ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / kernel / time / tick-common.c
blobed228ef6f6b8dc80932cf76e79254dd509d0708d
1 /*
2 * linux/kernel/time/tick-common.c
4 * This file contains the base functions to manage periodic tick
5 * related events.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include <asm/irq_regs.h>
25 #include "tick-internal.h"
28 * Tick devices
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
32 * Tick next event: keeps track of the tick time
34 ktime_t tick_next_period;
35 ktime_t tick_period;
36 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
37 static DEFINE_RAW_SPINLOCK(tick_device_lock);
40 * Debugging: see timer_list.c
42 struct tick_device *tick_get_device(int cpu)
44 return &per_cpu(tick_cpu_device, cpu);
47 /**
48 * tick_is_oneshot_available - check for a oneshot capable event device
50 int tick_is_oneshot_available(void)
52 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
54 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
55 return 0;
56 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
57 return 1;
58 return tick_broadcast_oneshot_available();
62 * Periodic tick
64 static void tick_periodic(int cpu)
66 if (tick_do_timer_cpu == cpu) {
67 write_seqlock(&xtime_lock);
69 /* Keep track of the next tick event */
70 tick_next_period = ktime_add(tick_next_period, tick_period);
72 do_timer(1);
73 write_sequnlock(&xtime_lock);
76 update_process_times(user_mode(get_irq_regs()));
77 profile_tick(CPU_PROFILING);
81 * Event handler for periodic ticks
83 void tick_handle_periodic(struct clock_event_device *dev)
85 int cpu = smp_processor_id();
86 ktime_t next;
88 tick_periodic(cpu);
90 if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
91 return;
93 * Setup the next period for devices, which do not have
94 * periodic mode:
96 next = ktime_add(dev->next_event, tick_period);
97 for (;;) {
98 if (!clockevents_program_event(dev, next, ktime_get()))
99 return;
101 * Have to be careful here. If we're in oneshot mode,
102 * before we call tick_periodic() in a loop, we need
103 * to be sure we're using a real hardware clocksource.
104 * Otherwise we could get trapped in an infinite
105 * loop, as the tick_periodic() increments jiffies,
106 * when then will increment time, posibly causing
107 * the loop to trigger again and again.
109 if (timekeeping_valid_for_hres())
110 tick_periodic(cpu);
111 next = ktime_add(next, tick_period);
116 * Setup the device for a periodic tick
118 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
120 tick_set_periodic_handler(dev, broadcast);
122 /* Broadcast setup ? */
123 if (!tick_device_is_functional(dev))
124 return;
126 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
127 !tick_broadcast_oneshot_active()) {
128 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
129 } else {
130 unsigned long seq;
131 ktime_t next;
133 do {
134 seq = read_seqbegin(&xtime_lock);
135 next = tick_next_period;
136 } while (read_seqretry(&xtime_lock, seq));
138 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
140 for (;;) {
141 if (!clockevents_program_event(dev, next, ktime_get()))
142 return;
143 next = ktime_add(next, tick_period);
149 * Setup the tick device
151 static void tick_setup_device(struct tick_device *td,
152 struct clock_event_device *newdev, int cpu,
153 const struct cpumask *cpumask)
155 ktime_t next_event;
156 void (*handler)(struct clock_event_device *) = NULL;
159 * First device setup ?
161 if (!td->evtdev) {
163 * If no cpu took the do_timer update, assign it to
164 * this cpu:
166 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
167 tick_do_timer_cpu = cpu;
168 tick_next_period = ktime_get();
169 tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
173 * Startup in periodic mode first.
175 td->mode = TICKDEV_MODE_PERIODIC;
176 } else {
177 handler = td->evtdev->event_handler;
178 next_event = td->evtdev->next_event;
179 td->evtdev->event_handler = clockevents_handle_noop;
182 td->evtdev = newdev;
185 * When the device is not per cpu, pin the interrupt to the
186 * current cpu:
188 if (!cpumask_equal(newdev->cpumask, cpumask))
189 irq_set_affinity(newdev->irq, cpumask);
192 * When global broadcasting is active, check if the current
193 * device is registered as a placeholder for broadcast mode.
194 * This allows us to handle this x86 misfeature in a generic
195 * way.
197 if (tick_device_uses_broadcast(newdev, cpu))
198 return;
200 if (td->mode == TICKDEV_MODE_PERIODIC)
201 tick_setup_periodic(newdev, 0);
202 else
203 tick_setup_oneshot(newdev, handler, next_event);
207 * Check, if the new registered device should be used.
