4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
24 #include <asm/local.h>
28 * The ring buffer header is special. We must manually up keep it.
30 int ring_buffer_print_entry_header(struct trace_seq
*s
)
34 ret
= trace_seq_printf(s
, "# compressed entry header\n");
35 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
36 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
37 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
38 ret
= trace_seq_printf(s
, "\n");
39 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING
);
41 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND
);
43 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
63 * Here's some silly ASCII art.
66 * |reader| RING BUFFER
68 * +------+ +---+ +---+ +---+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
95 * +------------------------------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
103 * | New +---+ +---+ +---+
106 * +------------------------------+
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
113 * We will be using cmpxchg soon to make all this lockless.
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
147 RB_BUFFERS_ON_BIT
= 0,
148 RB_BUFFERS_DISABLED_BIT
= 1,
152 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
153 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
156 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 * tracing_on - enable all tracing buffers
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
166 void tracing_on(void)
168 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
170 EXPORT_SYMBOL_GPL(tracing_on
);
173 * tracing_off - turn off all tracing buffers
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
180 void tracing_off(void)
182 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
184 EXPORT_SYMBOL_GPL(tracing_off
);
187 * tracing_off_permanent - permanently disable ring buffers
189 * This function, once called, will disable all ring buffers
192 void tracing_off_permanent(void)
194 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
198 * tracing_is_on - show state of ring buffers enabled
200 int tracing_is_on(void)
202 return ring_buffer_flags
== RB_BUFFERS_ON
;
204 EXPORT_SYMBOL_GPL(tracing_is_on
);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
223 RB_LEN_TIME_EXTEND
= 8,
224 RB_LEN_TIME_STAMP
= 16,
227 #define skip_time_extend(event) \
228 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
230 static inline int rb_null_event(struct ring_buffer_event
*event
)
232 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
235 static void rb_event_set_padding(struct ring_buffer_event
*event
)
237 /* padding has a NULL time_delta */
238 event
->type_len
= RINGBUF_TYPE_PADDING
;
239 event
->time_delta
= 0;
243 rb_event_data_length(struct ring_buffer_event
*event
)
248 length
= event
->type_len
* RB_ALIGNMENT
;
250 length
= event
->array
[0];
251 return length
+ RB_EVNT_HDR_SIZE
;
255 * Return the length of the given event. Will return
256 * the length of the time extend if the event is a
259 static inline unsigned
260 rb_event_length(struct ring_buffer_event
*event
)
262 switch (event
->type_len
) {
263 case RINGBUF_TYPE_PADDING
:
264 if (rb_null_event(event
))
267 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
269 case RINGBUF_TYPE_TIME_EXTEND
:
270 return RB_LEN_TIME_EXTEND
;
272 case RINGBUF_TYPE_TIME_STAMP
:
273 return RB_LEN_TIME_STAMP
;
275 case RINGBUF_TYPE_DATA
:
276 return rb_event_data_length(event
);
285 * Return total length of time extend and data,
286 * or just the event length for all other events.
288 static inline unsigned
289 rb_event_ts_length(struct ring_buffer_event
*event
)
293 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
294 /* time extends include the data event after it */
295 len
= RB_LEN_TIME_EXTEND
;
296 event
= skip_time_extend(event
);
298 return len
+ rb_event_length(event
);
302 * ring_buffer_event_length - return the length of the event
303 * @event: the event to get the length of
305 * Returns the size of the data load of a data event.
306 * If the event is something other than a data event, it
307 * returns the size of the event itself. With the exception
308 * of a TIME EXTEND, where it still returns the size of the
309 * data load of the data event after it.
311 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
315 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
316 event
= skip_time_extend(event
);
318 length
= rb_event_length(event
);
319 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
321 length
-= RB_EVNT_HDR_SIZE
;
322 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
323 length
-= sizeof(event
->array
[0]);
326 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
328 /* inline for ring buffer fast paths */
330 rb_event_data(struct ring_buffer_event
*event
)
332 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
333 event
= skip_time_extend(event
);
334 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
335 /* If length is in len field, then array[0] has the data */
337 return (void *)&event
->array
[0];
338 /* Otherwise length is in array[0] and array[1] has the data */
339 return (void *)&event
->array
[1];
343 * ring_buffer_event_data - return the data of the event
344 * @event: the event to get the data from
346 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
348 return rb_event_data(event
);
350 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
352 #define for_each_buffer_cpu(buffer, cpu) \
353 for_each_cpu(cpu, buffer->cpumask)
356 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
357 #define TS_DELTA_TEST (~TS_MASK)
359 /* Flag when events were overwritten */
360 #define RB_MISSED_EVENTS (1 << 31)
361 /* Missed count stored at end */
362 #define RB_MISSED_STORED (1 << 30)
364 struct buffer_data_page
{
365 u64 time_stamp
; /* page time stamp */
366 local_t commit
; /* write committed index */
367 unsigned char data
[]; /* data of buffer page */
371 * Note, the buffer_page list must be first. The buffer pages
372 * are allocated in cache lines, which means that each buffer
373 * page will be at the beginning of a cache line, and thus
374 * the least significant bits will be zero. We use this to
375 * add flags in the list struct pointers, to make the ring buffer
379 struct list_head list
; /* list of buffer pages */
380 local_t write
; /* index for next write */
381 unsigned read
; /* index for next read */
382 local_t entries
; /* entries on this page */
383 unsigned long real_end
; /* real end of data */
384 struct buffer_data_page
*page
; /* Actual data page */
388 * The buffer page counters, write and entries, must be reset
389 * atomically when crossing page boundaries. To synchronize this
390 * update, two counters are inserted into the number. One is
391 * the actual counter for the write position or count on the page.
393 * The other is a counter of updaters. Before an update happens
394 * the update partition of the counter is incremented. This will
395 * allow the updater to update the counter atomically.
397 * The counter is 20 bits, and the state data is 12.
399 #define RB_WRITE_MASK 0xfffff
400 #define RB_WRITE_INTCNT (1 << 20)
402 static void rb_init_page(struct buffer_data_page
*bpage
)
404 local_set(&bpage
->commit
, 0);
408 * ring_buffer_page_len - the size of data on the page.
409 * @page: The page to read
411 * Returns the amount of data on the page, including buffer page header.
413 size_t ring_buffer_page_len(void *page
)
415 return local_read(&((struct buffer_data_page
*)page
)->commit
)
420 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
423 static void free_buffer_page(struct buffer_page
*bpage
)
425 free_page((unsigned long)bpage
->page
);
430 * We need to fit the time_stamp delta into 27 bits.
432 static inline int test_time_stamp(u64 delta
)
434 if (delta
& TS_DELTA_TEST
)
439 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
441 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
444 int ring_buffer_print_page_header(struct trace_seq
*s
)
446 struct buffer_data_page field
;
449 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
450 "offset:0;\tsize:%u;\tsigned:%u;\n",
451 (unsigned int)sizeof(field
.time_stamp
),
452 (unsigned int)is_signed_type(u64
));
454 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
455 "offset:%u;\tsize:%u;\tsigned:%u;\n",
456 (unsigned int)offsetof(typeof(field
), commit
),
457 (unsigned int)sizeof(field
.commit
),
458 (unsigned int)is_signed_type(long));
460 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
461 "offset:%u;\tsize:%u;\tsigned:%u;\n",
462 (unsigned int)offsetof(typeof(field
), commit
),
464 (unsigned int)is_signed_type(long));
466 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
467 "offset:%u;\tsize:%u;\tsigned:%u;\n",
468 (unsigned int)offsetof(typeof(field
), data
),
469 (unsigned int)BUF_PAGE_SIZE
,
470 (unsigned int)is_signed_type(char));
476 * head_page == tail_page && head == tail then buffer is empty.
478 struct ring_buffer_per_cpu
{
480 atomic_t record_disabled
;
481 struct ring_buffer
*buffer
;
482 spinlock_t reader_lock
; /* serialize readers */
483 arch_spinlock_t lock
;
484 struct lock_class_key lock_key
;
485 struct list_head
*pages
;
486 struct buffer_page
*head_page
; /* read from head */
487 struct buffer_page
*tail_page
; /* write to tail */
488 struct buffer_page
*commit_page
; /* committed pages */
489 struct buffer_page
*reader_page
;
490 unsigned long lost_events
;
491 unsigned long last_overrun
;
492 local_t commit_overrun
;
506 atomic_t record_disabled
;
507 cpumask_var_t cpumask
;
509 struct lock_class_key
*reader_lock_key
;
513 struct ring_buffer_per_cpu
**buffers
;
515 #ifdef CONFIG_HOTPLUG_CPU
516 struct notifier_block cpu_notify
;
521 struct ring_buffer_iter
{
522 struct ring_buffer_per_cpu
*cpu_buffer
;
524 struct buffer_page
*head_page
;
525 struct buffer_page
*cache_reader_page
;
526 unsigned long cache_read
;
530 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
531 #define RB_WARN_ON(b, cond) \
533 int _____ret = unlikely(cond); \
535 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
536 struct ring_buffer_per_cpu *__b = \
538 atomic_inc(&__b->buffer->record_disabled); \
540 atomic_inc(&b->record_disabled); \
546 /* Up this if you want to test the TIME_EXTENTS and normalization */
547 #define DEBUG_SHIFT 0
549 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
551 /* shift to debug/test normalization and TIME_EXTENTS */
552 return buffer
->clock() << DEBUG_SHIFT
;
555 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
559 preempt_disable_notrace();
560 time
= rb_time_stamp(buffer
);
561 preempt_enable_no_resched_notrace();
565 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
567 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
570 /* Just stupid testing the normalize function and deltas */
573 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
576 * Making the ring buffer lockless makes things tricky.
577 * Although writes only happen on the CPU that they are on,
578 * and they only need to worry about interrupts. Reads can
581 * The reader page is always off the ring buffer, but when the
582 * reader finishes with a page, it needs to swap its page with
583 * a new one from the buffer. The reader needs to take from
584 * the head (writes go to the tail). But if a writer is in overwrite
585 * mode and wraps, it must push the head page forward.
587 * Here lies the problem.
589 * The reader must be careful to replace only the head page, and
590 * not another one. As described at the top of the file in the
591 * ASCII art, the reader sets its old page to point to the next
592 * page after head. It then sets the page after head to point to
593 * the old reader page. But if the writer moves the head page
594 * during this operation, the reader could end up with the tail.
596 * We use cmpxchg to help prevent this race. We also do something
597 * special with the page before head. We set the LSB to 1.
599 * When the writer must push the page forward, it will clear the
600 * bit that points to the head page, move the head, and then set
601 * the bit that points to the new head page.
