 * On hash failure or on lookup failure NULL is returned.
1983 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1985 struct dentry
*dentry
= NULL
;
1988 * Check for a fs-specific hash function. Note that we must
1989 * calculate the standard hash first, as the d_op->d_hash()
1990 * routine may choose to leave the hash value unchanged.
1992 name
->hash
= full_name_hash(name
->name
, name
->len
);
1993 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1994 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1997 dentry
= d_lookup(dir
, name
);
2003 * d_validate - verify dentry provided from insecure source (deprecated)
2004 * @dentry: The dentry alleged to be valid child of @dparent
2005 * @dparent: The parent dentry (known to be valid)
2007 * An insecure source has sent us a dentry, here we verify it and dget() it.
2008 * This is used by ncpfs in its readdir implementation.
2009 * Zero is returned in the dentry is invalid.
2011 * This function is slow for big directories, and deprecated, do not use it.
2013 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2015 struct dentry
*child
;
2017 spin_lock(&dparent
->d_lock
);
2018 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2019 if (dentry
== child
) {
2020 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2021 __dget_dlock(dentry
);
2022 spin_unlock(&dentry
->d_lock
);
2023 spin_unlock(&dparent
->d_lock
);
2027 spin_unlock(&dparent
->d_lock
);
2031 EXPORT_SYMBOL(d_validate
);
2034 * When a file is deleted, we have two options:
2035 * - turn this dentry into a negative dentry
2036 * - unhash this dentry and free it.
2038 * Usually, we want to just turn this into
2039 * a negative dentry, but if anybody else is
2040 * currently using the dentry or the inode
2041 * we can't do that and we fall back on removing
2042 * it from the hash queues and waiting for
2043 * it to be deleted later when it has no users
2047 * d_delete - delete a dentry
2048 * @dentry: The dentry to delete
2050 * Turn the dentry into a negative dentry if possible, otherwise
2051 * remove it from the hash queues so it can be deleted later
2054 void d_delete(struct dentry
* dentry
)
2056 struct inode
*inode
;
2059 * Are we the only user?
2062 spin_lock(&dentry
->d_lock
);
2063 inode
= dentry
->d_inode
;
2064 isdir
= S_ISDIR(inode
->i_mode
);
2065 if (dentry
->d_count
== 1) {
2066 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2067 spin_unlock(&dentry
->d_lock
);
2071 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2072 dentry_unlink_inode(dentry
);
2073 fsnotify_nameremove(dentry
, isdir
);
2077 if (!d_unhashed(dentry
))
2080 spin_unlock(&dentry
->d_lock
);
2082 fsnotify_nameremove(dentry
, isdir
);
2084 EXPORT_SYMBOL(d_delete
);
2086 static void __d_rehash(struct dentry
* entry
, struct dcache_hash_bucket
*b
)
2088 BUG_ON(!d_unhashed(entry
));
2089 spin_lock_bucket(b
);
2090 entry
->d_flags
&= ~DCACHE_UNHASHED
;
2091 hlist_bl_add_head_rcu(&entry
->d_hash
, &b
->head
);
2092 spin_unlock_bucket(b
);
2095 static void _d_rehash(struct dentry
* entry
)
2097 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2101 * d_rehash - add an entry back to the hash
2102 * @entry: dentry to add to the hash
2104 * Adds a dentry to the hash according to its name.
2107 void d_rehash(struct dentry
* entry
)
2109 spin_lock(&entry
->d_lock
);
2111 spin_unlock(&entry
->d_lock
);
2113 EXPORT_SYMBOL(d_rehash
);
2116 * dentry_update_name_case - update case insensitive dentry with a new name
2117 * @dentry: dentry to be updated
2120 * Update a case insensitive dentry with new case of name.
2122 * dentry must have been returned by d_lookup with name @name. Old and new
2123 * name lengths must match (ie. no d_compare which allows mismatched name
2126 * Parent inode i_mutex must be held over d_lookup and into this call (to
2127 * keep renames and concurrent inserts, and readdir(2) away).
