ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / kernel / trace / ring_buffer.c
blobbd1c35a4fbccf31c0531f0667545011f704c561f
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
24 #include <asm/local.h>
25 #include "trace.h"
28 * The ring buffer header is special. We must manually up keep it.
30 int ring_buffer_print_entry_header(struct trace_seq *s)
32 int ret;
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 return ret;
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
63 * Here's some silly ASCII art.
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
113 * We will be using cmpxchg soon to make all this lockless.
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
146 enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
151 enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 * tracing_on - enable all tracing buffers
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
166 void tracing_on(void)
168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
170 EXPORT_SYMBOL_GPL(tracing_on);
173 * tracing_off - turn off all tracing buffers
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
180 void tracing_off(void)
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
184 EXPORT_SYMBOL_GPL(tracing_off);
187 * tracing_off_permanent - permanently disable ring buffers
189 * This function, once called, will disable all ring buffers
190 * permanently.
192 void tracing_off_permanent(void)
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
198 * tracing_is_on - show state of ring buffers enabled
200 int tracing_is_on(void)
202 return ring_buffer_flags == RB_BUFFERS_ON;
204 EXPORT_SYMBOL_GPL(tracing_is_on);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
217 #endif
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
227 #define skip_time_extend(event) \
228 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
230 static inline int rb_null_event(struct ring_buffer_event *event)
232 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
235 static void rb_event_set_padding(struct ring_buffer_event *event)
237 /* padding has a NULL time_delta */
238 event->type_len = RINGBUF_TYPE_PADDING;
239 event->time_delta = 0;
242 static unsigned
243 rb_event_data_length(struct ring_buffer_event *event)
245 unsigned length;
247 if (event->type_len)
248 length = event->type_len * RB_ALIGNMENT;
249 else
250 length = event->array[0];
251 return length + RB_EVNT_HDR_SIZE;
255 * Return the length of the given event. Will return
256 * the length of the time extend if the event is a
257 * time extend.
259 static inline unsigned
260 rb_event_length(struct ring_buffer_event *event)
262 switch (event->type_len) {
263 case RINGBUF_TYPE_PADDING:
264 if (rb_null_event(event))
265 /* undefined */
266 return -1;
267 return event->array[0] + RB_EVNT_HDR_SIZE;
269 case RINGBUF_TYPE_TIME_EXTEND:
270 return RB_LEN_TIME_EXTEND;
272 case RINGBUF_TYPE_TIME_STAMP:
273 return RB_LEN_TIME_STAMP;
275 case RINGBUF_TYPE_DATA:
276 return rb_event_data_length(event);
277 default:
278 BUG();
280 /* not hit */
281 return 0;
285 * Return total length of time extend and data,
286 * or just the event length for all other events.
288 static inline unsigned
289 rb_event_ts_length(struct ring_buffer_event *event)
291 unsigned len = 0;
293 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
294 /* time extends include the data event after it */
295 len = RB_LEN_TIME_EXTEND;
296 event = skip_time_extend(event);
298 return len + rb_event_length(event);
302 * ring_buffer_event_length - return the length of the event
303 * @event: the event to get the length of
305 * Returns the size of the data load of a data event.
306 * If the event is something other than a data event, it
307 * returns the size of the event itself. With the exception
308 * of a TIME EXTEND, where it still returns the size of the
309 * data load of the data event after it.
311 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
313 unsigned length;
315 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
316 event = skip_time_extend(event);
318 length = rb_event_length(event);
319 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
320 return length;
321 length -= RB_EVNT_HDR_SIZE;
322 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
323 length -= sizeof(event->array[0]);
324 return length;
326 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
328 /* inline for ring buffer fast paths */
329 static void *
330 rb_event_data(struct ring_buffer_event *event)
332 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
333 event = skip_time_extend(event);
334 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
335 /* If length is in len field, then array[0] has the data */
336 if (event->type_len)
337 return (void *)&event->array[0];
338 /* Otherwise length is in array[0] and array[1] has the data */
339 return (void *)&event->array[1];
343 * ring_buffer_event_data - return the data of the event
344 * @event: the event to get the data from
346 void *ring_buffer_event_data(struct ring_buffer_event *event)
348 return rb_event_data(event);
350 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
352 #define for_each_buffer_cpu(buffer, cpu) \
353 for_each_cpu(cpu, buffer->cpumask)
355 #define TS_SHIFT 27
356 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
357 #define TS_DELTA_TEST (~TS_MASK)
359 /* Flag when events were overwritten */
360 #define RB_MISSED_EVENTS (1 << 31)
361 /* Missed count stored at end */
362 #define RB_MISSED_STORED (1 << 30)
364 struct buffer_data_page {
365 u64 time_stamp; /* page time stamp */
366 local_t commit; /* write committed index */
367 unsigned char data[]; /* data of buffer page */
371 * Note, the buffer_page list must be first. The buffer pages
372 * are allocated in cache lines, which means that each buffer
373 * page will be at the beginning of a cache line, and thus
374 * the least significant bits will be zero. We use this to
375 * add flags in the list struct pointers, to make the ring buffer
376 * lockless.
378 struct buffer_page {
379 struct list_head list; /* list of buffer pages */
380 local_t write; /* index for next write */
381 unsigned read; /* index for next read */
382 local_t entries; /* entries on this page */
383 unsigned long real_end; /* real end of data */
384 struct buffer_data_page *page; /* Actual data page */
388 * The buffer page counters, write and entries, must be reset
389 * atomically when crossing page boundaries. To synchronize this
390 * update, two counters are inserted into the number. One is
391 * the actual counter for the write position or count on the page.
393 * The other is a counter of updaters. Before an update happens
394 * the update partition of the counter is incremented. This will
395 * allow the updater to update the counter atomically.
397 * The counter is 20 bits, and the state data is 12.
399 #define RB_WRITE_MASK 0xfffff
400 #define RB_WRITE_INTCNT (1 << 20)
402 static void rb_init_page(struct buffer_data_page *bpage)
404 local_set(&bpage->commit, 0);
408 * ring_buffer_page_len - the size of data on the page.
409 * @page: The page to read
411 * Returns the amount of data on the page, including buffer page header.
413 size_t ring_buffer_page_len(void *page)
415 return local_read(&((struct buffer_data_page *)page)->commit)
416 + BUF_PAGE_HDR_SIZE;
420 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
421 * this issue out.
423 static void free_buffer_page(struct buffer_page *bpage)
425 free_page((unsigned long)bpage->page);
426 kfree(bpage);
430 * We need to fit the time_stamp delta into 27 bits.
432 static inline int test_time_stamp(u64 delta)
434 if (delta & TS_DELTA_TEST)
435 return 1;
436 return 0;
439 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
441 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
442 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
444 int ring_buffer_print_page_header(struct trace_seq *s)
446 struct buffer_data_page field;
447 int ret;
449 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
450 "offset:0;\tsize:%u;\tsigned:%u;\n",
451 (unsigned int)sizeof(field.time_stamp),
452 (unsigned int)is_signed_type(u64));
454 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
455 "offset:%u;\tsize:%u;\tsigned:%u;\n",
456 (unsigned int)offsetof(typeof(field), commit),
457 (unsigned int)sizeof(field.commit),
458 (unsigned int)is_signed_type(long));
460 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
461 "offset:%u;\tsize:%u;\tsigned:%u;\n",
462 (unsigned int)offsetof(typeof(field), commit),
464 (unsigned int)is_signed_type(long));
466 ret = trace_seq_printf(s, "\tfield: char data;\t"
467 "offset:%u;\tsize:%u;\tsigned:%u;\n",
468 (unsigned int)offsetof(typeof(field), data),
469 (unsigned int)BUF_PAGE_SIZE,
470 (unsigned int)is_signed_type(char));
472 return ret;
476 * head_page == tail_page && head == tail then buffer is empty.