603 * We also don't want an interrupt coming in and moving the head
604 * page on another writer. Thus we use the second LSB to catch
607 * head->list->prev->next bit 1 bit 0
610 * Points to head page 0 1
613 * Note we can not trust the prev pointer of the head page, because:
615 * +----+ +-----+ +-----+
616 * | |------>| T |---X--->| N |
618 * +----+ +-----+ +-----+
621 * +----------| R |----------+ |
625 * Key: ---X--> HEAD flag set in pointer
630 * (see __rb_reserve_next() to see where this happens)
632 * What the above shows is that the reader just swapped out
633 * the reader page with a page in the buffer, but before it
634 * could make the new header point back to the new page added
635 * it was preempted by a writer. The writer moved forward onto
636 * the new page added by the reader and is about to move forward
639 * You can see, it is legitimate for the previous pointer of
640 * the head (or any page) not to point back to itself. But only
644 #define RB_PAGE_NORMAL 0UL
645 #define RB_PAGE_HEAD 1UL
646 #define RB_PAGE_UPDATE 2UL
649 #define RB_FLAG_MASK 3UL
651 /* PAGE_MOVED is not part of the mask */
652 #define RB_PAGE_MOVED 4UL
655 * rb_list_head - remove any bit
657 static struct list_head
*rb_list_head(struct list_head
*list
)
659 unsigned long val
= (unsigned long)list
;
661 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
665 * rb_is_head_page - test if the given page is the head page
667 * Because the reader may move the head_page pointer, we can
668 * not trust what the head page is (it may be pointing to
669 * the reader page). But if the next page is a header page,
670 * its flags will be non zero.
673 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
674 struct buffer_page
*page
, struct list_head
*list
)
678 val
= (unsigned long)list
->next
;
680 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
681 return RB_PAGE_MOVED
;
683 return val
& RB_FLAG_MASK
;
689 * The unique thing about the reader page, is that, if the
690 * writer is ever on it, the previous pointer never points
691 * back to the reader page.
693 static int rb_is_reader_page(struct buffer_page
*page
)
695 struct list_head
*list
= page
->list
.prev
;
697 return rb_list_head(list
->next
) != &page
->list
;
701 * rb_set_list_to_head - set a list_head to be pointing to head.
703 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
704 struct list_head
*list
)
708 ptr
= (unsigned long *)&list
->next
;
709 *ptr
|= RB_PAGE_HEAD
;
710 *ptr
&= ~RB_PAGE_UPDATE
;
714 * rb_head_page_activate - sets up head page
716 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
718 struct buffer_page
*head
;
720 head
= cpu_buffer
->head_page
;
725 * Set the previous list pointer to have the HEAD flag.
727 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
730 static void rb_list_head_clear(struct list_head
*list
)
732 unsigned long *ptr
= (unsigned long *)&list
->next
;
734 *ptr
&= ~RB_FLAG_MASK
;
738 * rb_head_page_dactivate - clears head page ptr (for free list)
741 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
743 struct list_head
*hd
;
745 /* Go through the whole list and clear any pointers found. */
746 rb_list_head_clear(cpu_buffer
->pages
);
748 list_for_each(hd
, cpu_buffer
->pages
)
749 rb_list_head_clear(hd
);
752 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
753 struct buffer_page
*head
,
754 struct buffer_page
*prev
,
755 int old_flag
, int new_flag
)
757 struct list_head
*list
;
758 unsigned long val
= (unsigned long)&head
->list
;
763 val
&= ~RB_FLAG_MASK
;
765 ret
= cmpxchg((unsigned long *)&list
->next
,
766 val
| old_flag
, val
| new_flag
);
768 /* check if the reader took the page */
769 if ((ret
& ~RB_FLAG_MASK
) != val
)
770 return RB_PAGE_MOVED
;
772 return ret
& RB_FLAG_MASK
;
775 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
776 struct buffer_page
*head
,
777 struct buffer_page
*prev
,
780 return rb_head_page_set(cpu_buffer
, head
, prev
,
781 old_flag
, RB_PAGE_UPDATE
);
784 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
785 struct buffer_page
*head
,
786 struct buffer_page
*prev
,
789 return rb_head_page_set(cpu_buffer
, head
, prev
,
790 old_flag
, RB_PAGE_HEAD
);
793 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
794 struct buffer_page
*head
,
795 struct buffer_page
*prev
,
798 return rb_head_page_set(cpu_buffer
, head
, prev
,
799 old_flag
, RB_PAGE_NORMAL
);
802 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
803 struct buffer_page
**bpage
)
805 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
807 *bpage
= list_entry(p
, struct buffer_page
, list
);
810 static struct buffer_page
*
811 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
813 struct buffer_page
*head
;
814 struct buffer_page
*page
;
815 struct list_head
*list
;
818 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
822 list
= cpu_buffer
->pages
;
823 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
826 page
= head
= cpu_buffer
->head_page
;
828 * It is possible that the writer moves the header behind
829 * where we started, and we miss in one loop.
830 * A second loop should grab the header, but we'll do
831 * three loops just because I'm paranoid.
833 for (i
= 0; i
< 3; i
++) {
835 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
836 cpu_buffer
->head_page
= page
;
839 rb_inc_page(cpu_buffer
, &page
);
840 } while (page
!= head
);
843 RB_WARN_ON(cpu_buffer
, 1);
848 static int rb_head_page_replace(struct buffer_page
*old
,
849 struct buffer_page
*new)
851 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
855 val
= *ptr
& ~RB_FLAG_MASK
;
858 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
864 * rb_tail_page_update - move the tail page forward
866 * Returns 1 if moved tail page, 0 if someone else did.
868 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
869 struct buffer_page
*tail_page
,
870 struct buffer_page
*next_page
)
872 struct buffer_page
*old_tail
;
873 unsigned long old_entries
;
874 unsigned long old_write
;
878 * The tail page now needs to be moved forward.
880 * We need to reset the tail page, but without messing
881 * with possible erasing of data brought in by interrupts
882 * that have moved the tail page and are currently on it.
884 * We add a counter to the write field to denote this.
886 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
887 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
890 * Just make sure we have seen our old_write and synchronize
891 * with any interrupts that come in.
896 * If the tail page is still the same as what we think
897 * it is, then it is up to us to update the tail
900 if (tail_page
== cpu_buffer
->tail_page
) {
901 /* Zero the write counter */
902 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
903 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
906 * This will only succeed if an interrupt did
907 * not come in and change it. In which case, we
908 * do not want to modify it.
910 * We add (void) to let the compiler know that we do not care
911 * about the return value of these functions. We use the
912 * cmpxchg to only update if an interrupt did not already
913 * do it for us. If the cmpxchg fails, we don't care.
915 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
916 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
919 * No need to worry about races with clearing out the commit.
920 * it only can increment when a commit takes place. But that
921 * only happens in the outer most nested commit.
923 local_set(&next_page
->page
->commit
, 0);
925 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
926 tail_page
, next_page
);
928 if (old_tail
== tail_page
)
935 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
936 struct buffer_page
*bpage
)
938 unsigned long val
= (unsigned long)bpage
;
940 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
947 * rb_check_list - make sure a pointer to a list has the last bits zero
949 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
950 struct list_head
*list
)
952 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
954 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
960 * check_pages - integrity check of buffer pages
961 * @cpu_buffer: CPU buffer with pages to test
963 * As a safety measure we check to make sure the data pages have not
966 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
968 struct list_head
*head
= cpu_buffer
->pages
;
969 struct buffer_page
*bpage
, *tmp
;
971 rb_head_page_deactivate(cpu_buffer
);
973 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
975 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
978 if (rb_check_list(cpu_buffer
, head
))
981 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
982 if (RB_WARN_ON(cpu_buffer
,
983 bpage
->list
.next
->prev
!= &bpage
->list
))
985 if (RB_WARN_ON(cpu_buffer
,
986 bpage
->list
.prev
->next
!= &bpage
->list
))
988 if (rb_check_list(cpu_buffer
, &bpage
->list
))
992 rb_head_page_activate(cpu_buffer
);
997 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1000 struct buffer_page
*bpage
, *tmp
;
1007 for (i
= 0; i
< nr_pages
; i
++) {
1008 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1009 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
1013 rb_check_bpage(cpu_buffer
, bpage
);
1015 list_add(&bpage
->list
, &pages
);
1017 addr
= __get_free_page(GFP_KERNEL
);
1020 bpage
->page
= (void *)addr
;
1021 rb_init_page(bpage
->page
);
1025 * The ring buffer page list is a circular list that does not
1026 * start and end with a list head. All page list items point to
1029 cpu_buffer
->pages
= pages
.next
;
1032 rb_check_pages(cpu_buffer
);
1037 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1038 list_del_init(&bpage
->list
);
1039 free_buffer_page(bpage
);
1044 static struct ring_buffer_per_cpu
*
1045 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
1047 struct ring_buffer_per_cpu
*cpu_buffer
;
1048 struct buffer_page
*bpage
;
1052 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1053 GFP_KERNEL
, cpu_to_node(cpu
));
1057 cpu_buffer
->cpu
= cpu
;
1058 cpu_buffer
->buffer
= buffer
;
1059 spin_lock_init(&cpu_buffer
->reader_lock
);
1060 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1061 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1063 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1064 GFP_KERNEL
, cpu_to_node(cpu
));
1066 goto fail_free_buffer
;
1068 rb_check_bpage(cpu_buffer
, bpage
);
1070 cpu_buffer
->reader_page
= bpage
;
1071 addr
= __get_free_page(GFP_KERNEL
);
1073 goto fail_free_reader
;
1074 bpage
->page
= (void *)addr
;
1075 rb_init_page(bpage
->page
);
1077 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1079 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1081 goto fail_free_reader
;
1083 cpu_buffer
->head_page
1084 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1085 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1087 rb_head_page_activate(cpu_buffer
);
1092 free_buffer_page(cpu_buffer
->reader_page
);
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1101 struct list_head
*head
= cpu_buffer
->pages
;
1102 struct buffer_page
*bpage
, *tmp
;
1104 free_buffer_page(cpu_buffer
->reader_page
);
1106 rb_head_page_deactivate(cpu_buffer
);
1109 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1110 list_del_init(&bpage
->list
);
1111 free_buffer_page(bpage
);
1113 bpage
= list_entry(head
, struct buffer_page
, list
);
1114 free_buffer_page(bpage
);
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block
*self
,
1122 unsigned long action
, void *hcpu
);
1126 * ring_buffer_alloc - allocate a new ring_buffer
1127 * @size: the size in bytes per cpu that is needed.