2129 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2131 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
2132 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2134 spin_lock(&dentry
->d_lock
);
2135 write_seqcount_begin(&dentry
->d_seq
);
2136 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2137 write_seqcount_end(&dentry
->d_seq
);
2138 spin_unlock(&dentry
->d_lock
);
2140 EXPORT_SYMBOL(dentry_update_name_case
);
2142 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2144 if (dname_external(target
)) {
2145 if (dname_external(dentry
)) {
2147 * Both external: swap the pointers
2149 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2152 * dentry:internal, target:external. Steal target's
2153 * storage and make target internal.
2155 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2156 dentry
->d_name
.len
+ 1);
2157 dentry
->d_name
.name
= target
->d_name
.name
;
2158 target
->d_name
.name
= target
->d_iname
;
2161 if (dname_external(dentry
)) {
2163 * dentry:external, target:internal. Give dentry's
2164 * storage to target and make dentry internal
2166 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2167 target
->d_name
.len
+ 1);
2168 target
->d_name
.name
= dentry
->d_name
.name
;
2169 dentry
->d_name
.name
= dentry
->d_iname
;
2172 * Both are internal. Just copy target to dentry
2174 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2175 target
->d_name
.len
+ 1);
2176 dentry
->d_name
.len
= target
->d_name
.len
;
2180 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2183 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2186 * XXXX: do we really need to take target->d_lock?
2188 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2189 spin_lock(&target
->d_parent
->d_lock
);
2191 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2192 spin_lock(&dentry
->d_parent
->d_lock
);
2193 spin_lock_nested(&target
->d_parent
->d_lock
,
2194 DENTRY_D_LOCK_NESTED
);
2196 spin_lock(&target
->d_parent
->d_lock
);
2197 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2198 DENTRY_D_LOCK_NESTED
);
2201 if (target
< dentry
) {
2202 spin_lock_nested(&target
->d_lock
, 2);
2203 spin_lock_nested(&dentry
->d_lock
, 3);
2205 spin_lock_nested(&dentry
->d_lock
, 2);
2206 spin_lock_nested(&target
->d_lock
, 3);
2210 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2211 struct dentry
*target
)
2213 if (target
->d_parent
!= dentry
->d_parent
)
2214 spin_unlock(&dentry
->d_parent
->d_lock
);
2215 if (target
->d_parent
!= target
)
2216 spin_unlock(&target
->d_parent
->d_lock
);
2220 * When switching names, the actual string doesn't strictly have to
2221 * be preserved in the target - because we're dropping the target
2222 * anyway. As such, we can just do a simple memcpy() to copy over
2223 * the new name before we switch.
2225 * Note that we have to be a lot more careful about getting the hash
2226 * switched - we have to switch the hash value properly even if it
2227 * then no longer matches the actual (corrupted) string of the target.
2228 * The hash value has to match the hash queue that the dentry is on..
2231 * d_move - move a dentry
2232 * @dentry: entry to move
2233 * @target: new dentry
2235 * Update the dcache to reflect the move of a file name. Negative
2236 * dcache entries should not be moved in this way.
2238 void d_move(struct dentry
* dentry
, struct dentry
* target
)
2240 if (!dentry
->d_inode
)
2241 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2243 BUG_ON(d_ancestor(dentry
, target
));
2244 BUG_ON(d_ancestor(target
, dentry
));
2246 write_seqlock(&rename_lock
);
2248 dentry_lock_for_move(dentry
, target
);
2250 write_seqcount_begin(&dentry
->d_seq
);
2251 write_seqcount_begin(&target
->d_seq
);
2253 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2256 * Move the dentry to the target hash queue. Don't bother checking
2257 * for the same hash queue because of how unlikely it is.
2260 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2262 /* Unhash the target: dput() will then get rid of it */
2265 list_del(&dentry
->d_u
.d_child
);
2266 list_del(&target
->d_u
.d_child
);
2268 /* Switch the names.. */
2269 switch_names(dentry
, target
);
2270 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2272 /* ... and switch the parents */
2273 if (IS_ROOT(dentry
)) {
2274 dentry
->d_parent
= target
->d_parent
;
2275 target
->d_parent
= target
;
2276 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2278 swap(dentry
->d_parent
, target
->d_parent
);
2280 /* And add them back to the (new) parent lists */
2281 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2284 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2286 write_seqcount_end(&target
->d_seq
);
2287 write_seqcount_end(&dentry
->d_seq
);
2289 dentry_unlock_parents_for_move(dentry
, target
);
2290 spin_unlock(&target
->d_lock
);
2291 fsnotify_d_move(dentry
);
2292 spin_unlock(&dentry
->d_lock
);
2293 write_sequnlock(&rename_lock
);
2295 EXPORT_SYMBOL(d_move
);
2298 * d_ancestor - search for an ancestor
2299 * @p1: ancestor dentry
2302 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2303 * an ancestor of p2, else NULL.