209 static int tick_check_new_device(struct clock_event_device *newdev)
211 struct clock_event_device *curdev;
212 struct tick_device *td;
213 int cpu, ret = NOTIFY_OK;
214 unsigned long flags;
216 raw_spin_lock_irqsave(&tick_device_lock, flags);
218 cpu = smp_processor_id();
219 if (!cpumask_test_cpu(cpu, newdev->cpumask))
220 goto out_bc;
222 td = &per_cpu(tick_cpu_device, cpu);
223 curdev = td->evtdev;
225 /* cpu local device ? */
226 if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) {
229 * If the cpu affinity of the device interrupt can not
230 * be set, ignore it.
232 if (!irq_can_set_affinity(newdev->irq))
233 goto out_bc;
236 * If we have a cpu local device already, do not replace it
237 * by a non cpu local device
239 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
240 goto out_bc;
244 * If we have an active device, then check the rating and the oneshot
245 * feature.
247 if (curdev) {
249 * Prefer one shot capable devices !
251 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
252 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
253 goto out_bc;
255 * Check the rating
257 if (curdev->rating >= newdev->rating)
258 goto out_bc;
262 * Replace the eventually existing device by the new
263 * device. If the current device is the broadcast device, do
264 * not give it back to the clockevents layer !
266 if (tick_is_broadcast_device(curdev)) {
267 clockevents_shutdown(curdev);
268 curdev = NULL;
270 clockevents_exchange_device(curdev, newdev);
271 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
272 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
273 tick_oneshot_notify();
275 raw_spin_unlock_irqrestore(&tick_device_lock, flags);
276 return NOTIFY_STOP;
278 out_bc:
280 * Can the new device be used as a broadcast device ?
282 if (tick_check_broadcast_device(newdev))
283 ret = NOTIFY_STOP;
285 raw_spin_unlock_irqrestore(&tick_device_lock, flags);
287 return ret;
291 * Transfer the do_timer job away from a dying cpu.
293 * Called with interrupts disabled.
295 static void tick_handover_do_timer(int *cpup)
297 if (*cpup == tick_do_timer_cpu) {
298 int cpu = cpumask_first(cpu_online_mask);
300 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
301 TICK_DO_TIMER_NONE;
306 * Shutdown an event device on a given cpu:
308 * This is called on a life CPU, when a CPU is dead. So we cannot
309 * access the hardware device itself.
310 * We just set the mode and remove it from the lists.
312 static void tick_shutdown(unsigned int *cpup)
314 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
315 struct clock_event_device *dev = td->evtdev;
316 unsigned long flags;
318 raw_spin_lock_irqsave(&tick_device_lock, flags);
319 td->mode = TICKDEV_MODE_PERIODIC;
320 if (dev) {
322 * Prevent that the clock events layer tries to call
323 * the set mode function!
325 dev->mode = CLOCK_EVT_MODE_UNUSED;
326 clockevents_exchange_device(dev, NULL);
327 td->evtdev = NULL;
329 raw_spin_unlock_irqrestore(&tick_device_lock, flags);
332 static void tick_suspend(void)
334 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
335 unsigned long flags;
337 raw_spin_lock_irqsave(&tick_device_lock, flags);
338 clockevents_shutdown(td->evtdev);
339 raw_spin_unlock_irqrestore(&tick_device_lock, flags);
342 static void tick_resume(void)
344 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
345 unsigned long flags;
346 int broadcast = tick_resume_broadcast();
348 raw_spin_lock_irqsave(&tick_device_lock, flags);
349 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
351 if (!broadcast) {
352 if (td->mode == TICKDEV_MODE_PERIODIC)
353 tick_setup_periodic(td->evtdev, 0);
354 else
355 tick_resume_oneshot();
357 raw_spin_unlock_irqrestore(&tick_device_lock, flags);
361 * Notification about clock event devices
363 static int tick_notify(struct notifier_block *nb, unsigned long reason,
364 void *dev)
366 switch (reason) {
368 case CLOCK_EVT_NOTIFY_ADD:
369 return tick_check_new_device(dev);
371 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
372 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
373 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
374 tick_broadcast_on_off(reason, dev);
375 break;
377 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
378 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
379 tick_broadcast_oneshot_control(reason);
380 break;
382 case CLOCK_EVT_NOTIFY_CPU_DYING:
383 tick_handover_do_timer(dev);
384 break;
386 case CLOCK_EVT_NOTIFY_CPU_DEAD:
387 tick_shutdown_broadcast_oneshot(dev);
388 tick_shutdown_broadcast(dev);
389 tick_shutdown(dev);
390 break;
392 case CLOCK_EVT_NOTIFY_SUSPEND:
393 tick_suspend();
394 tick_suspend_broadcast();
395 break;
397 case CLOCK_EVT_NOTIFY_RESUME:
398 tick_resume();
399 break;
401 default:
402 break;
405 return NOTIFY_OK;
408 static struct notifier_block tick_notifier = {
409 .notifier_call = tick_notify,
413 * tick_init - initialize the tick control
415 * Register the notifier with the clockevents framework
417 void __init tick_init(void)
419 clockevents_register_notifier(&tick_notifier);