1128 * @flags: attributes to set for the ring buffer.
1130 * Currently the only flag that is available is the RB_FL_OVERWRITE
1131 * flag. This flag means that the buffer will overwrite old data
1132 * when the buffer wraps. If this flag is not set, the buffer will
1133 * drop data when the tail hits the head.
1135 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1136 struct lock_class_key
*key
)
1138 struct ring_buffer
*buffer
;
1142 /* keep it in its own cache line */
1143 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1148 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1149 goto fail_free_buffer
;
1151 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1152 buffer
->flags
= flags
;
1153 buffer
->clock
= trace_clock_local
;
1154 buffer
->reader_lock_key
= key
;
1156 /* need at least two pages */
1157 if (buffer
->pages
< 2)
1161 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 * in early initcall, it will not be notified of secondary cpus.
1163 * In that off case, we need to allocate for all possible cpus.
1165 #ifdef CONFIG_HOTPLUG_CPU
1167 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1169 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1171 buffer
->cpus
= nr_cpu_ids
;
1173 bsize
= sizeof(void *) * nr_cpu_ids
;
1174 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1176 if (!buffer
->buffers
)
1177 goto fail_free_cpumask
;
1179 for_each_buffer_cpu(buffer
, cpu
) {
1180 buffer
->buffers
[cpu
] =
1181 rb_allocate_cpu_buffer(buffer
, cpu
);
1182 if (!buffer
->buffers
[cpu
])
1183 goto fail_free_buffers
;
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1188 buffer
->cpu_notify
.priority
= 0;
1189 register_cpu_notifier(&buffer
->cpu_notify
);
1193 mutex_init(&buffer
->mutex
);
1198 for_each_buffer_cpu(buffer
, cpu
) {
1199 if (buffer
->buffers
[cpu
])
1200 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1202 kfree(buffer
->buffers
);
1205 free_cpumask_var(buffer
->cpumask
);
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1215 * ring_buffer_free - free a ring buffer.
1216 * @buffer: the buffer to free.
1219 ring_buffer_free(struct ring_buffer
*buffer
)
1225 #ifdef CONFIG_HOTPLUG_CPU
1226 unregister_cpu_notifier(&buffer
->cpu_notify
);
1229 for_each_buffer_cpu(buffer
, cpu
)
1230 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1234 kfree(buffer
->buffers
);
1235 free_cpumask_var(buffer
->cpumask
);
1239 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1241 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1244 buffer
->clock
= clock
;
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1250 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1252 struct buffer_page
*bpage
;
1253 struct list_head
*p
;
1256 spin_lock_irq(&cpu_buffer
->reader_lock
);
1257 rb_head_page_deactivate(cpu_buffer
);
1259 for (i
= 0; i
< nr_pages
; i
++) {
1260 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1262 p
= cpu_buffer
->pages
->next
;
1263 bpage
= list_entry(p
, struct buffer_page
, list
);
1264 list_del_init(&bpage
->list
);
1265 free_buffer_page(bpage
);
1267 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1270 rb_reset_cpu(cpu_buffer
);
1271 rb_check_pages(cpu_buffer
);
1274 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1278 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1279 struct list_head
*pages
, unsigned nr_pages
)
1281 struct buffer_page
*bpage
;
1282 struct list_head
*p
;
1285 spin_lock_irq(&cpu_buffer
->reader_lock
);
1286 rb_head_page_deactivate(cpu_buffer
);
1288 for (i
= 0; i
< nr_pages
; i
++) {
1289 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1292 bpage
= list_entry(p
, struct buffer_page
, list
);
1293 list_del_init(&bpage
->list
);
1294 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1296 rb_reset_cpu(cpu_buffer
);
1297 rb_check_pages(cpu_buffer
);
1300 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1304 * ring_buffer_resize - resize the ring buffer
1305 * @buffer: the buffer to resize.
1306 * @size: the new size.
1308 * Minimum size is 2 * BUF_PAGE_SIZE.
1310 * Returns -1 on failure.
1312 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1314 struct ring_buffer_per_cpu
*cpu_buffer
;
1315 unsigned nr_pages
, rm_pages
, new_pages
;
1316 struct buffer_page
*bpage
, *tmp
;
1317 unsigned long buffer_size
;
1323 * Always succeed at resizing a non-existent buffer:
1328 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1329 size
*= BUF_PAGE_SIZE
;
1330 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1332 /* we need a minimum of two pages */
1333 if (size
< BUF_PAGE_SIZE
* 2)
1334 size
= BUF_PAGE_SIZE
* 2;
1336 if (size
== buffer_size
)
1339 atomic_inc(&buffer
->record_disabled
);
1341 /* Make sure all writers are done with this buffer. */
1342 synchronize_sched();
1344 mutex_lock(&buffer
->mutex
);
1347 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1349 if (size
< buffer_size
) {
1351 /* easy case, just free pages */
1352 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1355 rm_pages
= buffer
->pages
- nr_pages
;
1357 for_each_buffer_cpu(buffer
, cpu
) {
1358 cpu_buffer
= buffer
->buffers
[cpu
];
1359 rb_remove_pages(cpu_buffer
, rm_pages
);
1365 * This is a bit more difficult. We only want to add pages
1366 * when we can allocate enough for all CPUs. We do this
1367 * by allocating all the pages and storing them on a local
1368 * link list. If we succeed in our allocation, then we
1369 * add these pages to the cpu_buffers. Otherwise we just free
1370 * them all and return -ENOMEM;
1372 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1375 new_pages
= nr_pages
- buffer
->pages
;
1377 for_each_buffer_cpu(buffer
, cpu
) {
1378 for (i
= 0; i
< new_pages
; i
++) {
1379 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1381 GFP_KERNEL
, cpu_to_node(cpu
));
1384 list_add(&bpage
->list
, &pages
);
1385 addr
= __get_free_page(GFP_KERNEL
);
1388 bpage
->page
= (void *)addr
;
1389 rb_init_page(bpage
->page
);
1393 for_each_buffer_cpu(buffer
, cpu
) {
1394 cpu_buffer
= buffer
->buffers
[cpu
];
1395 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1398 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1402 buffer
->pages
= nr_pages
;
1404 mutex_unlock(&buffer
->mutex
);
1406 atomic_dec(&buffer
->record_disabled
);
1411 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1412 list_del_init(&bpage
->list
);
1413 free_buffer_page(bpage
);
1416 mutex_unlock(&buffer
->mutex
);
1417 atomic_dec(&buffer
->record_disabled
);
1421 * Something went totally wrong, and we are too paranoid
1422 * to even clean up the mess.
1426 mutex_unlock(&buffer
->mutex
);
1427 atomic_dec(&buffer
->record_disabled
);
1430 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1432 static inline void *
1433 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1435 return bpage
->data
+ index
;
1438 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1440 return bpage
->page
->data
+ index
;
1443 static inline struct ring_buffer_event
*
1444 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1446 return __rb_page_index(cpu_buffer
->reader_page
,
1447 cpu_buffer
->reader_page
->read
);
1450 static inline struct ring_buffer_event
*
1451 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1453 return __rb_page_index(iter
->head_page
, iter
->head
);
1456 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1458 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1461 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1463 return local_read(&bpage
->page
->commit
);
1466 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1468 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1471 /* Size is determined by what has been commited */
1472 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1474 return rb_page_commit(bpage
);
1477 static inline unsigned
1478 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1480 return rb_page_commit(cpu_buffer
->commit_page
);
1483 static inline unsigned
1484 rb_event_index(struct ring_buffer_event
*event
)
1486 unsigned long addr
= (unsigned long)event
;
1488 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1492 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1493 struct ring_buffer_event
*event
)
1495 unsigned long addr
= (unsigned long)event
;
1496 unsigned long index
;
1498 index
= rb_event_index(event
);
1501 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1502 rb_commit_index(cpu_buffer
) == index
;
1506 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1508 unsigned long max_count
;
1511 * We only race with interrupts and NMIs on this CPU.
1512 * If we own the commit event, then we can commit
1513 * all others that interrupted us, since the interruptions
1514 * are in stack format (they finish before they come
1515 * back to us). This allows us to do a simple loop to
1516 * assign the commit to the tail.
1519 max_count
= cpu_buffer
->buffer
->pages
* 100;
1521 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1522 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1524 if (RB_WARN_ON(cpu_buffer
,
1525 rb_is_reader_page(cpu_buffer
->tail_page
)))
1527 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1528 rb_page_write(cpu_buffer
->commit_page
));
1529 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1530 cpu_buffer
->write_stamp
=
1531 cpu_buffer
->commit_page
->page
->time_stamp
;
1532 /* add barrier to keep gcc from optimizing too much */
1535 while (rb_commit_index(cpu_buffer
) !=
1536 rb_page_write(cpu_buffer
->commit_page
)) {
1538 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1539 rb_page_write(cpu_buffer
->commit_page
));
1540 RB_WARN_ON(cpu_buffer
,
1541 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1546 /* again, keep gcc from optimizing */
1550 * If an interrupt came in just after the first while loop
1551 * and pushed the tail page forward, we will be left with
1552 * a dangling commit that will never go forward.
1554 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1558 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1560 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1561 cpu_buffer
->reader_page
->read
= 0;
1564 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1566 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1569 * The iterator could be on the reader page (it starts there).
1570 * But the head could have moved, since the reader was
1571 * found. Check for this case and assign the iterator
1572 * to the head page instead of next.
1574 if (iter
->head_page
== cpu_buffer
->reader_page
)
1575 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1577 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1579 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1583 /* Slow path, do not inline */
1584 static noinline
struct ring_buffer_event
*
1585 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1587 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1589 /* Not the first event on the page? */
1590 if (rb_event_index(event
)) {
1591 event
->time_delta
= delta
& TS_MASK
;
1592 event
->array
[0] = delta
>> TS_SHIFT
;
1594 /* nope, just zero it */
1595 event
->time_delta
= 0;
1596 event
->array
[0] = 0;
1599 return skip_time_extend(event
);
1603 * ring_buffer_update_event - update event type and data
1604 * @event: the even to update
1605 * @type: the type of event
1606 * @length: the size of the event field in the ring buffer
1608 * Update the type and data fields of the event. The length
1609 * is the actual size that is written to the ring buffer,
1610 * and with this, we can determine what to place into the
1614 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1615 struct ring_buffer_event
*event
, unsigned length
,
1616 int add_timestamp
, u64 delta
)
1618 /* Only a commit updates the timestamp */
1619 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
1623 * If we need to add a timestamp, then we
1624 * add it to the start of the resevered space.