478 struct ring_buffer_per_cpu {
479 int cpu;
480 atomic_t record_disabled;
481 struct ring_buffer *buffer;
482 spinlock_t reader_lock; /* serialize readers */
483 arch_spinlock_t lock;
484 struct lock_class_key lock_key;
485 struct list_head *pages;
486 struct buffer_page *head_page; /* read from head */
487 struct buffer_page *tail_page; /* write to tail */
488 struct buffer_page *commit_page; /* committed pages */
489 struct buffer_page *reader_page;
490 unsigned long lost_events;
491 unsigned long last_overrun;
492 local_t commit_overrun;
493 local_t overrun;
494 local_t entries;
495 local_t committing;
496 local_t commits;
497 unsigned long read;
498 u64 write_stamp;
499 u64 read_stamp;
502 struct ring_buffer {
503 unsigned pages;
504 unsigned flags;
505 int cpus;
506 atomic_t record_disabled;
507 cpumask_var_t cpumask;
509 struct lock_class_key *reader_lock_key;
511 struct mutex mutex;
513 struct ring_buffer_per_cpu **buffers;
515 #ifdef CONFIG_HOTPLUG_CPU
516 struct notifier_block cpu_notify;
517 #endif
518 u64 (*clock)(void);
521 struct ring_buffer_iter {
522 struct ring_buffer_per_cpu *cpu_buffer;
523 unsigned long head;
524 struct buffer_page *head_page;
525 struct buffer_page *cache_reader_page;
526 unsigned long cache_read;
527 u64 read_stamp;
530 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
531 #define RB_WARN_ON(b, cond) \
532 ({ \
533 int _____ret = unlikely(cond); \
534 if (_____ret) { \
535 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
536 struct ring_buffer_per_cpu *__b = \
537 (void *)b; \
538 atomic_inc(&__b->buffer->record_disabled); \
539 } else \
540 atomic_inc(&b->record_disabled); \
541 WARN_ON(1); \
543 _____ret; \
546 /* Up this if you want to test the TIME_EXTENTS and normalization */
547 #define DEBUG_SHIFT 0
549 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
551 /* shift to debug/test normalization and TIME_EXTENTS */
552 return buffer->clock() << DEBUG_SHIFT;
555 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
557 u64 time;
559 preempt_disable_notrace();
560 time = rb_time_stamp(buffer);
561 preempt_enable_no_resched_notrace();
563 return time;
565 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
567 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
568 int cpu, u64 *ts)
570 /* Just stupid testing the normalize function and deltas */
571 *ts >>= DEBUG_SHIFT;
573 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
576 * Making the ring buffer lockless makes things tricky.
577 * Although writes only happen on the CPU that they are on,
578 * and they only need to worry about interrupts. Reads can
579 * happen on any CPU.
581 * The reader page is always off the ring buffer, but when the
582 * reader finishes with a page, it needs to swap its page with
583 * a new one from the buffer. The reader needs to take from
584 * the head (writes go to the tail). But if a writer is in overwrite
585 * mode and wraps, it must push the head page forward.
587 * Here lies the problem.
589 * The reader must be careful to replace only the head page, and
590 * not another one. As described at the top of the file in the
591 * ASCII art, the reader sets its old page to point to the next
592 * page after head. It then sets the page after head to point to
593 * the old reader page. But if the writer moves the head page
594 * during this operation, the reader could end up with the tail.
596 * We use cmpxchg to help prevent this race. We also do something
597 * special with the page before head. We set the LSB to 1.
599 * When the writer must push the page forward, it will clear the
600 * bit that points to the head page, move the head, and then set
601 * the bit that points to the new head page.
603 * We also don't want an interrupt coming in and moving the head
604 * page on another writer. Thus we use the second LSB to catch
605 * that too. Thus:
607 * head->list->prev->next bit 1 bit 0
608 * ------- -------
609 * Normal page 0 0
610 * Points to head page 0 1
611 * New head page 1 0
613 * Note we can not trust the prev pointer of the head page, because:
615 * +----+ +-----+ +-----+
616 * | |------>| T |---X--->| N |
617 * | |<------| | | |
618 * +----+ +-----+ +-----+
619 * ^ ^ |
620 * | +-----+ | |
621 * +----------| R |----------+ |
622 * | |<-----------+
623 * +-----+
625 * Key: ---X--> HEAD flag set in pointer
626 * T Tail page
627 * R Reader page
628 * N Next page
630 * (see __rb_reserve_next() to see where this happens)
632 * What the above shows is that the reader just swapped out
633 * the reader page with a page in the buffer, but before it
634 * could make the new header point back to the new page added
635 * it was preempted by a writer. The writer moved forward onto
636 * the new page added by the reader and is about to move forward
637 * again.
639 * You can see, it is legitimate for the previous pointer of
640 * the head (or any page) not to point back to itself. But only
641 * temporarially.
644 #define RB_PAGE_NORMAL 0UL
645 #define RB_PAGE_HEAD 1UL
646 #define RB_PAGE_UPDATE 2UL
649 #define RB_FLAG_MASK 3UL
651 /* PAGE_MOVED is not part of the mask */
652 #define RB_PAGE_MOVED 4UL
655 * rb_list_head - remove any bit
657 static struct list_head *rb_list_head(struct list_head *list)
659 unsigned long val = (unsigned long)list;
661 return (struct list_head *)(val & ~RB_FLAG_MASK);
665 * rb_is_head_page - test if the given page is the head page
667 * Because the reader may move the head_page pointer, we can
668 * not trust what the head page is (it may be pointing to
669 * the reader page). But if the next page is a header page,
670 * its flags will be non zero.
672 static int inline
673 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
674 struct buffer_page *page, struct list_head *list)
676 unsigned long val;
678 val = (unsigned long)list->next;
680 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
681 return RB_PAGE_MOVED;
683 return val & RB_FLAG_MASK;
687 * rb_is_reader_page
689 * The unique thing about the reader page, is that, if the
690 * writer is ever on it, the previous pointer never points
691 * back to the reader page.
693 static int rb_is_reader_page(struct buffer_page *page)
695 struct list_head *list = page->list.prev;
697 return rb_list_head(list->next) != &page->list;
701 * rb_set_list_to_head - set a list_head to be pointing to head.
703 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
704 struct list_head *list)
706 unsigned long *ptr;
708 ptr = (unsigned long *)&list->next;
709 *ptr |= RB_PAGE_HEAD;
710 *ptr &= ~RB_PAGE_UPDATE;
714 * rb_head_page_activate - sets up head page
716 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
718 struct buffer_page *head;
720 head = cpu_buffer->head_page;
721 if (!head)
722 return;
725 * Set the previous list pointer to have the HEAD flag.