2305 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2309 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2310 if (p
->d_parent
== p1
)
2317 * This helper attempts to cope with remotely renamed directories
2319 * It assumes that the caller is already holding
2320 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2322 * Note: If ever the locking in lock_rename() changes, then please
2323 * remember to update this too...
2325 static struct dentry
*__d_unalias(struct inode
*inode
,
2326 struct dentry
*dentry
, struct dentry
*alias
)
2328 struct mutex
*m1
= NULL
, *m2
= NULL
;
2331 /* If alias and dentry share a parent, then no extra locks required */
2332 if (alias
->d_parent
== dentry
->d_parent
)
2335 /* Check for loops */
2336 ret
= ERR_PTR(-ELOOP
);
2337 if (d_ancestor(alias
, dentry
))
2340 /* See lock_rename() */
2341 ret
= ERR_PTR(-EBUSY
);
2342 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2344 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2345 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2347 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2349 d_move(alias
, dentry
);
2352 spin_unlock(&inode
->i_lock
);
2361 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2362 * named dentry in place of the dentry to be replaced.
2363 * returns with anon->d_lock held!
2365 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2367 struct dentry
*dparent
, *aparent
;
2369 dentry_lock_for_move(anon
, dentry
);
2371 write_seqcount_begin(&dentry
->d_seq
);
2372 write_seqcount_begin(&anon
->d_seq
);
2374 dparent
= dentry
->d_parent
;
2375 aparent
= anon
->d_parent
;
2377 switch_names(dentry
, anon
);
2378 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2380 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2381 list_del(&dentry
->d_u
.d_child
);
2382 if (!IS_ROOT(dentry
))
2383 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2385 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2387 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2388 list_del(&anon
->d_u
.d_child
);
2390 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2392 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2394 write_seqcount_end(&dentry
->d_seq
);
2395 write_seqcount_end(&anon
->d_seq
);
2397 dentry_unlock_parents_for_move(anon
, dentry
);
2398 spin_unlock(&dentry
->d_lock
);
2400 /* anon->d_lock still locked, returns locked */
2401 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2405 * d_materialise_unique - introduce an inode into the tree
2406 * @dentry: candidate dentry
2407 * @inode: inode to bind to the dentry, to which aliases may be attached
2409 * Introduces an dentry into the tree, substituting an extant disconnected
2410 * root directory alias in its place if there is one
2412 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2414 struct dentry
*actual
;
2416 BUG_ON(!d_unhashed(dentry
));
2420 __d_instantiate(dentry
, NULL
);
2425 spin_lock(&inode
->i_lock
);
2427 if (S_ISDIR(inode
->i_mode
)) {
2428 struct dentry
*alias
;
2430 /* Does an aliased dentry already exist? */
2431 alias
= __d_find_alias(inode
, 0);
2434 /* Is this an anonymous mountpoint that we could splice
2436 if (IS_ROOT(alias
)) {
2437 __d_materialise_dentry(dentry
, alias
);
2441 /* Nope, but we must(!) avoid directory aliasing */
2442 actual
= __d_unalias(inode
, dentry
, alias
);
2449 /* Add a unique reference */
2450 actual
= __d_instantiate_unique(dentry
, inode
);
2454 BUG_ON(!d_unhashed(actual
));
2456 spin_lock(&actual
->d_lock
);
2459 spin_unlock(&actual
->d_lock
);
2460 spin_unlock(&inode
->i_lock
);
2462 if (actual
== dentry
) {
2463 security_d_instantiate(dentry
, inode
);
2470 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2472 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2476 return -ENAMETOOLONG
;
2478 memcpy(*buffer
, str
, namelen
);
2482 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2484 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2488 * prepend_path - Prepend path string to a buffer
2489 * @path: the dentry/vfsmount to report
2490 * @root: root vfsmnt/dentry (may be modified by this function)
2491 * @buffer: pointer to the end of the buffer
2492 * @buflen: pointer to buffer length
2494 * Caller holds the rename_lock.