1626 if (unlikely(add_timestamp
)) {
1627 event
= rb_add_time_stamp(event
, delta
);
1628 length
-= RB_LEN_TIME_EXTEND
;
1632 event
->time_delta
= delta
;
1633 length
-= RB_EVNT_HDR_SIZE
;
1634 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
1635 event
->type_len
= 0;
1636 event
->array
[0] = length
;
1638 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1642 * rb_handle_head_page - writer hit the head page
1644 * Returns: +1 to retry page
1649 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1650 struct buffer_page
*tail_page
,
1651 struct buffer_page
*next_page
)
1653 struct buffer_page
*new_head
;
1658 entries
= rb_page_entries(next_page
);
1661 * The hard part is here. We need to move the head
1662 * forward, and protect against both readers on
1663 * other CPUs and writers coming in via interrupts.
1665 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1669 * type can be one of four:
1670 * NORMAL - an interrupt already moved it for us
1671 * HEAD - we are the first to get here.
1672 * UPDATE - we are the interrupt interrupting
1674 * MOVED - a reader on another CPU moved the next
1675 * pointer to its reader page. Give up
1682 * We changed the head to UPDATE, thus
1683 * it is our responsibility to update
1686 local_add(entries
, &cpu_buffer
->overrun
);
1689 * The entries will be zeroed out when we move the
1693 /* still more to do */
1696 case RB_PAGE_UPDATE
:
1698 * This is an interrupt that interrupt the
1699 * previous update. Still more to do.
1702 case RB_PAGE_NORMAL
:
1704 * An interrupt came in before the update
1705 * and processed this for us.
1706 * Nothing left to do.
1711 * The reader is on another CPU and just did
1712 * a swap with our next_page.
1717 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1722 * Now that we are here, the old head pointer is
1723 * set to UPDATE. This will keep the reader from
1724 * swapping the head page with the reader page.
1725 * The reader (on another CPU) will spin till
1728 * We just need to protect against interrupts
1729 * doing the job. We will set the next pointer
1730 * to HEAD. After that, we set the old pointer
1731 * to NORMAL, but only if it was HEAD before.
1732 * otherwise we are an interrupt, and only
1733 * want the outer most commit to reset it.
1735 new_head
= next_page
;
1736 rb_inc_page(cpu_buffer
, &new_head
);
1738 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1742 * Valid returns are:
1743 * HEAD - an interrupt came in and already set it.
1744 * NORMAL - One of two things:
1745 * 1) We really set it.
1746 * 2) A bunch of interrupts came in and moved
1747 * the page forward again.
1751 case RB_PAGE_NORMAL
:
1755 RB_WARN_ON(cpu_buffer
, 1);
1760 * It is possible that an interrupt came in,
1761 * set the head up, then more interrupts came in
1762 * and moved it again. When we get back here,
1763 * the page would have been set to NORMAL but we
1764 * just set it back to HEAD.
1766 * How do you detect this? Well, if that happened
1767 * the tail page would have moved.
1769 if (ret
== RB_PAGE_NORMAL
) {
1771 * If the tail had moved passed next, then we need
1772 * to reset the pointer.
1774 if (cpu_buffer
->tail_page
!= tail_page
&&
1775 cpu_buffer
->tail_page
!= next_page
)
1776 rb_head_page_set_normal(cpu_buffer
, new_head
,
1782 * If this was the outer most commit (the one that
1783 * changed the original pointer from HEAD to UPDATE),
1784 * then it is up to us to reset it to NORMAL.
1786 if (type
== RB_PAGE_HEAD
) {
1787 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1790 if (RB_WARN_ON(cpu_buffer
,
1791 ret
!= RB_PAGE_UPDATE
))
1798 static unsigned rb_calculate_event_length(unsigned length
)
1800 struct ring_buffer_event event
; /* Used only for sizeof array */
1802 /* zero length can cause confusions */
1806 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1807 length
+= sizeof(event
.array
[0]);
1809 length
+= RB_EVNT_HDR_SIZE
;
1810 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
1816 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1817 struct buffer_page
*tail_page
,
1818 unsigned long tail
, unsigned long length
)
1820 struct ring_buffer_event
*event
;
1823 * Only the event that crossed the page boundary
1824 * must fill the old tail_page with padding.
1826 if (tail
>= BUF_PAGE_SIZE
) {
1828 * If the page was filled, then we still need
1829 * to update the real_end. Reset it to zero
1830 * and the reader will ignore it.
1832 if (tail
== BUF_PAGE_SIZE
)
1833 tail_page
->real_end
= 0;
1835 local_sub(length
, &tail_page
->write
);
1839 event
= __rb_page_index(tail_page
, tail
);
1840 kmemcheck_annotate_bitfield(event
, bitfield
);
1843 * Save the original length to the meta data.
1844 * This will be used by the reader to add lost event
1847 tail_page
->real_end
= tail
;
1850 * If this event is bigger than the minimum size, then
1851 * we need to be careful that we don't subtract the
1852 * write counter enough to allow another writer to slip
1854 * We put in a discarded commit instead, to make sure
1855 * that this space is not used again.
1857 * If we are less than the minimum size, we don't need to
1860 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1861 /* No room for any events */
1863 /* Mark the rest of the page with padding */
1864 rb_event_set_padding(event
);
1866 /* Set the write back to the previous setting */
1867 local_sub(length
, &tail_page
->write
);
1871 /* Put in a discarded event */
1872 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1873 event
->type_len
= RINGBUF_TYPE_PADDING
;
1874 /* time delta must be non zero */
1875 event
->time_delta
= 1;
1877 /* Set write to end of buffer */
1878 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1879 local_sub(length
, &tail_page
->write
);
1883 * This is the slow path, force gcc not to inline it.
1885 static noinline
struct ring_buffer_event
*
1886 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1887 unsigned long length
, unsigned long tail
,
1888 struct buffer_page
*tail_page
, u64 ts
)
1890 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1891 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1892 struct buffer_page
*next_page
;
1895 next_page
= tail_page
;
1897 rb_inc_page(cpu_buffer
, &next_page
);
1900 * If for some reason, we had an interrupt storm that made
1901 * it all the way around the buffer, bail, and warn
1904 if (unlikely(next_page
== commit_page
)) {
1905 local_inc(&cpu_buffer
->commit_overrun
);
1910 * This is where the fun begins!
1912 * We are fighting against races between a reader that
1913 * could be on another CPU trying to swap its reader
1914 * page with the buffer head.
1916 * We are also fighting against interrupts coming in and
1917 * moving the head or tail on us as well.
1919 * If the next page is the head page then we have filled
1920 * the buffer, unless the commit page is still on the
1923 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1926 * If the commit is not on the reader page, then
1927 * move the header page.
1929 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1931 * If we are not in overwrite mode,
1932 * this is easy, just stop here.
1934 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1937 ret
= rb_handle_head_page(cpu_buffer
,
1946 * We need to be careful here too. The
1947 * commit page could still be on the reader
1948 * page. We could have a small buffer, and
1949 * have filled up the buffer with events
1950 * from interrupts and such, and wrapped.
1952 * Note, if the tail page is also the on the
1953 * reader_page, we let it move out.
1955 if (unlikely((cpu_buffer
->commit_page
!=
1956 cpu_buffer
->tail_page
) &&
1957 (cpu_buffer
->commit_page
==
1958 cpu_buffer
->reader_page
))) {
1959 local_inc(&cpu_buffer
->commit_overrun
);
1965 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1968 * Nested commits always have zero deltas, so
1969 * just reread the time stamp
1971 ts
= rb_time_stamp(buffer
);
1972 next_page
->page
->time_stamp
= ts
;
1977 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1979 /* fail and let the caller try again */
1980 return ERR_PTR(-EAGAIN
);
1984 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1989 static struct ring_buffer_event
*
1990 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1991 unsigned long length
, u64 ts
,
1992 u64 delta
, int add_timestamp
)
1994 struct buffer_page
*tail_page
;
1995 struct ring_buffer_event
*event
;
1996 unsigned long tail
, write
;
1999 * If the time delta since the last event is too big to
2000 * hold in the time field of the event, then we append a
2001 * TIME EXTEND event ahead of the data event.
2003 if (unlikely(add_timestamp
))
2004 length
+= RB_LEN_TIME_EXTEND
;
2006 tail_page
= cpu_buffer
->tail_page
;
2007 write
= local_add_return(length
, &tail_page
->write
);
2009 /* set write to only the index of the write */
2010 write
&= RB_WRITE_MASK
;
2011 tail
= write
- length
;
2013 /* See if we shot pass the end of this buffer page */
2014 if (unlikely(write
> BUF_PAGE_SIZE
))
2015 return rb_move_tail(cpu_buffer
, length
, tail
,
2018 /* We reserved something on the buffer */
2020 event
= __rb_page_index(tail_page
, tail
);
2021 kmemcheck_annotate_bitfield(event
, bitfield
);
2022 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2024 local_inc(&tail_page
->entries
);
2027 * If this is the first commit on the page, then update
2031 tail_page
->page
->time_stamp
= ts
;
2037 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2038 struct ring_buffer_event
*event
)
2040 unsigned long new_index
, old_index
;
2041 struct buffer_page
*bpage
;
2042 unsigned long index
;
2045 new_index
= rb_event_index(event
);
2046 old_index
= new_index
+ rb_event_ts_length(event
);
2047 addr
= (unsigned long)event
;
2050 bpage
= cpu_buffer
->tail_page
;
2052 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2053 unsigned long write_mask
=
2054 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2056 * This is on the tail page. It is possible that
2057 * a write could come in and move the tail page
2058 * and write to the next page. That is fine
2059 * because we just shorten what is on this page.
2061 old_index
+= write_mask
;
2062 new_index
+= write_mask
;
2063 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2064 if (index
== old_index
)
2068 /* could not discard */
2072 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2074 local_inc(&cpu_buffer
->committing
);
2075 local_inc(&cpu_buffer
->commits
);
2078 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2080 unsigned long commits
;
2082 if (RB_WARN_ON(cpu_buffer
,
2083 !local_read(&cpu_buffer
->committing
)))
2087 commits
= local_read(&cpu_buffer
->commits
);
2088 /* synchronize with interrupts */
2090 if (local_read(&cpu_buffer
->committing
) == 1)
2091 rb_set_commit_to_write(cpu_buffer
);
2093 local_dec(&cpu_buffer
->committing
);
2095 /* synchronize with interrupts */
2099 * Need to account for interrupts coming in between the
2100 * updating of the commit page and the clearing of the
2101 * committing counter.