727 rb_set_list_to_head(cpu_buffer, head->list.prev);
730 static void rb_list_head_clear(struct list_head *list)
732 unsigned long *ptr = (unsigned long *)&list->next;
734 *ptr &= ~RB_FLAG_MASK;
738 * rb_head_page_dactivate - clears head page ptr (for free list)
740 static void
741 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
743 struct list_head *hd;
745 /* Go through the whole list and clear any pointers found. */
746 rb_list_head_clear(cpu_buffer->pages);
748 list_for_each(hd, cpu_buffer->pages)
749 rb_list_head_clear(hd);
752 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
753 struct buffer_page *head,
754 struct buffer_page *prev,
755 int old_flag, int new_flag)
757 struct list_head *list;
758 unsigned long val = (unsigned long)&head->list;
759 unsigned long ret;
761 list = &prev->list;
763 val &= ~RB_FLAG_MASK;
765 ret = cmpxchg((unsigned long *)&list->next,
766 val | old_flag, val | new_flag);
768 /* check if the reader took the page */
769 if ((ret & ~RB_FLAG_MASK) != val)
770 return RB_PAGE_MOVED;
772 return ret & RB_FLAG_MASK;
775 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
776 struct buffer_page *head,
777 struct buffer_page *prev,
778 int old_flag)
780 return rb_head_page_set(cpu_buffer, head, prev,
781 old_flag, RB_PAGE_UPDATE);
784 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
785 struct buffer_page *head,
786 struct buffer_page *prev,
787 int old_flag)
789 return rb_head_page_set(cpu_buffer, head, prev,
790 old_flag, RB_PAGE_HEAD);
793 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
794 struct buffer_page *head,
795 struct buffer_page *prev,
796 int old_flag)
798 return rb_head_page_set(cpu_buffer, head, prev,
799 old_flag, RB_PAGE_NORMAL);
802 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
803 struct buffer_page **bpage)
805 struct list_head *p = rb_list_head((*bpage)->list.next);
807 *bpage = list_entry(p, struct buffer_page, list);
810 static struct buffer_page *
811 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
813 struct buffer_page *head;
814 struct buffer_page *page;
815 struct list_head *list;
816 int i;
818 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
819 return NULL;
821 /* sanity check */
822 list = cpu_buffer->pages;
823 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
824 return NULL;
826 page = head = cpu_buffer->head_page;
828 * It is possible that the writer moves the header behind
829 * where we started, and we miss in one loop.
830 * A second loop should grab the header, but we'll do
831 * three loops just because I'm paranoid.
833 for (i = 0; i < 3; i++) {
834 do {
835 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
836 cpu_buffer->head_page = page;
837 return page;
839 rb_inc_page(cpu_buffer, &page);
840 } while (page != head);
843 RB_WARN_ON(cpu_buffer, 1);
845 return NULL;
848 static int rb_head_page_replace(struct buffer_page *old,
849 struct buffer_page *new)
851 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
852 unsigned long val;
853 unsigned long ret;
855 val = *ptr & ~RB_FLAG_MASK;
856 val |= RB_PAGE_HEAD;
858 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
860 return ret == val;
864 * rb_tail_page_update - move the tail page forward
866 * Returns 1 if moved tail page, 0 if someone else did.
868 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
869 struct buffer_page *tail_page,
870 struct buffer_page *next_page)
872 struct buffer_page *old_tail;
873 unsigned long old_entries;
874 unsigned long old_write;
875 int ret = 0;
878 * The tail page now needs to be moved forward.
880 * We need to reset the tail page, but without messing
881 * with possible erasing of data brought in by interrupts
882 * that have moved the tail page and are currently on it.
884 * We add a counter to the write field to denote this.
886 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
887 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
890 * Just make sure we have seen our old_write and synchronize
891 * with any interrupts that come in.
893 barrier();
896 * If the tail page is still the same as what we think
897 * it is, then it is up to us to update the tail
898 * pointer.
900 if (tail_page == cpu_buffer->tail_page) {
901 /* Zero the write counter */
902 unsigned long val = old_write & ~RB_WRITE_MASK;
903 unsigned long eval = old_entries & ~RB_WRITE_MASK;
906 * This will only succeed if an interrupt did
907 * not come in and change it. In which case, we
908 * do not want to modify it.
910 * We add (void) to let the compiler know that we do not care
911 * about the return value of these functions. We use the
912 * cmpxchg to only update if an interrupt did not already
913 * do it for us. If the cmpxchg fails, we don't care.
915 (void)local_cmpxchg(&next_page->write, old_write, val);
916 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
919 * No need to worry about races with clearing out the commit.
920 * it only can increment when a commit takes place. But that
921 * only happens in the outer most nested commit.
923 local_set(&next_page->page->commit, 0);
925 old_tail = cmpxchg(&cpu_buffer->tail_page,
926 tail_page, next_page);
928 if (old_tail == tail_page)
929 ret = 1;
932 return ret;
935 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
936 struct buffer_page *bpage)
938 unsigned long val = (unsigned long)bpage;
940 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
941 return 1;
943 return 0;
947 * rb_check_list - make sure a pointer to a list has the last bits zero
949 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
950 struct list_head *list)
952 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
953 return 1;
954 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
955 return 1;
956 return 0;
960 * check_pages - integrity check of buffer pages
961 * @cpu_buffer: CPU buffer with pages to test
963 * As a safety measure we check to make sure the data pages have not
964 * been corrupted.
966 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
968 struct list_head *head = cpu_buffer->pages;
969 struct buffer_page *bpage, *tmp;
971 rb_head_page_deactivate(cpu_buffer);
973 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
974 return -1;
975 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
976 return -1;
978 if (rb_check_list(cpu_buffer, head))
979 return -1;
981 list_for_each_entry_safe(bpage, tmp, head, list) {
982 if (RB_WARN_ON(cpu_buffer,
983 bpage->list.next->prev != &bpage->list))
984 return -1;
985 if (RB_WARN_ON(cpu_buffer,
986 bpage->list.prev->next != &bpage->list))
987 return -1;
988 if (rb_check_list(cpu_buffer, &bpage->list))
989 return -1;
992 rb_head_page_activate(cpu_buffer);
994 return 0;
997 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
998 unsigned nr_pages)
1000 struct buffer_page *bpage, *tmp;
1001 unsigned long addr;
1002 LIST_HEAD(pages);
1003 unsigned i;
1005 WARN_ON(!nr_pages);
1007 for (i = 0; i < nr_pages; i++) {
1008 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1009 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
1010 if (!bpage)
1011 goto free_pages;
1013 rb_check_bpage(cpu_buffer, bpage);
1015 list_add(&bpage->list, &pages);
1017 addr = __get_free_page(GFP_KERNEL);
1018 if (!addr)
1019 goto free_pages;
1020 bpage->page = (void *)addr;
1021 rb_init_page(bpage->page);
1025 * The ring buffer page list is a circular list that does not
1026 * start and end with a list head. All page list items point to
1027 * other pages.
1029 cpu_buffer->pages = pages.next;
1030 list_del(&pages);
1032 rb_check_pages(cpu_buffer);
1034 return 0;
1036 free_pages:
1037 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1038 list_del_init(&bpage->list);
1039 free_buffer_page(bpage);
1041 return -ENOMEM;
1044 static struct ring_buffer_per_cpu *
1045 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1047 struct ring_buffer_per_cpu *cpu_buffer;
1048 struct buffer_page *bpage;
1049 unsigned long addr;
1050 int ret;
1052 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1053 GFP_KERNEL, cpu_to_node(cpu));
1054 if (!cpu_buffer)
1055 return NULL;
1057 cpu_buffer->cpu = cpu;
1058 cpu_buffer->buffer = buffer;
1059 spin_lock_init(&cpu_buffer->reader_lock);
1060 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1061 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 GFP_KERNEL, cpu_to_node(cpu));
1065 if (!bpage)
1066 goto fail_free_buffer;
1068 rb_check_bpage(cpu_buffer, bpage);
1070 cpu_buffer->reader_page = bpage;
1071 addr = __get_free_page(GFP_KERNEL);
1072 if (!addr)
1073 goto fail_free_reader;
1074 bpage->page = (void *)addr;
1075 rb_init_page(bpage->page);
1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1079 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1080 if (ret < 0)
1081 goto fail_free_reader;
1083 cpu_buffer->head_page
1084 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1085 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1087 rb_head_page_activate(cpu_buffer);
1089 return cpu_buffer;
1091 fail_free_reader:
1092 free_buffer_page(cpu_buffer->reader_page);
1094 fail_free_buffer:
1095 kfree(cpu_buffer);
1096 return NULL;
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1101 struct list_head *head = cpu_buffer->pages;
1102 struct buffer_page *bpage, *tmp;
1104 free_buffer_page(cpu_buffer->reader_page);
1106 rb_head_page_deactivate(cpu_buffer);
1108 if (head) {
1109 list_for_each_entry_safe(bpage, tmp, head, list) {
1110 list_del_init(&bpage->list);
1111 free_buffer_page(bpage);
1113 bpage = list_entry(head, struct buffer_page, list);
1114 free_buffer_page(bpage);
1117 kfree(cpu_buffer);
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122 unsigned long action, void *hcpu);
1123 #endif
1126 * ring_buffer_alloc - allocate a new ring_buffer
1127 * @size: the size in bytes per cpu that is needed.