2496 * If path is not reachable from the supplied root, then the value of
2497 * root is changed (without modifying refcounts).
2499 static int prepend_path(const struct path
*path
, struct path
*root
,
2500 char **buffer
, int *buflen
)
2502 struct dentry
*dentry
= path
->dentry
;
2503 struct vfsmount
*vfsmnt
= path
->mnt
;
2507 br_read_lock(vfsmount_lock
);
2508 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2509 struct dentry
* parent
;
2511 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2513 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2516 dentry
= vfsmnt
->mnt_mountpoint
;
2517 vfsmnt
= vfsmnt
->mnt_parent
;
2520 parent
= dentry
->d_parent
;
2522 spin_lock(&dentry
->d_lock
);
2523 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2524 spin_unlock(&dentry
->d_lock
);
2526 error
= prepend(buffer
, buflen
, "/", 1);
2535 if (!error
&& !slash
)
2536 error
= prepend(buffer
, buflen
, "/", 1);
2538 br_read_unlock(vfsmount_lock
);
2543 * Filesystems needing to implement special "root names"
2544 * should do so with ->d_dname()
2546 if (IS_ROOT(dentry
) &&
2547 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2548 WARN(1, "Root dentry has weird name <%.*s>\n",
2549 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2552 root
->dentry
= dentry
;
2557 * __d_path - return the path of a dentry
2558 * @path: the dentry/vfsmount to report
2559 * @root: root vfsmnt/dentry (may be modified by this function)
2560 * @buf: buffer to return value in
2561 * @buflen: buffer length
2563 * Convert a dentry into an ASCII path name.
2565 * Returns a pointer into the buffer or an error code if the
2566 * path was too long.
2568 * "buflen" should be positive.
2570 * If path is not reachable from the supplied root, then the value of
2571 * root is changed (without modifying refcounts).
2573 char *__d_path(const struct path
*path
, struct path
*root
,
2574 char *buf
, int buflen
)
2576 char *res
= buf
+ buflen
;
2579 prepend(&res
, &buflen
, "\0", 1);
2580 write_seqlock(&rename_lock
);
2581 error
= prepend_path(path
, root
, &res
, &buflen
);
2582 write_sequnlock(&rename_lock
);
2585 return ERR_PTR(error
);
2590 * same as __d_path but appends "(deleted)" for unlinked files.
2592 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2593 char **buf
, int *buflen
)
2595 prepend(buf
, buflen
, "\0", 1);
2596 if (d_unlinked(path
->dentry
)) {
2597 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2602 return prepend_path(path
, root
, buf
, buflen
);
2605 static int prepend_unreachable(char **buffer
, int *buflen
)
2607 return prepend(buffer
, buflen
, "(unreachable)", 13);
2611 * d_path - return the path of a dentry
2612 * @path: path to report
2613 * @buf: buffer to return value in
2614 * @buflen: buffer length
2616 * Convert a dentry into an ASCII path name. If the entry has been deleted
2617 * the string " (deleted)" is appended. Note that this is ambiguous.
2619 * Returns a pointer into the buffer or an error code if the path was
2620 * too long. Note: Callers should use the returned pointer, not the passed
2621 * in buffer, to use the name! The implementation often starts at an offset
2622 * into the buffer, and may leave 0 bytes at the start.
2624 * "buflen" should be positive.
2626 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2628 char *res
= buf
+ buflen
;
2634 * We have various synthetic filesystems that never get mounted. On
2635 * these filesystems dentries are never used for lookup purposes, and
2636 * thus don't need to be hashed. They also don't need a name until a
2637 * user wants to identify the object in /proc/pid/fd/. The little hack
2638 * below allows us to generate a name for these objects on demand:
2640 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2641 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2643 get_fs_root(current
->fs
, &root
);
2644 write_seqlock(&rename_lock
);
2646 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2648 res
= ERR_PTR(error
);
2649 write_sequnlock(&rename_lock
);
2653 EXPORT_SYMBOL(d_path
);
2656 * d_path_with_unreachable - return the path of a dentry
2657 * @path: path to report
2658 * @buf: buffer to return value in
2659 * @buflen: buffer length
2661 * The difference from d_path() is that this prepends "(unreachable)"
2662 * to paths which are unreachable from the current process' root.