2103 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2104 !local_read(&cpu_buffer
->committing
)) {
2105 local_inc(&cpu_buffer
->committing
);
2110 static struct ring_buffer_event
*
2111 rb_reserve_next_event(struct ring_buffer
*buffer
,
2112 struct ring_buffer_per_cpu
*cpu_buffer
,
2113 unsigned long length
)
2115 struct ring_buffer_event
*event
;
2121 rb_start_commit(cpu_buffer
);
2123 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2125 * Due to the ability to swap a cpu buffer from a buffer
2126 * it is possible it was swapped before we committed.
2127 * (committing stops a swap). We check for it here and
2128 * if it happened, we have to fail the write.
2131 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2132 local_dec(&cpu_buffer
->committing
);
2133 local_dec(&cpu_buffer
->commits
);
2138 length
= rb_calculate_event_length(length
);
2144 * We allow for interrupts to reenter here and do a trace.
2145 * If one does, it will cause this original code to loop
2146 * back here. Even with heavy interrupts happening, this
2147 * should only happen a few times in a row. If this happens
2148 * 1000 times in a row, there must be either an interrupt
2149 * storm or we have something buggy.
2152 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2155 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2156 diff
= ts
- cpu_buffer
->write_stamp
;
2158 /* make sure this diff is calculated here */
2161 /* Did the write stamp get updated already? */
2162 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2164 if (unlikely(test_time_stamp(delta
))) {
2165 WARN_ONCE(delta
> (1ULL << 59),
2166 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n",
2167 (unsigned long long)delta
,
2168 (unsigned long long)ts
,
2169 (unsigned long long)cpu_buffer
->write_stamp
);
2174 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2175 delta
, add_timestamp
);
2176 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2185 rb_end_commit(cpu_buffer
);
2189 #ifdef CONFIG_TRACING
2191 #define TRACE_RECURSIVE_DEPTH 16
2193 /* Keep this code out of the fast path cache */
2194 static noinline
void trace_recursive_fail(void)
2196 /* Disable all tracing before we do anything else */
2197 tracing_off_permanent();
2199 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2200 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2201 current
->trace_recursion
,
2202 hardirq_count() >> HARDIRQ_SHIFT
,
2203 softirq_count() >> SOFTIRQ_SHIFT
,
2209 static inline int trace_recursive_lock(void)
2211 current
->trace_recursion
++;
2213 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
2216 trace_recursive_fail();
2221 static inline void trace_recursive_unlock(void)
2223 WARN_ON_ONCE(!current
->trace_recursion
);
2225 current
->trace_recursion
--;
2230 #define trace_recursive_lock() (0)
2231 #define trace_recursive_unlock() do { } while (0)
2236 * ring_buffer_lock_reserve - reserve a part of the buffer
2237 * @buffer: the ring buffer to reserve from
2238 * @length: the length of the data to reserve (excluding event header)
2240 * Returns a reseverd event on the ring buffer to copy directly to.
2241 * The user of this interface will need to get the body to write into
2242 * and can use the ring_buffer_event_data() interface.
2244 * The length is the length of the data needed, not the event length
2245 * which also includes the event header.
2247 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2248 * If NULL is returned, then nothing has been allocated or locked.
2250 struct ring_buffer_event
*
2251 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2253 struct ring_buffer_per_cpu
*cpu_buffer
;
2254 struct ring_buffer_event
*event
;
2257 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2260 /* If we are tracing schedule, we don't want to recurse */
2261 preempt_disable_notrace();
2263 if (atomic_read(&buffer
->record_disabled
))
2266 if (trace_recursive_lock())
2269 cpu
= raw_smp_processor_id();
2271 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2274 cpu_buffer
= buffer
->buffers
[cpu
];
2276 if (atomic_read(&cpu_buffer
->record_disabled
))
2279 if (length
> BUF_MAX_DATA_SIZE
)
2282 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2289 trace_recursive_unlock();
2292 preempt_enable_notrace();
2295 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2298 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2299 struct ring_buffer_event
*event
)
2304 * The event first in the commit queue updates the
2307 if (rb_event_is_commit(cpu_buffer
, event
)) {
2309 * A commit event that is first on a page
2310 * updates the write timestamp with the page stamp
2312 if (!rb_event_index(event
))
2313 cpu_buffer
->write_stamp
=
2314 cpu_buffer
->commit_page
->page
->time_stamp
;
2315 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2316 delta
= event
->array
[0];
2318 delta
+= event
->time_delta
;
2319 cpu_buffer
->write_stamp
+= delta
;
2321 cpu_buffer
->write_stamp
+= event
->time_delta
;
2325 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2326 struct ring_buffer_event
*event
)
2328 local_inc(&cpu_buffer
->entries
);
2329 rb_update_write_stamp(cpu_buffer
, event
);
2330 rb_end_commit(cpu_buffer
);
2334 * ring_buffer_unlock_commit - commit a reserved
2335 * @buffer: The buffer to commit to
2336 * @event: The event pointer to commit.
2338 * This commits the data to the ring buffer, and releases any locks held.
2340 * Must be paired with ring_buffer_lock_reserve.
2342 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2343 struct ring_buffer_event
*event
)
2345 struct ring_buffer_per_cpu
*cpu_buffer
;
2346 int cpu
= raw_smp_processor_id();
2348 cpu_buffer
= buffer
->buffers
[cpu
];
2350 rb_commit(cpu_buffer
, event
);
2352 trace_recursive_unlock();
2354 preempt_enable_notrace();
2358 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2360 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2362 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2363 event
= skip_time_extend(event
);
2365 /* array[0] holds the actual length for the discarded event */
2366 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2367 event
->type_len
= RINGBUF_TYPE_PADDING
;
2368 /* time delta must be non zero */
2369 if (!event
->time_delta
)
2370 event
->time_delta
= 1;
2374 * Decrement the entries to the page that an event is on.
2375 * The event does not even need to exist, only the pointer
2376 * to the page it is on. This may only be called before the commit
2380 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2381 struct ring_buffer_event
*event
)
2383 unsigned long addr
= (unsigned long)event
;
2384 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2385 struct buffer_page
*start
;
2389 /* Do the likely case first */
2390 if (likely(bpage
->page
== (void *)addr
)) {
2391 local_dec(&bpage
->entries
);
2396 * Because the commit page may be on the reader page we
2397 * start with the next page and check the end loop there.
2399 rb_inc_page(cpu_buffer
, &bpage
);
2402 if (bpage
->page
== (void *)addr
) {
2403 local_dec(&bpage
->entries
);
2406 rb_inc_page(cpu_buffer
, &bpage
);
2407 } while (bpage
!= start
);
2409 /* commit not part of this buffer?? */
2410 RB_WARN_ON(cpu_buffer
, 1);
2414 * ring_buffer_commit_discard - discard an event that has not been committed
2415 * @buffer: the ring buffer
2416 * @event: non committed event to discard
2418 * Sometimes an event that is in the ring buffer needs to be ignored.
2419 * This function lets the user discard an event in the ring buffer
2420 * and then that event will not be read later.
2422 * This function only works if it is called before the the item has been
2423 * committed. It will try to free the event from the ring buffer
2424 * if another event has not been added behind it.
2426 * If another event has been added behind it, it will set the event
2427 * up as discarded, and perform the commit.
2429 * If this function is called, do not call ring_buffer_unlock_commit on
2432 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2433 struct ring_buffer_event
*event
)
2435 struct ring_buffer_per_cpu
*cpu_buffer
;
2438 /* The event is discarded regardless */
2439 rb_event_discard(event
);
2441 cpu
= smp_processor_id();
2442 cpu_buffer
= buffer
->buffers
[cpu
];
2445 * This must only be called if the event has not been
2446 * committed yet. Thus we can assume that preemption
2447 * is still disabled.
2449 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2451 rb_decrement_entry(cpu_buffer
, event
);
2452 if (rb_try_to_discard(cpu_buffer
, event
))
2456 * The commit is still visible by the reader, so we
2457 * must still update the timestamp.
2459 rb_update_write_stamp(cpu_buffer
, event
);
2461 rb_end_commit(cpu_buffer
);
2463 trace_recursive_unlock();
2465 preempt_enable_notrace();
2468 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2471 * ring_buffer_write - write data to the buffer without reserving
2472 * @buffer: The ring buffer to write to.
2473 * @length: The length of the data being written (excluding the event header)
2474 * @data: The data to write to the buffer.
2476 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2477 * one function. If you already have the data to write to the buffer, it
2478 * may be easier to simply call this function.
2480 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2481 * and not the length of the event which would hold the header.
2483 int ring_buffer_write(struct ring_buffer
*buffer
,
2484 unsigned long length
,
2487 struct ring_buffer_per_cpu
*cpu_buffer
;
2488 struct ring_buffer_event
*event
;
2493 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2496 preempt_disable_notrace();
2498 if (atomic_read(&buffer
->record_disabled
))
2501 cpu
= raw_smp_processor_id();
2503 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2506 cpu_buffer
= buffer
->buffers
[cpu
];
2508 if (atomic_read(&cpu_buffer
->record_disabled
))
2511 if (length
> BUF_MAX_DATA_SIZE
)
2514 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2518 body
= rb_event_data(event
);
2520 memcpy(body
, data
, length
);
2522 rb_commit(cpu_buffer
, event
);
2526 preempt_enable_notrace();
2530 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2532 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2534 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2535 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2536 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2538 /* In case of error, head will be NULL */
2539 if (unlikely(!head
))
2542 return reader
->read
== rb_page_commit(reader
) &&
2543 (commit
== reader
||
2545 head
->read
== rb_page_commit(commit
)));
2549 * ring_buffer_record_disable - stop all writes into the buffer
2550 * @buffer: The ring buffer to stop writes to.
2552 * This prevents all writes to the buffer. Any attempt to write
2553 * to the buffer after this will fail and return NULL.
2555 * The caller should call synchronize_sched() after this.
2557 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2559 atomic_inc(&buffer
->record_disabled
);
2561 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2564 * ring_buffer_record_enable - enable writes to the buffer
2565 * @buffer: The ring buffer to enable writes
2567 * Note, multiple disables will need the same number of enables
2568 * to truly enable the writing (much like preempt_disable).
2570 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2572 atomic_dec(&buffer
->record_disabled
);
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2577 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2578 * @buffer: The ring buffer to stop writes to.
2579 * @cpu: The CPU buffer to stop
2581 * This prevents all writes to the buffer. Any attempt to write
2582 * to the buffer after this will fail and return NULL.
2584 * The caller should call synchronize_sched() after this.