1128 * @flags: attributes to set for the ring buffer.
1130 * Currently the only flag that is available is the RB_FL_OVERWRITE
1131 * flag. This flag means that the buffer will overwrite old data
1132 * when the buffer wraps. If this flag is not set, the buffer will
1133 * drop data when the tail hits the head.
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136 struct lock_class_key *key)
1138 struct ring_buffer *buffer;
1139 int bsize;
1140 int cpu;
1142 /* keep it in its own cache line */
1143 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144 GFP_KERNEL);
1145 if (!buffer)
1146 return NULL;
1148 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149 goto fail_free_buffer;
1151 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152 buffer->flags = flags;
1153 buffer->clock = trace_clock_local;
1154 buffer->reader_lock_key = key;
1156 /* need at least two pages */
1157 if (buffer->pages < 2)
1158 buffer->pages = 2;
1161 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 * in early initcall, it will not be notified of secondary cpus.
1163 * In that off case, we need to allocate for all possible cpus.
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 get_online_cpus();
1167 cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171 buffer->cpus = nr_cpu_ids;
1173 bsize = sizeof(void *) * nr_cpu_ids;
1174 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175 GFP_KERNEL);
1176 if (!buffer->buffers)
1177 goto fail_free_cpumask;
1179 for_each_buffer_cpu(buffer, cpu) {
1180 buffer->buffers[cpu] =
1181 rb_allocate_cpu_buffer(buffer, cpu);
1182 if (!buffer->buffers[cpu])
1183 goto fail_free_buffers;
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188 buffer->cpu_notify.priority = 0;
1189 register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1192 put_online_cpus();
1193 mutex_init(&buffer->mutex);
1195 return buffer;
1197 fail_free_buffers:
1198 for_each_buffer_cpu(buffer, cpu) {
1199 if (buffer->buffers[cpu])
1200 rb_free_cpu_buffer(buffer->buffers[cpu]);
1202 kfree(buffer->buffers);
1204 fail_free_cpumask:
1205 free_cpumask_var(buffer->cpumask);
1206 put_online_cpus();
1208 fail_free_buffer:
1209 kfree(buffer);
1210 return NULL;
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1215 * ring_buffer_free - free a ring buffer.
1216 * @buffer: the buffer to free.
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1221 int cpu;
1223 get_online_cpus();
1225 #ifdef CONFIG_HOTPLUG_CPU
1226 unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1229 for_each_buffer_cpu(buffer, cpu)
1230 rb_free_cpu_buffer(buffer->buffers[cpu]);
1232 put_online_cpus();
1234 kfree(buffer->buffers);
1235 free_cpumask_var(buffer->cpumask);
1237 kfree(buffer);
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242 u64 (*clock)(void))
1244 buffer->clock = clock;
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1249 static void
1250 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1252 struct buffer_page *bpage;
1253 struct list_head *p;
1254 unsigned i;
1256 spin_lock_irq(&cpu_buffer->reader_lock);
1257 rb_head_page_deactivate(cpu_buffer);
1259 for (i = 0; i < nr_pages; i++) {
1260 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1261 goto out;
1262 p = cpu_buffer->pages->next;
1263 bpage = list_entry(p, struct buffer_page, list);
1264 list_del_init(&bpage->list);
1265 free_buffer_page(bpage);
1267 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1268 goto out;
1270 rb_reset_cpu(cpu_buffer);
1271 rb_check_pages(cpu_buffer);
1273 out:
1274 spin_unlock_irq(&cpu_buffer->reader_lock);
1277 static void
1278 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1279 struct list_head *pages, unsigned nr_pages)
1281 struct buffer_page *bpage;
1282 struct list_head *p;
1283 unsigned i;
1285 spin_lock_irq(&cpu_buffer->reader_lock);
1286 rb_head_page_deactivate(cpu_buffer);
1288 for (i = 0; i < nr_pages; i++) {
1289 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1290 goto out;
1291 p = pages->next;
1292 bpage = list_entry(p, struct buffer_page, list);
1293 list_del_init(&bpage->list);
1294 list_add_tail(&bpage->list, cpu_buffer->pages);
1296 rb_reset_cpu(cpu_buffer);
1297 rb_check_pages(cpu_buffer);
1299 out:
1300 spin_unlock_irq(&cpu_buffer->reader_lock);
1304 * ring_buffer_resize - resize the ring buffer
1305 * @buffer: the buffer to resize.
1306 * @size: the new size.
1308 * Minimum size is 2 * BUF_PAGE_SIZE.
1310 * Returns -1 on failure.
1312 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1314 struct ring_buffer_per_cpu *cpu_buffer;
1315 unsigned nr_pages, rm_pages, new_pages;
1316 struct buffer_page *bpage, *tmp;
1317 unsigned long buffer_size;
1318 unsigned long addr;
1319 LIST_HEAD(pages);
1320 int i, cpu;
1323 * Always succeed at resizing a non-existent buffer:
1325 if (!buffer)
1326 return size;
1328 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1329 size *= BUF_PAGE_SIZE;
1330 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1332 /* we need a minimum of two pages */
1333 if (size < BUF_PAGE_SIZE * 2)
1334 size = BUF_PAGE_SIZE * 2;
1336 if (size == buffer_size)
1337 return size;
1339 atomic_inc(&buffer->record_disabled);
1341 /* Make sure all writers are done with this buffer. */
1342 synchronize_sched();
1344 mutex_lock(&buffer->mutex);
1345 get_online_cpus();
1347 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1349 if (size < buffer_size) {
1351 /* easy case, just free pages */
1352 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1353 goto out_fail;
1355 rm_pages = buffer->pages - nr_pages;
1357 for_each_buffer_cpu(buffer, cpu) {
1358 cpu_buffer = buffer->buffers[cpu];
1359 rb_remove_pages(cpu_buffer, rm_pages);
1361 goto out;
1365 * This is a bit more difficult. We only want to add pages
1366 * when we can allocate enough for all CPUs. We do this
1367 * by allocating all the pages and storing them on a local
1368 * link list. If we succeed in our allocation, then we
1369 * add these pages to the cpu_buffers. Otherwise we just free
1370 * them all and return -ENOMEM;
1372 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1373 goto out_fail;
1375 new_pages = nr_pages - buffer->pages;
1377 for_each_buffer_cpu(buffer, cpu) {
1378 for (i = 0; i < new_pages; i++) {
1379 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1380 cache_line_size()),
1381 GFP_KERNEL, cpu_to_node(cpu));
1382 if (!bpage)
1383 goto free_pages;
1384 list_add(&bpage->list, &pages);
1385 addr = __get_free_page(GFP_KERNEL);
1386 if (!addr)
1387 goto free_pages;
1388 bpage->page = (void *)addr;
1389 rb_init_page(bpage->page);
1393 for_each_buffer_cpu(buffer, cpu) {
1394 cpu_buffer = buffer->buffers[cpu];
1395 rb_insert_pages(cpu_buffer, &pages, new_pages);
1398 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1399 goto out_fail;
1401 out:
1402 buffer->pages = nr_pages;
1403 put_online_cpus();
1404 mutex_unlock(&buffer->mutex);
1406 atomic_dec(&buffer->record_disabled);
1408 return size;
1410 free_pages:
1411 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1412 list_del_init(&bpage->list);
1413 free_buffer_page(bpage);
1415 put_online_cpus();
1416 mutex_unlock(&buffer->mutex);
1417 atomic_dec(&buffer->record_disabled);
1418 return -ENOMEM;
1421 * Something went totally wrong, and we are too paranoid
1422 * to even clean up the mess.