2664 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2666 char *res
= buf
+ buflen
;
2671 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2672 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2674 get_fs_root(current
->fs
, &root
);
2675 write_seqlock(&rename_lock
);
2677 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2678 if (!error
&& !path_equal(&tmp
, &root
))
2679 error
= prepend_unreachable(&res
, &buflen
);
2680 write_sequnlock(&rename_lock
);
2683 res
= ERR_PTR(error
);
2689 * Helper function for dentry_operations.d_dname() members
2691 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2692 const char *fmt
, ...)
2698 va_start(args
, fmt
);
2699 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2702 if (sz
> sizeof(temp
) || sz
> buflen
)
2703 return ERR_PTR(-ENAMETOOLONG
);
2705 buffer
+= buflen
- sz
;
2706 return memcpy(buffer
, temp
, sz
);
2710 * Write full pathname from the root of the filesystem into the buffer.
2712 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2714 char *end
= buf
+ buflen
;
2717 prepend(&end
, &buflen
, "\0", 1);
2724 while (!IS_ROOT(dentry
)) {
2725 struct dentry
*parent
= dentry
->d_parent
;
2729 spin_lock(&dentry
->d_lock
);
2730 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2731 spin_unlock(&dentry
->d_lock
);
2732 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2740 return ERR_PTR(-ENAMETOOLONG
);
2743 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2747 write_seqlock(&rename_lock
);
2748 retval
= __dentry_path(dentry
, buf
, buflen
);
2749 write_sequnlock(&rename_lock
);
2753 EXPORT_SYMBOL(dentry_path_raw
);
2755 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2760 write_seqlock(&rename_lock
);
2761 if (d_unlinked(dentry
)) {
2763 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2767 retval
= __dentry_path(dentry
, buf
, buflen
);
2768 write_sequnlock(&rename_lock
);
2769 if (!IS_ERR(retval
) && p
)
2770 *p
= '/'; /* restore '/' overriden with '\0' */
2773 return ERR_PTR(-ENAMETOOLONG
);
2777 * NOTE! The user-level library version returns a
2778 * character pointer. The kernel system call just
2779 * returns the length of the buffer filled (which
2780 * includes the ending '\0' character), or a negative
2781 * error value. So libc would do something like
2783 * char *getcwd(char * buf, size_t size)
2787 * retval = sys_getcwd(buf, size);
2794 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2797 struct path pwd
, root
;
2798 char *page
= (char *) __get_free_page(GFP_USER
);
2803 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2806 write_seqlock(&rename_lock
);
2807 if (!d_unlinked(pwd
.dentry
)) {
2809 struct path tmp
= root
;
2810 char *cwd
= page
+ PAGE_SIZE
;
2811 int buflen
= PAGE_SIZE
;
2813 prepend(&cwd
, &buflen
, "\0", 1);
2814 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2815 write_sequnlock(&rename_lock
);
2820 /* Unreachable from current root */
2821 if (!path_equal(&tmp
, &root
)) {
2822 error
= prepend_unreachable(&cwd
, &buflen
);
2828 len
= PAGE_SIZE
+ page
- cwd
;
2831 if (copy_to_user(buf
, cwd
, len
))
2835 write_sequnlock(&rename_lock
);
2841 free_page((unsigned long) page
);
2846 * Test whether new_dentry is a subdirectory of old_dentry.
2848 * Trivially implemented using the dcache structure
2852 * is_subdir - is new dentry a subdirectory of old_dentry
2853 * @new_dentry: new dentry
2854 * @old_dentry: old dentry
2856 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2857 * Returns 0 otherwise.