2586 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2588 struct ring_buffer_per_cpu
*cpu_buffer
;
2590 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2593 cpu_buffer
= buffer
->buffers
[cpu
];
2594 atomic_inc(&cpu_buffer
->record_disabled
);
2596 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2599 * ring_buffer_record_enable_cpu - enable writes to the buffer
2600 * @buffer: The ring buffer to enable writes
2601 * @cpu: The CPU to enable.
2603 * Note, multiple disables will need the same number of enables
2604 * to truly enable the writing (much like preempt_disable).
2606 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2608 struct ring_buffer_per_cpu
*cpu_buffer
;
2610 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2613 cpu_buffer
= buffer
->buffers
[cpu
];
2614 atomic_dec(&cpu_buffer
->record_disabled
);
2616 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2619 * The total entries in the ring buffer is the running counter
2620 * of entries entered into the ring buffer, minus the sum of
2621 * the entries read from the ring buffer and the number of
2622 * entries that were overwritten.
2624 static inline unsigned long
2625 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
2627 return local_read(&cpu_buffer
->entries
) -
2628 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
2632 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633 * @buffer: The ring buffer
2634 * @cpu: The per CPU buffer to get the entries from.
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2638 struct ring_buffer_per_cpu
*cpu_buffer
;
2640 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2643 cpu_buffer
= buffer
->buffers
[cpu
];
2645 return rb_num_of_entries(cpu_buffer
);
2647 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2650 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2651 * @buffer: The ring buffer
2652 * @cpu: The per CPU buffer to get the number of overruns from
2654 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2656 struct ring_buffer_per_cpu
*cpu_buffer
;
2659 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2662 cpu_buffer
= buffer
->buffers
[cpu
];
2663 ret
= local_read(&cpu_buffer
->overrun
);
2667 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2670 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2671 * @buffer: The ring buffer
2672 * @cpu: The per CPU buffer to get the number of overruns from
2675 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2677 struct ring_buffer_per_cpu
*cpu_buffer
;
2680 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2683 cpu_buffer
= buffer
->buffers
[cpu
];
2684 ret
= local_read(&cpu_buffer
->commit_overrun
);
2688 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2691 * ring_buffer_entries - get the number of entries in a buffer
2692 * @buffer: The ring buffer
2694 * Returns the total number of entries in the ring buffer
2697 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2699 struct ring_buffer_per_cpu
*cpu_buffer
;
2700 unsigned long entries
= 0;
2703 /* if you care about this being correct, lock the buffer */
2704 for_each_buffer_cpu(buffer
, cpu
) {
2705 cpu_buffer
= buffer
->buffers
[cpu
];
2706 entries
+= rb_num_of_entries(cpu_buffer
);
2711 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2714 * ring_buffer_overruns - get the number of overruns in buffer
2715 * @buffer: The ring buffer
2717 * Returns the total number of overruns in the ring buffer
2720 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2722 struct ring_buffer_per_cpu
*cpu_buffer
;
2723 unsigned long overruns
= 0;
2726 /* if you care about this being correct, lock the buffer */
2727 for_each_buffer_cpu(buffer
, cpu
) {
2728 cpu_buffer
= buffer
->buffers
[cpu
];
2729 overruns
+= local_read(&cpu_buffer
->overrun
);
2734 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2736 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2738 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2740 /* Iterator usage is expected to have record disabled */
2741 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2742 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2743 if (unlikely(!iter
->head_page
))
2745 iter
->head
= iter
->head_page
->read
;
2747 iter
->head_page
= cpu_buffer
->reader_page
;
2748 iter
->head
= cpu_buffer
->reader_page
->read
;
2751 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2753 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2754 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
2755 iter
->cache_read
= cpu_buffer
->read
;
2759 * ring_buffer_iter_reset - reset an iterator
2760 * @iter: The iterator to reset
2762 * Resets the iterator, so that it will start from the beginning
2765 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2767 struct ring_buffer_per_cpu
*cpu_buffer
;
2768 unsigned long flags
;
2773 cpu_buffer
= iter
->cpu_buffer
;
2775 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2776 rb_iter_reset(iter
);
2777 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2779 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2782 * ring_buffer_iter_empty - check if an iterator has no more to read
2783 * @iter: The iterator to check
2785 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2787 struct ring_buffer_per_cpu
*cpu_buffer
;
2789 cpu_buffer
= iter
->cpu_buffer
;
2791 return iter
->head_page
== cpu_buffer
->commit_page
&&
2792 iter
->head
== rb_commit_index(cpu_buffer
);
2794 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2797 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2798 struct ring_buffer_event
*event
)
2802 switch (event
->type_len
) {
2803 case RINGBUF_TYPE_PADDING
:
2806 case RINGBUF_TYPE_TIME_EXTEND
:
2807 delta
= event
->array
[0];
2809 delta
+= event
->time_delta
;
2810 cpu_buffer
->read_stamp
+= delta
;
2813 case RINGBUF_TYPE_TIME_STAMP
:
2814 /* FIXME: not implemented */
2817 case RINGBUF_TYPE_DATA
:
2818 cpu_buffer
->read_stamp
+= event
->time_delta
;
2828 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2829 struct ring_buffer_event
*event
)
2833 switch (event
->type_len
) {
2834 case RINGBUF_TYPE_PADDING
:
2837 case RINGBUF_TYPE_TIME_EXTEND
:
2838 delta
= event
->array
[0];
2840 delta
+= event
->time_delta
;
2841 iter
->read_stamp
+= delta
;
2844 case RINGBUF_TYPE_TIME_STAMP
:
2845 /* FIXME: not implemented */
2848 case RINGBUF_TYPE_DATA
:
2849 iter
->read_stamp
+= event
->time_delta
;
2858 static struct buffer_page
*
2859 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2861 struct buffer_page
*reader
= NULL
;
2862 unsigned long overwrite
;
2863 unsigned long flags
;
2867 local_irq_save(flags
);
2868 arch_spin_lock(&cpu_buffer
->lock
);
2872 * This should normally only loop twice. But because the
2873 * start of the reader inserts an empty page, it causes
2874 * a case where we will loop three times. There should be no
2875 * reason to loop four times (that I know of).
2877 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2882 reader
= cpu_buffer
->reader_page
;
2884 /* If there's more to read, return this page */
2885 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2888 /* Never should we have an index greater than the size */
2889 if (RB_WARN_ON(cpu_buffer
,
2890 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2893 /* check if we caught up to the tail */
2895 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2899 * Reset the reader page to size zero.
2901 local_set(&cpu_buffer
->reader_page
->write
, 0);
2902 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2903 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2904 cpu_buffer
->reader_page
->real_end
= 0;
2908 * Splice the empty reader page into the list around the head.
2910 reader
= rb_set_head_page(cpu_buffer
);
2911 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
2912 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2915 * cpu_buffer->pages just needs to point to the buffer, it
2916 * has no specific buffer page to point to. Lets move it out
2917 * of our way so we don't accidently swap it.
2919 cpu_buffer
->pages
= reader
->list
.prev
;
2921 /* The reader page will be pointing to the new head */
2922 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2925 * We want to make sure we read the overruns after we set up our
2926 * pointers to the next object. The writer side does a
2927 * cmpxchg to cross pages which acts as the mb on the writer
2928 * side. Note, the reader will constantly fail the swap
2929 * while the writer is updating the pointers, so this
2930 * guarantees that the overwrite recorded here is the one we
2931 * want to compare with the last_overrun.
2934 overwrite
= local_read(&(cpu_buffer
->overrun
));
2937 * Here's the tricky part.
2939 * We need to move the pointer past the header page.
2940 * But we can only do that if a writer is not currently
2941 * moving it. The page before the header page has the
2942 * flag bit '1' set if it is pointing to the page we want.
2943 * but if the writer is in the process of moving it
2944 * than it will be '2' or already moved '0'.
2947 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2950 * If we did not convert it, then we must try again.
2956 * Yeah! We succeeded in replacing the page.
2958 * Now make the new head point back to the reader page.
2960 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
2961 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2963 /* Finally update the reader page to the new head */
2964 cpu_buffer
->reader_page
= reader
;
2965 rb_reset_reader_page(cpu_buffer
);
2967 if (overwrite
!= cpu_buffer
->last_overrun
) {
2968 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
2969 cpu_buffer
->last_overrun
= overwrite
;
2975 arch_spin_unlock(&cpu_buffer
->lock
);
2976 local_irq_restore(flags
);
2981 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2983 struct ring_buffer_event
*event
;
2984 struct buffer_page
*reader
;
2987 reader
= rb_get_reader_page(cpu_buffer
);
2989 /* This function should not be called when buffer is empty */
2990 if (RB_WARN_ON(cpu_buffer
, !reader
))
2993 event
= rb_reader_event(cpu_buffer
);
2995 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
2998 rb_update_read_stamp(cpu_buffer
, event
);
3000 length
= rb_event_length(event
);
3001 cpu_buffer
->reader_page
->read
+= length
;
3004 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3006 struct ring_buffer_per_cpu
*cpu_buffer
;
3007 struct ring_buffer_event
*event
;
3010 cpu_buffer
= iter
->cpu_buffer
;
3013 * Check if we are at the end of the buffer.
3015 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3016 /* discarded commits can make the page empty */
3017 if (iter
->head_page
== cpu_buffer
->commit_page
)
3023 event
= rb_iter_head_event(iter
);
3025 length
= rb_event_length(event
);
3028 * This should not be called to advance the header if we are
3029 * at the tail of the buffer.
3031 if (RB_WARN_ON(cpu_buffer
,
3032 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3033 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3036 rb_update_iter_read_stamp(iter
, event
);
3038 iter
->head
+= length
;
3040 /* check for end of page padding */
3041 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3042 (iter
->head_page
!= cpu_buffer
->commit_page
))
3043 rb_advance_iter(iter
);
3046 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3048 return cpu_buffer
->lost_events
;
3051 static struct ring_buffer_event
*
3052 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3053 unsigned long *lost_events
)
3055 struct ring_buffer_event
*event
;
3056 struct buffer_page
*reader
;
3061 * We repeat when a time extend is encountered.
3062 * Since the time extend is always attached to a data event,
3063 * we should never loop more than once.
3064 * (We never hit the following condition more than twice).
3066 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3069 reader
= rb_get_reader_page(cpu_buffer
);
3073 event
= rb_reader_event(cpu_buffer
);
3075 switch (event
->type_len
) {
3076 case RINGBUF_TYPE_PADDING
:
3077 if (rb_null_event(event
))
3078 RB_WARN_ON(cpu_buffer
, 1);
3080 * Because the writer could be discarding every
3081 * event it creates (which would probably be bad)
3082 * if we were to go back to "again" then we may never
3083 * catch up, and will trigger the warn on, or lock
3084 * the box. Return the padding, and we will release
3085 * the current locks, and try again.