1424 out_fail:
1425 put_online_cpus();
1426 mutex_unlock(&buffer->mutex);
1427 atomic_dec(&buffer->record_disabled);
1428 return -1;
1430 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1432 static inline void *
1433 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1435 return bpage->data + index;
1438 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1440 return bpage->page->data + index;
1443 static inline struct ring_buffer_event *
1444 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1446 return __rb_page_index(cpu_buffer->reader_page,
1447 cpu_buffer->reader_page->read);
1450 static inline struct ring_buffer_event *
1451 rb_iter_head_event(struct ring_buffer_iter *iter)
1453 return __rb_page_index(iter->head_page, iter->head);
1456 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1458 return local_read(&bpage->write) & RB_WRITE_MASK;
1461 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1463 return local_read(&bpage->page->commit);
1466 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1468 return local_read(&bpage->entries) & RB_WRITE_MASK;
1471 /* Size is determined by what has been commited */
1472 static inline unsigned rb_page_size(struct buffer_page *bpage)
1474 return rb_page_commit(bpage);
1477 static inline unsigned
1478 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1480 return rb_page_commit(cpu_buffer->commit_page);
1483 static inline unsigned
1484 rb_event_index(struct ring_buffer_event *event)
1486 unsigned long addr = (unsigned long)event;
1488 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1491 static inline int
1492 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1493 struct ring_buffer_event *event)
1495 unsigned long addr = (unsigned long)event;
1496 unsigned long index;
1498 index = rb_event_index(event);
1499 addr &= PAGE_MASK;
1501 return cpu_buffer->commit_page->page == (void *)addr &&
1502 rb_commit_index(cpu_buffer) == index;
1505 static void
1506 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1508 unsigned long max_count;
1511 * We only race with interrupts and NMIs on this CPU.
1512 * If we own the commit event, then we can commit
1513 * all others that interrupted us, since the interruptions
1514 * are in stack format (they finish before they come
1515 * back to us). This allows us to do a simple loop to
1516 * assign the commit to the tail.
1518 again:
1519 max_count = cpu_buffer->buffer->pages * 100;
1521 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1522 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1523 return;
1524 if (RB_WARN_ON(cpu_buffer,
1525 rb_is_reader_page(cpu_buffer->tail_page)))
1526 return;
1527 local_set(&cpu_buffer->commit_page->page->commit,
1528 rb_page_write(cpu_buffer->commit_page));
1529 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1530 cpu_buffer->write_stamp =
1531 cpu_buffer->commit_page->page->time_stamp;
1532 /* add barrier to keep gcc from optimizing too much */
1533 barrier();
1535 while (rb_commit_index(cpu_buffer) !=
1536 rb_page_write(cpu_buffer->commit_page)) {
1538 local_set(&cpu_buffer->commit_page->page->commit,
1539 rb_page_write(cpu_buffer->commit_page));
1540 RB_WARN_ON(cpu_buffer,
1541 local_read(&cpu_buffer->commit_page->page->commit) &
1542 ~RB_WRITE_MASK);
1543 barrier();
1546 /* again, keep gcc from optimizing */
1547 barrier();
1550 * If an interrupt came in just after the first while loop
1551 * and pushed the tail page forward, we will be left with
1552 * a dangling commit that will never go forward.
1554 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1555 goto again;
1558 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1560 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1561 cpu_buffer->reader_page->read = 0;
1564 static void rb_inc_iter(struct ring_buffer_iter *iter)
1566 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1569 * The iterator could be on the reader page (it starts there).
1570 * But the head could have moved, since the reader was
1571 * found. Check for this case and assign the iterator
1572 * to the head page instead of next.
1574 if (iter->head_page == cpu_buffer->reader_page)
1575 iter->head_page = rb_set_head_page(cpu_buffer);
1576 else
1577 rb_inc_page(cpu_buffer, &iter->head_page);
1579 iter->read_stamp = iter->head_page->page->time_stamp;
1580 iter->head = 0;
1583 /* Slow path, do not inline */
1584 static noinline struct ring_buffer_event *
1585 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1587 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1589 /* Not the first event on the page? */
1590 if (rb_event_index(event)) {
1591 event->time_delta = delta & TS_MASK;
1592 event->array[0] = delta >> TS_SHIFT;
1593 } else {
1594 /* nope, just zero it */
1595 event->time_delta = 0;
1596 event->array[0] = 0;
1599 return skip_time_extend(event);
1603 * ring_buffer_update_event - update event type and data
1604 * @event: the even to update
1605 * @type: the type of event
1606 * @length: the size of the event field in the ring buffer
1608 * Update the type and data fields of the event. The length
1609 * is the actual size that is written to the ring buffer,
1610 * and with this, we can determine what to place into the
1611 * data field.
1613 static void
1614 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1615 struct ring_buffer_event *event, unsigned length,
1616 int add_timestamp, u64 delta)
1618 /* Only a commit updates the timestamp */
1619 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1620 delta = 0;
1623 * If we need to add a timestamp, then we
1624 * add it to the start of the resevered space.
1626 if (unlikely(add_timestamp)) {
1627 event = rb_add_time_stamp(event, delta);
1628 length -= RB_LEN_TIME_EXTEND;
1629 delta = 0;
1632 event->time_delta = delta;
1633 length -= RB_EVNT_HDR_SIZE;
1634 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1635 event->type_len = 0;
1636 event->array[0] = length;
1637 } else
1638 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1642 * rb_handle_head_page - writer hit the head page
1644 * Returns: +1 to retry page
1645 * 0 to continue
1646 * -1 on error
1648 static int
1649 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1650 struct buffer_page *tail_page,
1651 struct buffer_page *next_page)
1653 struct buffer_page *new_head;
1654 int entries;
1655 int type;
1656 int ret;
1658 entries = rb_page_entries(next_page);
1661 * The hard part is here. We need to move the head
1662 * forward, and protect against both readers on
1663 * other CPUs and writers coming in via interrupts.
1665 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1666 RB_PAGE_HEAD);
1669 * type can be one of four:
1670 * NORMAL - an interrupt already moved it for us
1671 * HEAD - we are the first to get here.
1672 * UPDATE - we are the interrupt interrupting
1673 * a current move.
1674 * MOVED - a reader on another CPU moved the next
1675 * pointer to its reader page. Give up
1676 * and try again.
1679 switch (type) {
1680 case RB_PAGE_HEAD:
1682 * We changed the head to UPDATE, thus
1683 * it is our responsibility to update
1684 * the counters.
1686 local_add(entries, &cpu_buffer->overrun);
1689 * The entries will be zeroed out when we move the
1690 * tail page.
1693 /* still more to do */
1694 break;
1696 case RB_PAGE_UPDATE:
1698 * This is an interrupt that interrupt the
1699 * previous update. Still more to do.
1701 break;
1702 case RB_PAGE_NORMAL:
1704 * An interrupt came in before the update
1705 * and processed this for us.
1706 * Nothing left to do.
1708 return 1;
1709 case RB_PAGE_MOVED:
1711 * The reader is on another CPU and just did
1712 * a swap with our next_page.
1713 * Try again.
1715 return 1;
1716 default:
1717 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1718 return -1;
1722 * Now that we are here, the old head pointer is
1723 * set to UPDATE. This will keep the reader from
1724 * swapping the head page with the reader page.
1725 * The reader (on another CPU) will spin till
1726 * we are finished.
1728 * We just need to protect against interrupts
1729 * doing the job. We will set the next pointer
1730 * to HEAD. After that, we set the old pointer
1731 * to NORMAL, but only if it was HEAD before.
1732 * otherwise we are an interrupt, and only
1733 * want the outer most commit to reset it.
1735 new_head = next_page;
1736 rb_inc_page(cpu_buffer, &new_head);
1738 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1739 RB_PAGE_NORMAL);
1742 * Valid returns are:
1743 * HEAD - an interrupt came in and already set it.