2858 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2861 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2866 if (new_dentry
== old_dentry
)
2870 /* for restarting inner loop in case of seq retry */
2871 seq
= read_seqbegin(&rename_lock
);
2873 * Need rcu_readlock to protect against the d_parent trashing
2877 if (d_ancestor(old_dentry
, new_dentry
))
2882 } while (read_seqretry(&rename_lock
, seq
));
2887 int path_is_under(struct path
*path1
, struct path
*path2
)
2889 struct vfsmount
*mnt
= path1
->mnt
;
2890 struct dentry
*dentry
= path1
->dentry
;
2893 br_read_lock(vfsmount_lock
);
2894 if (mnt
!= path2
->mnt
) {
2896 if (mnt
->mnt_parent
== mnt
) {
2897 br_read_unlock(vfsmount_lock
);
2900 if (mnt
->mnt_parent
== path2
->mnt
)
2902 mnt
= mnt
->mnt_parent
;
2904 dentry
= mnt
->mnt_mountpoint
;
2906 res
= is_subdir(dentry
, path2
->dentry
);
2907 br_read_unlock(vfsmount_lock
);
2910 EXPORT_SYMBOL(path_is_under
);
2912 void d_genocide(struct dentry
*root
)
2914 struct dentry
*this_parent
;
2915 struct list_head
*next
;
2919 seq
= read_seqbegin(&rename_lock
);
2922 spin_lock(&this_parent
->d_lock
);
2924 next
= this_parent
->d_subdirs
.next
;
2926 while (next
!= &this_parent
->d_subdirs
) {
2927 struct list_head
*tmp
= next
;
2928 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2931 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2932 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2933 spin_unlock(&dentry
->d_lock
);
2936 if (!list_empty(&dentry
->d_subdirs
)) {
2937 spin_unlock(&this_parent
->d_lock
);
2938 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2939 this_parent
= dentry
;
2940 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2943 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2944 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2947 spin_unlock(&dentry
->d_lock
);
2949 if (this_parent
!= root
) {
2950 struct dentry
*child
= this_parent
;
2951 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2952 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2953 this_parent
->d_count
--;
2955 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2958 next
= child
->d_u
.d_child
.next
;
2961 spin_unlock(&this_parent
->d_lock
);
2962 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2965 write_sequnlock(&rename_lock
);
2970 write_seqlock(&rename_lock
);
2975 * find_inode_number - check for dentry with name
2976 * @dir: directory to check
2977 * @name: Name to find.
2979 * Check whether a dentry already exists for the given name,
2980 * and return the inode number if it has an inode. Otherwise
2983 * This routine is used to post-process directory listings for
2984 * filesystems using synthetic inode numbers, and is necessary
2985 * to keep getcwd() working.
2988 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2990 struct dentry
* dentry
;
2993 dentry
= d_hash_and_lookup(dir
, name
);
2995 if (dentry
->d_inode
)
2996 ino
= dentry
->d_inode
->i_ino
;
3001 EXPORT_SYMBOL(find_inode_number
);
3003 static __initdata
unsigned long dhash_entries
;
3004 static int __init
set_dhash_entries(char *str
)
3008 dhash_entries
= simple_strtoul(str
, &str
, 0);
3011 __setup("dhash_entries=", set_dhash_entries
);
3013 static void __init
dcache_init_early(void)
3017 /* If hashes are distributed across NUMA nodes, defer
3018 * hash allocation until vmalloc space is available.
3024 alloc_large_system_hash("Dentry cache",
3025 sizeof(struct dcache_hash_bucket
),
3033 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3034 INIT_HLIST_BL_HEAD(&dentry_hashtable
[loop
].head
);
3037 static void __init
dcache_init(void)
3042 * A constructor could be added for stable state like the lists,
3043 * but it is probably not worth it because of the cache nature
3046 dentry_cache
= KMEM_CACHE(dentry
,
3047 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3049 register_shrinker(&dcache_shrinker
);
3051 /* Hash may have been set up in dcache_init_early */
3056 alloc_large_system_hash("Dentry cache",
3057 sizeof(struct dcache_hash_bucket
),
3065 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3066 INIT_HLIST_BL_HEAD(&dentry_hashtable
[loop
].head
);
3069 /* SLAB cache for __getname() consumers */
3070 struct kmem_cache
*names_cachep __read_mostly
;
3071 EXPORT_SYMBOL(names_cachep
);
3073 EXPORT_SYMBOL(d_genocide
);
3075 void __init
vfs_caches_init_early(void)
3077 dcache_init_early();
3081 void __init
vfs_caches_init(unsigned long mempages
)
3083 unsigned long reserve
;
3085 /* Base hash sizes on available memory, with a reserve equal to
3086 150% of current kernel size */
3088 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3089 mempages
-= reserve
;
3091 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3092 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3096 files_init(mempages
);