3089 case RINGBUF_TYPE_TIME_EXTEND
:
3090 /* Internal data, OK to advance */
3091 rb_advance_reader(cpu_buffer
);
3094 case RINGBUF_TYPE_TIME_STAMP
:
3095 /* FIXME: not implemented */
3096 rb_advance_reader(cpu_buffer
);
3099 case RINGBUF_TYPE_DATA
:
3101 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3102 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3103 cpu_buffer
->cpu
, ts
);
3106 *lost_events
= rb_lost_events(cpu_buffer
);
3115 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3117 static struct ring_buffer_event
*
3118 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3120 struct ring_buffer
*buffer
;
3121 struct ring_buffer_per_cpu
*cpu_buffer
;
3122 struct ring_buffer_event
*event
;
3125 cpu_buffer
= iter
->cpu_buffer
;
3126 buffer
= cpu_buffer
->buffer
;
3129 * Check if someone performed a consuming read to
3130 * the buffer. A consuming read invalidates the iterator
3131 * and we need to reset the iterator in this case.
3133 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3134 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3135 rb_iter_reset(iter
);
3138 if (ring_buffer_iter_empty(iter
))
3142 * We repeat when a time extend is encountered.
3143 * Since the time extend is always attached to a data event,
3144 * we should never loop more than once.
3145 * (We never hit the following condition more than twice).
3147 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3150 if (rb_per_cpu_empty(cpu_buffer
))
3153 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3158 event
= rb_iter_head_event(iter
);
3160 switch (event
->type_len
) {
3161 case RINGBUF_TYPE_PADDING
:
3162 if (rb_null_event(event
)) {
3166 rb_advance_iter(iter
);
3169 case RINGBUF_TYPE_TIME_EXTEND
:
3170 /* Internal data, OK to advance */
3171 rb_advance_iter(iter
);
3174 case RINGBUF_TYPE_TIME_STAMP
:
3175 /* FIXME: not implemented */
3176 rb_advance_iter(iter
);
3179 case RINGBUF_TYPE_DATA
:
3181 *ts
= iter
->read_stamp
+ event
->time_delta
;
3182 ring_buffer_normalize_time_stamp(buffer
,
3183 cpu_buffer
->cpu
, ts
);
3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3195 static inline int rb_ok_to_lock(void)
3198 * If an NMI die dumps out the content of the ring buffer
3199 * do not grab locks. We also permanently disable the ring
3200 * buffer too. A one time deal is all you get from reading
3201 * the ring buffer from an NMI.
3203 if (likely(!in_nmi()))
3206 tracing_off_permanent();
3211 * ring_buffer_peek - peek at the next event to be read
3212 * @buffer: The ring buffer to read
3213 * @cpu: The cpu to peak at
3214 * @ts: The timestamp counter of this event.
3215 * @lost_events: a variable to store if events were lost (may be NULL)
3217 * This will return the event that will be read next, but does
3218 * not consume the data.
3220 struct ring_buffer_event
*
3221 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3222 unsigned long *lost_events
)
3224 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3225 struct ring_buffer_event
*event
;
3226 unsigned long flags
;
3229 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3232 dolock
= rb_ok_to_lock();
3234 local_irq_save(flags
);
3236 spin_lock(&cpu_buffer
->reader_lock
);
3237 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3238 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3239 rb_advance_reader(cpu_buffer
);
3241 spin_unlock(&cpu_buffer
->reader_lock
);
3242 local_irq_restore(flags
);
3244 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3251 * ring_buffer_iter_peek - peek at the next event to be read
3252 * @iter: The ring buffer iterator
3253 * @ts: The timestamp counter of this event.
3255 * This will return the event that will be read next, but does
3256 * not increment the iterator.
3258 struct ring_buffer_event
*
3259 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3261 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3262 struct ring_buffer_event
*event
;
3263 unsigned long flags
;
3266 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3267 event
= rb_iter_peek(iter
, ts
);
3268 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3270 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3277 * ring_buffer_consume - return an event and consume it
3278 * @buffer: The ring buffer to get the next event from
3279 * @cpu: the cpu to read the buffer from
3280 * @ts: a variable to store the timestamp (may be NULL)
3281 * @lost_events: a variable to store if events were lost (may be NULL)
3283 * Returns the next event in the ring buffer, and that event is consumed.
3284 * Meaning, that sequential reads will keep returning a different event,
3285 * and eventually empty the ring buffer if the producer is slower.
3287 struct ring_buffer_event
*
3288 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3289 unsigned long *lost_events
)
3291 struct ring_buffer_per_cpu
*cpu_buffer
;
3292 struct ring_buffer_event
*event
= NULL
;
3293 unsigned long flags
;
3296 dolock
= rb_ok_to_lock();
3299 /* might be called in atomic */
3302 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3305 cpu_buffer
= buffer
->buffers
[cpu
];
3306 local_irq_save(flags
);
3308 spin_lock(&cpu_buffer
->reader_lock
);
3310 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3312 cpu_buffer
->lost_events
= 0;
3313 rb_advance_reader(cpu_buffer
);
3317 spin_unlock(&cpu_buffer
->reader_lock
);
3318 local_irq_restore(flags
);
3323 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3328 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3331 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3332 * @buffer: The ring buffer to read from
3333 * @cpu: The cpu buffer to iterate over
3335 * This performs the initial preparations necessary to iterate
3336 * through the buffer. Memory is allocated, buffer recording
3337 * is disabled, and the iterator pointer is returned to the caller.
3339 * Disabling buffer recordng prevents the reading from being
3340 * corrupted. This is not a consuming read, so a producer is not
3343 * After a sequence of ring_buffer_read_prepare calls, the user is
3344 * expected to make at least one call to ring_buffer_prepare_sync.
3345 * Afterwards, ring_buffer_read_start is invoked to get things going
3348 * This overall must be paired with ring_buffer_finish.
3350 struct ring_buffer_iter
*
3351 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3353 struct ring_buffer_per_cpu
*cpu_buffer
;
3354 struct ring_buffer_iter
*iter
;
3356 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3359 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3363 cpu_buffer
= buffer
->buffers
[cpu
];
3365 iter
->cpu_buffer
= cpu_buffer
;
3367 atomic_inc(&cpu_buffer
->record_disabled
);
3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3374 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3376 * All previously invoked ring_buffer_read_prepare calls to prepare
3377 * iterators will be synchronized. Afterwards, read_buffer_read_start
3378 * calls on those iterators are allowed.
3381 ring_buffer_read_prepare_sync(void)
3383 synchronize_sched();
3385 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3388 * ring_buffer_read_start - start a non consuming read of the buffer
3389 * @iter: The iterator returned by ring_buffer_read_prepare
3391 * This finalizes the startup of an iteration through the buffer.
3392 * The iterator comes from a call to ring_buffer_read_prepare and
3393 * an intervening ring_buffer_read_prepare_sync must have been
3396 * Must be paired with ring_buffer_finish.
3399 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3401 struct ring_buffer_per_cpu
*cpu_buffer
;
3402 unsigned long flags
;
3407 cpu_buffer
= iter
->cpu_buffer
;
3409 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3410 arch_spin_lock(&cpu_buffer
->lock
);
3411 rb_iter_reset(iter
);
3412 arch_spin_unlock(&cpu_buffer
->lock
);
3413 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3415 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3418 * ring_buffer_finish - finish reading the iterator of the buffer
3419 * @iter: The iterator retrieved by ring_buffer_start
3421 * This re-enables the recording to the buffer, and frees the
3425 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3427 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3429 atomic_dec(&cpu_buffer
->record_disabled
);
3432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3435 * ring_buffer_read - read the next item in the ring buffer by the iterator
3436 * @iter: The ring buffer iterator
3437 * @ts: The time stamp of the event read.
3439 * This reads the next event in the ring buffer and increments the iterator.
3441 struct ring_buffer_event
*
3442 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3444 struct ring_buffer_event
*event
;
3445 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3446 unsigned long flags
;
3448 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3450 event
= rb_iter_peek(iter
, ts
);
3454 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3457 rb_advance_iter(iter
);
3459 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3463 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3466 * ring_buffer_size - return the size of the ring buffer (in bytes)
3467 * @buffer: The ring buffer.
3469 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3471 return BUF_PAGE_SIZE
* buffer
->pages
;
3473 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3476 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3478 rb_head_page_deactivate(cpu_buffer
);
3480 cpu_buffer
->head_page
3481 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3482 local_set(&cpu_buffer
->head_page
->write
, 0);
3483 local_set(&cpu_buffer
->head_page
->entries
, 0);
3484 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3486 cpu_buffer
->head_page
->read
= 0;
3488 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3489 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3491 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3492 local_set(&cpu_buffer
->reader_page
->write
, 0);
3493 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3494 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3495 cpu_buffer
->reader_page
->read
= 0;
3497 local_set(&cpu_buffer
->commit_overrun
, 0);
3498 local_set(&cpu_buffer
->overrun
, 0);
3499 local_set(&cpu_buffer
->entries
, 0);
3500 local_set(&cpu_buffer
->committing
, 0);
3501 local_set(&cpu_buffer
->commits
, 0);
3502 cpu_buffer
->read
= 0;
3504 cpu_buffer
->write_stamp
= 0;
3505 cpu_buffer
->read_stamp
= 0;
3507 cpu_buffer
->lost_events
= 0;
3508 cpu_buffer
->last_overrun
= 0;
3510 rb_head_page_activate(cpu_buffer
);
3514 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3515 * @buffer: The ring buffer to reset a per cpu buffer of
3516 * @cpu: The CPU buffer to be reset
3518 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3520 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3521 unsigned long flags
;
3523 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3526 atomic_inc(&cpu_buffer
->record_disabled
);
3528 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3530 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3533 arch_spin_lock(&cpu_buffer
->lock
);
3535 rb_reset_cpu(cpu_buffer
);
3537 arch_spin_unlock(&cpu_buffer
->lock
);
3540 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3542 atomic_dec(&cpu_buffer
->record_disabled
);
3544 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3547 * ring_buffer_reset - reset a ring buffer
3548 * @buffer: The ring buffer to reset all cpu buffers
3550 void ring_buffer_reset(struct ring_buffer
*buffer
)
3554 for_each_buffer_cpu(buffer
, cpu
)
3555 ring_buffer_reset_cpu(buffer
, cpu
);
3557 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3560 * rind_buffer_empty - is the ring buffer empty?