1744 * NORMAL - One of two things:
1745 * 1) We really set it.
1746 * 2) A bunch of interrupts came in and moved
1747 * the page forward again.
1749 switch (ret) {
1750 case RB_PAGE_HEAD:
1751 case RB_PAGE_NORMAL:
1752 /* OK */
1753 break;
1754 default:
1755 RB_WARN_ON(cpu_buffer, 1);
1756 return -1;
1760 * It is possible that an interrupt came in,
1761 * set the head up, then more interrupts came in
1762 * and moved it again. When we get back here,
1763 * the page would have been set to NORMAL but we
1764 * just set it back to HEAD.
1766 * How do you detect this? Well, if that happened
1767 * the tail page would have moved.
1769 if (ret == RB_PAGE_NORMAL) {
1771 * If the tail had moved passed next, then we need
1772 * to reset the pointer.
1774 if (cpu_buffer->tail_page != tail_page &&
1775 cpu_buffer->tail_page != next_page)
1776 rb_head_page_set_normal(cpu_buffer, new_head,
1777 next_page,
1778 RB_PAGE_HEAD);
1782 * If this was the outer most commit (the one that
1783 * changed the original pointer from HEAD to UPDATE),
1784 * then it is up to us to reset it to NORMAL.
1786 if (type == RB_PAGE_HEAD) {
1787 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1788 tail_page,
1789 RB_PAGE_UPDATE);
1790 if (RB_WARN_ON(cpu_buffer,
1791 ret != RB_PAGE_UPDATE))
1792 return -1;
1795 return 0;
1798 static unsigned rb_calculate_event_length(unsigned length)
1800 struct ring_buffer_event event; /* Used only for sizeof array */
1802 /* zero length can cause confusions */
1803 if (!length)
1804 length = 1;
1806 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1807 length += sizeof(event.array[0]);
1809 length += RB_EVNT_HDR_SIZE;
1810 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1812 return length;
1815 static inline void
1816 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1817 struct buffer_page *tail_page,
1818 unsigned long tail, unsigned long length)
1820 struct ring_buffer_event *event;
1823 * Only the event that crossed the page boundary
1824 * must fill the old tail_page with padding.
1826 if (tail >= BUF_PAGE_SIZE) {
1828 * If the page was filled, then we still need
1829 * to update the real_end. Reset it to zero
1830 * and the reader will ignore it.
1832 if (tail == BUF_PAGE_SIZE)
1833 tail_page->real_end = 0;
1835 local_sub(length, &tail_page->write);
1836 return;
1839 event = __rb_page_index(tail_page, tail);
1840 kmemcheck_annotate_bitfield(event, bitfield);
1843 * Save the original length to the meta data.
1844 * This will be used by the reader to add lost event
1845 * counter.
1847 tail_page->real_end = tail;
1850 * If this event is bigger than the minimum size, then
1851 * we need to be careful that we don't subtract the
1852 * write counter enough to allow another writer to slip
1853 * in on this page.
1854 * We put in a discarded commit instead, to make sure
1855 * that this space is not used again.
1857 * If we are less than the minimum size, we don't need to
1858 * worry about it.
1860 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1861 /* No room for any events */
1863 /* Mark the rest of the page with padding */
1864 rb_event_set_padding(event);
1866 /* Set the write back to the previous setting */
1867 local_sub(length, &tail_page->write);
1868 return;
1871 /* Put in a discarded event */
1872 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1873 event->type_len = RINGBUF_TYPE_PADDING;
1874 /* time delta must be non zero */
1875 event->time_delta = 1;
1877 /* Set write to end of buffer */
1878 length = (tail + length) - BUF_PAGE_SIZE;
1879 local_sub(length, &tail_page->write);
1883 * This is the slow path, force gcc not to inline it.
1885 static noinline struct ring_buffer_event *
1886 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1887 unsigned long length, unsigned long tail,
1888 struct buffer_page *tail_page, u64 ts)
1890 struct buffer_page *commit_page = cpu_buffer->commit_page;
1891 struct ring_buffer *buffer = cpu_buffer->buffer;
1892 struct buffer_page *next_page;
1893 int ret;
1895 next_page = tail_page;
1897 rb_inc_page(cpu_buffer, &next_page);
1900 * If for some reason, we had an interrupt storm that made
1901 * it all the way around the buffer, bail, and warn
1902 * about it.
1904 if (unlikely(next_page == commit_page)) {
1905 local_inc(&cpu_buffer->commit_overrun);
1906 goto out_reset;
1910 * This is where the fun begins!
1912 * We are fighting against races between a reader that
1913 * could be on another CPU trying to swap its reader
1914 * page with the buffer head.
1916 * We are also fighting against interrupts coming in and
1917 * moving the head or tail on us as well.
1919 * If the next page is the head page then we have filled
1920 * the buffer, unless the commit page is still on the
1921 * reader page.
1923 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1926 * If the commit is not on the reader page, then
1927 * move the header page.
1929 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1931 * If we are not in overwrite mode,
1932 * this is easy, just stop here.
1934 if (!(buffer->flags & RB_FL_OVERWRITE))
1935 goto out_reset;
1937 ret = rb_handle_head_page(cpu_buffer,
1938 tail_page,
1939 next_page);
1940 if (ret < 0)
1941 goto out_reset;
1942 if (ret)
1943 goto out_again;
1944 } else {
1946 * We need to be careful here too. The
1947 * commit page could still be on the reader
1948 * page. We could have a small buffer, and
1949 * have filled up the buffer with events
1950 * from interrupts and such, and wrapped.
1952 * Note, if the tail page is also the on the
1953 * reader_page, we let it move out.
1955 if (unlikely((cpu_buffer->commit_page !=
1956 cpu_buffer->tail_page) &&
1957 (cpu_buffer->commit_page ==
1958 cpu_buffer->reader_page))) {
1959 local_inc(&cpu_buffer->commit_overrun);
1960 goto out_reset;
1965 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1966 if (ret) {
1968 * Nested commits always have zero deltas, so
1969 * just reread the time stamp
1971 ts = rb_time_stamp(buffer);
1972 next_page->page->time_stamp = ts;
1975 out_again:
1977 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1979 /* fail and let the caller try again */
1980 return ERR_PTR(-EAGAIN);
1982 out_reset:
1983 /* reset write */
1984 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1986 return NULL;
1989 static struct ring_buffer_event *
1990 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1991 unsigned long length, u64 ts,
1992 u64 delta, int add_timestamp)
1994 struct buffer_page *tail_page;
1995 struct ring_buffer_event *event;
1996 unsigned long tail, write;
1999 * If the time delta since the last event is too big to
2000 * hold in the time field of the event, then we append a
2001 * TIME EXTEND event ahead of the data event.
2003 if (unlikely(add_timestamp))
2004 length += RB_LEN_TIME_EXTEND;
2006 tail_page = cpu_buffer->tail_page;
2007 write = local_add_return(length, &tail_page->write);
2009 /* set write to only the index of the write */
2010 write &= RB_WRITE_MASK;
2011 tail = write - length;
2013 /* See if we shot pass the end of this buffer page */
2014 if (unlikely(write > BUF_PAGE_SIZE))
2015 return rb_move_tail(cpu_buffer, length, tail,
2016 tail_page, ts);
2018 /* We reserved something on the buffer */
2020 event = __rb_page_index(tail_page, tail);
2021 kmemcheck_annotate_bitfield(event, bitfield);
2022 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2024 local_inc(&tail_page->entries);
2027 * If this is the first commit on the page, then update
2028 * its timestamp.
2030 if (!tail)
2031 tail_page->page->time_stamp = ts;
2033 return event;
2036 static inline int
2037 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2038 struct ring_buffer_event *event)
2040 unsigned long new_index, old_index;
2041 struct buffer_page *bpage;
2042 unsigned long index;
2043 unsigned long addr;
2045 new_index = rb_event_index(event);
2046 old_index = new_index + rb_event_ts_length(event);
2047 addr = (unsigned long)event;
2048 addr &= PAGE_MASK;
2050 bpage = cpu_buffer->tail_page;
2052 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2053 unsigned long write_mask =
2054 local_read(&bpage->write) & ~RB_WRITE_MASK;
2056 * This is on the tail page. It is possible that
2057 * a write could come in and move the tail page
2058 * and write to the next page. That is fine
2059 * because we just shorten what is on this page.
2061 old_index += write_mask;
2062 new_index += write_mask;
2063 index = local_cmpxchg(&bpage->write, old_index, new_index);
2064 if (index == old_index)
2065 return 1;
2068 /* could not discard */
2069 return 0;
2072 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2074 local_inc(&cpu_buffer->committing);
2075 local_inc(&cpu_buffer->commits);
2078 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2080 unsigned long commits;
2082 if (RB_WARN_ON(cpu_buffer,
2083 !local_read(&cpu_buffer->committing)))
2084 return;
2086 again:
2087 commits = local_read(&cpu_buffer->commits);
2088 /* synchronize with interrupts */
2089 barrier();
2090 if (local_read(&cpu_buffer->committing) == 1)
2091 rb_set_commit_to_write(cpu_buffer);
2093 local_dec(&cpu_buffer->committing);
2095 /* synchronize with interrupts */
2096 barrier();
2099 * Need to account for interrupts coming in between the
2100 * updating of the commit page and the clearing of the
2101 * committing counter.
2103 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2104 !local_read(&cpu_buffer->committing)) {
2105 local_inc(&cpu_buffer->committing);
2106 goto again;
2110 static struct ring_buffer_event *
2111 rb_reserve_next_event(struct ring_buffer *buffer,
2112 struct ring_buffer_per_cpu *cpu_buffer,
2113 unsigned long length)
2115 struct ring_buffer_event *event;
2116 u64 ts, delta;
2117 int nr_loops = 0;
2118 int add_timestamp;
2119 u64 diff;
2121 rb_start_commit(cpu_buffer);
2123 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2125 * Due to the ability to swap a cpu buffer from a buffer
2126 * it is possible it was swapped before we committed.
2127 * (committing stops a swap). We check for it here and
2128 * if it happened, we have to fail the write.
2130 barrier();
2131 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2132 local_dec(&cpu_buffer->committing);
2133 local_dec(&cpu_buffer->commits);
2134 return NULL;
2136 #endif
2138 length = rb_calculate_event_length(length);
2139 again:
2140 add_timestamp = 0;
2141 delta = 0;
2144 * We allow for interrupts to reenter here and do a trace.
2145 * If one does, it will cause this original code to loop
2146 * back here. Even with heavy interrupts happening, this
2147 * should only happen a few times in a row. If this happens
2148 * 1000 times in a row, there must be either an interrupt
2149 * storm or we have something buggy.
2150 * Bail!
2152 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2153 goto out_fail;
2155 ts = rb_time_stamp(cpu_buffer->buffer);
2156 diff = ts - cpu_buffer->write_stamp;
2158 /* make sure this diff is calculated here */
2159 barrier();
2161 /* Did the write stamp get updated already? */
2162 if (likely(ts >= cpu_buffer->write_stamp)) {
2163 delta = diff;
2164 if (unlikely(test_time_stamp(delta))) {
2165 WARN_ONCE(delta > (1ULL << 59),
2166 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n",
2167 (unsigned long long)delta,
2168 (unsigned long long)ts,
2169 (unsigned long long)cpu_buffer->write_stamp);
2170 add_timestamp = 1;
2174 event = __rb_reserve_next(cpu_buffer, length, ts,
2175 delta, add_timestamp);
2176 if (unlikely(PTR_ERR(event) == -EAGAIN))
2177 goto again;
2179 if (!event)
2180 goto out_fail;
2182 return event;
2184 out_fail:
2185 rb_end_commit(cpu_buffer);
2186 return NULL;
2189 #ifdef CONFIG_TRACING
2191 #define TRACE_RECURSIVE_DEPTH 16
2193 /* Keep this code out of the fast path cache */
2194 static noinline void trace_recursive_fail(void)
2196 /* Disable all tracing before we do anything else */
2197 tracing_off_permanent();
2199 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2200 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2201 current->trace_recursion,
2202 hardirq_count() >> HARDIRQ_SHIFT,
2203 softirq_count() >> SOFTIRQ_SHIFT,
2204 in_nmi());
2206 WARN_ON_ONCE(1);
2209 static inline int trace_recursive_lock(void)
2211 current->trace_recursion++;
2213 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2214 return 0;
2216 trace_recursive_fail();
2218 return -1;
2221 static inline void trace_recursive_unlock(void)
2223 WARN_ON_ONCE(!current->trace_recursion);
2225 current->trace_recursion--;
2228 #else
2230 #define trace_recursive_lock() (0)
2231 #define trace_recursive_unlock() do { } while (0)
2233 #endif
2236 * ring_buffer_lock_reserve - reserve a part of the buffer
2237 * @buffer: the ring buffer to reserve from
2238 * @length: the length of the data to reserve (excluding event header)
2240 * Returns a reseverd event on the ring buffer to copy directly to.
2241 * The user of this interface will need to get the body to write into
2242 * and can use the ring_buffer_event_data() interface.
2244 * The length is the length of the data needed, not the event length
2245 * which also includes the event header.
2247 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2248 * If NULL is returned, then nothing has been allocated or locked.
2250 struct ring_buffer_event *
2251 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2253 struct ring_buffer_per_cpu *cpu_buffer;
2254 struct ring_buffer_event *event;
2255 int cpu;
2257 if (ring_buffer_flags != RB_BUFFERS_ON)
2258 return NULL;
2260 /* If we are tracing schedule, we don't want to recurse */
2261 preempt_disable_notrace();
2263 if (atomic_read(&buffer->record_disabled))
2264 goto out_nocheck;
2266 if (trace_recursive_lock())
2267 goto out_nocheck;
2269 cpu = raw_smp_processor_id();
2271 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2272 goto out;
2274 cpu_buffer = buffer->buffers[cpu];
2276 if (atomic_read(&cpu_buffer->record_disabled))
2277 goto out;
2279 if (length > BUF_MAX_DATA_SIZE)
2280 goto out;
2282 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2283 if (!event)
2284 goto out;
2286 return event;
2288 out:
2289 trace_recursive_unlock();
2291 out_nocheck:
2292 preempt_enable_notrace();
2293 return NULL;
2295 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2297 static void
2298 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2299 struct ring_buffer_event *event)
2301 u64 delta;
2304 * The event first in the commit queue updates the
2305 * time stamp.
2307 if (rb_event_is_commit(cpu_buffer, event)) {
2309 * A commit event that is first on a page
2310 * updates the write timestamp with the page stamp
2312 if (!rb_event_index(event))
2313 cpu_buffer->write_stamp =
2314 cpu_buffer->commit_page->page->time_stamp;
2315 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2316 delta = event->array[0];
2317 delta <<= TS_SHIFT;
2318 delta += event->time_delta;
2319 cpu_buffer->write_stamp += delta;
2320 } else
2321 cpu_buffer->write_stamp += event->time_delta;
2325 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2326 struct ring_buffer_event *event)
2328 local_inc(&cpu_buffer->entries);
2329 rb_update_write_stamp(cpu_buffer, event);
2330 rb_end_commit(cpu_buffer);
2334 * ring_buffer_unlock_commit - commit a reserved
2335 * @buffer: The buffer to commit to
2336 * @event: The event pointer to commit.
2338 * This commits the data to the ring buffer, and releases any locks held.
2340 * Must be paired with ring_buffer_lock_reserve.