3561 * @buffer: The ring buffer to test
3563 int ring_buffer_empty(struct ring_buffer
*buffer
)
3565 struct ring_buffer_per_cpu
*cpu_buffer
;
3566 unsigned long flags
;
3571 dolock
= rb_ok_to_lock();
3573 /* yes this is racy, but if you don't like the race, lock the buffer */
3574 for_each_buffer_cpu(buffer
, cpu
) {
3575 cpu_buffer
= buffer
->buffers
[cpu
];
3576 local_irq_save(flags
);
3578 spin_lock(&cpu_buffer
->reader_lock
);
3579 ret
= rb_per_cpu_empty(cpu_buffer
);
3581 spin_unlock(&cpu_buffer
->reader_lock
);
3582 local_irq_restore(flags
);
3590 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3593 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3594 * @buffer: The ring buffer
3595 * @cpu: The CPU buffer to test
3597 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3599 struct ring_buffer_per_cpu
*cpu_buffer
;
3600 unsigned long flags
;
3604 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3607 dolock
= rb_ok_to_lock();
3609 cpu_buffer
= buffer
->buffers
[cpu
];
3610 local_irq_save(flags
);
3612 spin_lock(&cpu_buffer
->reader_lock
);
3613 ret
= rb_per_cpu_empty(cpu_buffer
);
3615 spin_unlock(&cpu_buffer
->reader_lock
);
3616 local_irq_restore(flags
);
3620 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3624 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3625 * @buffer_a: One buffer to swap with
3626 * @buffer_b: The other buffer to swap with
3628 * This function is useful for tracers that want to take a "snapshot"
3629 * of a CPU buffer and has another back up buffer lying around.
3630 * it is expected that the tracer handles the cpu buffer not being
3631 * used at the moment.
3633 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3634 struct ring_buffer
*buffer_b
, int cpu
)
3636 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3637 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3640 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3641 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3644 /* At least make sure the two buffers are somewhat the same */
3645 if (buffer_a
->pages
!= buffer_b
->pages
)
3650 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3653 if (atomic_read(&buffer_a
->record_disabled
))
3656 if (atomic_read(&buffer_b
->record_disabled
))
3659 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3660 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3662 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3665 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3669 * We can't do a synchronize_sched here because this
3670 * function can be called in atomic context.
3671 * Normally this will be called from the same CPU as cpu.
3672 * If not it's up to the caller to protect this.
3674 atomic_inc(&cpu_buffer_a
->record_disabled
);
3675 atomic_inc(&cpu_buffer_b
->record_disabled
);
3678 if (local_read(&cpu_buffer_a
->committing
))
3680 if (local_read(&cpu_buffer_b
->committing
))
3683 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3684 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3686 cpu_buffer_b
->buffer
= buffer_a
;
3687 cpu_buffer_a
->buffer
= buffer_b
;
3692 atomic_dec(&cpu_buffer_a
->record_disabled
);
3693 atomic_dec(&cpu_buffer_b
->record_disabled
);
3697 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3698 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3701 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3702 * @buffer: the buffer to allocate for.
3704 * This function is used in conjunction with ring_buffer_read_page.
3705 * When reading a full page from the ring buffer, these functions
3706 * can be used to speed up the process. The calling function should
3707 * allocate a few pages first with this function. Then when it
3708 * needs to get pages from the ring buffer, it passes the result
3709 * of this function into ring_buffer_read_page, which will swap
3710 * the page that was allocated, with the read page of the buffer.
3713 * The page allocated, or NULL on error.
3715 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3717 struct buffer_data_page
*bpage
;
3720 addr
= __get_free_page(GFP_KERNEL
);
3724 bpage
= (void *)addr
;
3726 rb_init_page(bpage
);
3730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3733 * ring_buffer_free_read_page - free an allocated read page
3734 * @buffer: the buffer the page was allocate for
3735 * @data: the page to free
3737 * Free a page allocated from ring_buffer_alloc_read_page.
3739 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3741 free_page((unsigned long)data
);
3743 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3746 * ring_buffer_read_page - extract a page from the ring buffer
3747 * @buffer: buffer to extract from
3748 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3749 * @len: amount to extract
3750 * @cpu: the cpu of the buffer to extract
3751 * @full: should the extraction only happen when the page is full.
3753 * This function will pull out a page from the ring buffer and consume it.
3754 * @data_page must be the address of the variable that was returned
3755 * from ring_buffer_alloc_read_page. This is because the page might be used
3756 * to swap with a page in the ring buffer.
3759 * rpage = ring_buffer_alloc_read_page(buffer);
3762 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3764 * process_page(rpage, ret);
3766 * When @full is set, the function will not return true unless
3767 * the writer is off the reader page.
3769 * Note: it is up to the calling functions to handle sleeps and wakeups.
3770 * The ring buffer can be used anywhere in the kernel and can not
3771 * blindly call wake_up. The layer that uses the ring buffer must be
3772 * responsible for that.
3775 * >=0 if data has been transferred, returns the offset of consumed data.
3776 * <0 if no data has been transferred.
3778 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3779 void **data_page
, size_t len
, int cpu
, int full
)
3781 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3782 struct ring_buffer_event
*event
;
3783 struct buffer_data_page
*bpage
;
3784 struct buffer_page
*reader
;
3785 unsigned long missed_events
;
3786 unsigned long flags
;
3787 unsigned int commit
;
3792 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3796 * If len is not big enough to hold the page header, then
3797 * we can not copy anything.
3799 if (len
<= BUF_PAGE_HDR_SIZE
)
3802 len
-= BUF_PAGE_HDR_SIZE
;
3811 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3813 reader
= rb_get_reader_page(cpu_buffer
);
3817 event
= rb_reader_event(cpu_buffer
);
3819 read
= reader
->read
;
3820 commit
= rb_page_commit(reader
);
3822 /* Check if any events were dropped */
3823 missed_events
= cpu_buffer
->lost_events
;
3826 * If this page has been partially read or
3827 * if len is not big enough to read the rest of the page or
3828 * a writer is still on the page, then
3829 * we must copy the data from the page to the buffer.
3830 * Otherwise, we can simply swap the page with the one passed in.
3832 if (read
|| (len
< (commit
- read
)) ||
3833 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3834 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3835 unsigned int rpos
= read
;
3836 unsigned int pos
= 0;
3842 if (len
> (commit
- read
))
3843 len
= (commit
- read
);
3845 /* Always keep the time extend and data together */
3846 size
= rb_event_ts_length(event
);
3851 /* save the current timestamp, since the user will need it */
3852 save_timestamp
= cpu_buffer
->read_stamp
;
3854 /* Need to copy one event at a time */
3856 /* We need the size of one event, because
3857 * rb_advance_reader only advances by one event,
3858 * whereas rb_event_ts_length may include the size of
3859 * one or two events.
3860 * We have already ensured there's enough space if this
3861 * is a time extend. */
3862 size
= rb_event_length(event
);
3863 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3867 rb_advance_reader(cpu_buffer
);
3868 rpos
= reader
->read
;
3874 event
= rb_reader_event(cpu_buffer
);
3875 /* Always keep the time extend and data together */
3876 size
= rb_event_ts_length(event
);
3877 } while (len
>= size
);
3880 local_set(&bpage
->commit
, pos
);
3881 bpage
->time_stamp
= save_timestamp
;
3883 /* we copied everything to the beginning */
3886 /* update the entry counter */
3887 cpu_buffer
->read
+= rb_page_entries(reader
);
3889 /* swap the pages */
3890 rb_init_page(bpage
);
3891 bpage
= reader
->page
;
3892 reader
->page
= *data_page
;
3893 local_set(&reader
->write
, 0);
3894 local_set(&reader
->entries
, 0);
3899 * Use the real_end for the data size,
3900 * This gives us a chance to store the lost events
3903 if (reader
->real_end
)
3904 local_set(&bpage
->commit
, reader
->real_end
);
3908 cpu_buffer
->lost_events
= 0;
3910 commit
= local_read(&bpage
->commit
);
3912 * Set a flag in the commit field if we lost events
3914 if (missed_events
) {
3915 /* If there is room at the end of the page to save the
3916 * missed events, then record it there.
3918 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
3919 memcpy(&bpage
->data
[commit
], &missed_events
,
3920 sizeof(missed_events
));
3921 local_add(RB_MISSED_STORED
, &bpage
->commit
);
3922 commit
+= sizeof(missed_events
);
3924 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
3928 * This page may be off to user land. Zero it out here.
3930 if (commit
< BUF_PAGE_SIZE
)
3931 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
3934 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3939 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3941 #ifdef CONFIG_TRACING
3943 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3944 size_t cnt
, loff_t
*ppos
)
3946 unsigned long *p
= filp
->private_data
;
3950 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3951 r
= sprintf(buf
, "permanently disabled\n");
3953 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3955 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3959 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3960 size_t cnt
, loff_t
*ppos
)
3962 unsigned long *p
= filp
->private_data
;
3967 if (cnt
>= sizeof(buf
))
3970 if (copy_from_user(&buf
, ubuf
, cnt
))
3975 ret
= strict_strtoul(buf
, 10, &val
);
3980 set_bit(RB_BUFFERS_ON_BIT
, p
);
3982 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3989 static const struct file_operations rb_simple_fops
= {
3990 .open
= tracing_open_generic
,
3991 .read
= rb_simple_read
,
3992 .write
= rb_simple_write
,
3993 .llseek
= default_llseek
,
3997 static __init
int rb_init_debugfs(void)
3999 struct dentry
*d_tracer
;
4001 d_tracer
= tracing_init_dentry();
4003 trace_create_file("tracing_on", 0644, d_tracer
,
4004 &ring_buffer_flags
, &rb_simple_fops
);
4009 fs_initcall(rb_init_debugfs
);
4012 #ifdef CONFIG_HOTPLUG_CPU
4013 static int rb_cpu_notify(struct notifier_block
*self
,
4014 unsigned long action
, void *hcpu
)
4016 struct ring_buffer
*buffer
=
4017 container_of(self
, struct ring_buffer
, cpu_notify
);
4018 long cpu
= (long)hcpu
;
4021 case CPU_UP_PREPARE
:
4022 case CPU_UP_PREPARE_FROZEN
:
4023 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4026 buffer
->buffers
[cpu
] =
4027 rb_allocate_cpu_buffer(buffer
, cpu
);
4028 if (!buffer
->buffers
[cpu
]) {
4029 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4034 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4036 case CPU_DOWN_PREPARE
:
4037 case CPU_DOWN_PREPARE_FROZEN
:
4040 * If we were to free the buffer, then the user would
4041 * lose any trace that was in the buffer.