2342 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2343 struct ring_buffer_event *event)
2345 struct ring_buffer_per_cpu *cpu_buffer;
2346 int cpu = raw_smp_processor_id();
2348 cpu_buffer = buffer->buffers[cpu];
2350 rb_commit(cpu_buffer, event);
2352 trace_recursive_unlock();
2354 preempt_enable_notrace();
2356 return 0;
2358 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2360 static inline void rb_event_discard(struct ring_buffer_event *event)
2362 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2363 event = skip_time_extend(event);
2365 /* array[0] holds the actual length for the discarded event */
2366 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2367 event->type_len = RINGBUF_TYPE_PADDING;
2368 /* time delta must be non zero */
2369 if (!event->time_delta)
2370 event->time_delta = 1;
2374 * Decrement the entries to the page that an event is on.
2375 * The event does not even need to exist, only the pointer
2376 * to the page it is on. This may only be called before the commit
2377 * takes place.
2379 static inline void
2380 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2381 struct ring_buffer_event *event)
2383 unsigned long addr = (unsigned long)event;
2384 struct buffer_page *bpage = cpu_buffer->commit_page;
2385 struct buffer_page *start;
2387 addr &= PAGE_MASK;
2389 /* Do the likely case first */
2390 if (likely(bpage->page == (void *)addr)) {
2391 local_dec(&bpage->entries);
2392 return;
2396 * Because the commit page may be on the reader page we
2397 * start with the next page and check the end loop there.
2399 rb_inc_page(cpu_buffer, &bpage);
2400 start = bpage;
2401 do {
2402 if (bpage->page == (void *)addr) {
2403 local_dec(&bpage->entries);
2404 return;
2406 rb_inc_page(cpu_buffer, &bpage);
2407 } while (bpage != start);
2409 /* commit not part of this buffer?? */
2410 RB_WARN_ON(cpu_buffer, 1);
2414 * ring_buffer_commit_discard - discard an event that has not been committed
2415 * @buffer: the ring buffer
2416 * @event: non committed event to discard
2418 * Sometimes an event that is in the ring buffer needs to be ignored.
2419 * This function lets the user discard an event in the ring buffer
2420 * and then that event will not be read later.
2422 * This function only works if it is called before the the item has been
2423 * committed. It will try to free the event from the ring buffer
2424 * if another event has not been added behind it.
2426 * If another event has been added behind it, it will set the event
2427 * up as discarded, and perform the commit.
2429 * If this function is called, do not call ring_buffer_unlock_commit on
2430 * the event.
2432 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2433 struct ring_buffer_event *event)
2435 struct ring_buffer_per_cpu *cpu_buffer;
2436 int cpu;
2438 /* The event is discarded regardless */
2439 rb_event_discard(event);
2441 cpu = smp_processor_id();
2442 cpu_buffer = buffer->buffers[cpu];
2445 * This must only be called if the event has not been
2446 * committed yet. Thus we can assume that preemption
2447 * is still disabled.
2449 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2451 rb_decrement_entry(cpu_buffer, event);
2452 if (rb_try_to_discard(cpu_buffer, event))
2453 goto out;
2456 * The commit is still visible by the reader, so we
2457 * must still update the timestamp.
2459 rb_update_write_stamp(cpu_buffer, event);
2460 out:
2461 rb_end_commit(cpu_buffer);
2463 trace_recursive_unlock();
2465 preempt_enable_notrace();
2468 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2471 * ring_buffer_write - write data to the buffer without reserving
2472 * @buffer: The ring buffer to write to.
2473 * @length: The length of the data being written (excluding the event header)
2474 * @data: The data to write to the buffer.
2476 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2477 * one function. If you already have the data to write to the buffer, it
2478 * may be easier to simply call this function.
2480 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2481 * and not the length of the event which would hold the header.
2483 int ring_buffer_write(struct ring_buffer *buffer,
2484 unsigned long length,
2485 void *data)
2487 struct ring_buffer_per_cpu *cpu_buffer;
2488 struct ring_buffer_event *event;
2489 void *body;
2490 int ret = -EBUSY;
2491 int cpu;
2493 if (ring_buffer_flags != RB_BUFFERS_ON)
2494 return -EBUSY;
2496 preempt_disable_notrace();
2498 if (atomic_read(&buffer->record_disabled))
2499 goto out;
2501 cpu = raw_smp_processor_id();
2503 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2504 goto out;
2506 cpu_buffer = buffer->buffers[cpu];
2508 if (atomic_read(&cpu_buffer->record_disabled))
2509 goto out;
2511 if (length > BUF_MAX_DATA_SIZE)
2512 goto out;
2514 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2515 if (!event)
2516 goto out;
2518 body = rb_event_data(event);
2520 memcpy(body, data, length);
2522 rb_commit(cpu_buffer, event);
2524 ret = 0;
2525 out:
2526 preempt_enable_notrace();
2528 return ret;
2530 EXPORT_SYMBOL_GPL(ring_buffer_write);
2532 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2534 struct buffer_page *reader = cpu_buffer->reader_page;
2535 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2536 struct buffer_page *commit = cpu_buffer->commit_page;
2538 /* In case of error, head will be NULL */
2539 if (unlikely(!head))
2540 return 1;
2542 return reader->read == rb_page_commit(reader) &&
2543 (commit == reader ||
2544 (commit == head &&
2545 head->read == rb_page_commit(commit)));
2549 * ring_buffer_record_disable - stop all writes into the buffer
2550 * @buffer: The ring buffer to stop writes to.
2552 * This prevents all writes to the buffer. Any attempt to write
2553 * to the buffer after this will fail and return NULL.
2555 * The caller should call synchronize_sched() after this.
2557 void ring_buffer_record_disable(struct ring_buffer *buffer)
2559 atomic_inc(&buffer->record_disabled);
2561 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2564 * ring_buffer_record_enable - enable writes to the buffer
2565 * @buffer: The ring buffer to enable writes
2567 * Note, multiple disables will need the same number of enables
2568 * to truly enable the writing (much like preempt_disable).
2570 void ring_buffer_record_enable(struct ring_buffer *buffer)
2572 atomic_dec(&buffer->record_disabled);
2574 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2577 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2578 * @buffer: The ring buffer to stop writes to.
2579 * @cpu: The CPU buffer to stop
2581 * This prevents all writes to the buffer. Any attempt to write
2582 * to the buffer after this will fail and return NULL.
2584 * The caller should call synchronize_sched() after this.
2586 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2588 struct ring_buffer_per_cpu *cpu_buffer;
2590 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2591 return;
2593 cpu_buffer = buffer->buffers[cpu];
2594 atomic_inc(&cpu_buffer->record_disabled);
2596 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2599 * ring_buffer_record_enable_cpu - enable writes to the buffer
2600 * @buffer: The ring buffer to enable writes
2601 * @cpu: The CPU to enable.
2603 * Note, multiple disables will need the same number of enables
2604 * to truly enable the writing (much like preempt_disable).
2606 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2608 struct ring_buffer_per_cpu *cpu_buffer;
2610 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2611 return;
2613 cpu_buffer = buffer->buffers[cpu];
2614 atomic_dec(&cpu_buffer->record_disabled);
2616 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2619 * The total entries in the ring buffer is the running counter
2620 * of entries entered into the ring buffer, minus the sum of
2621 * the entries read from the ring buffer and the number of
2622 * entries that were overwritten.
2624 static inline unsigned long
2625 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2627 return local_read(&cpu_buffer->entries) -
2628 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2632 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2633 * @buffer: The ring buffer
2634 * @cpu: The per CPU buffer to get the entries from.
2636 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2638 struct ring_buffer_per_cpu *cpu_buffer;
2640 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2641 return 0;
2643 cpu_buffer = buffer->buffers[cpu];
2645 return rb_num_of_entries(cpu_buffer);
2647 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2650 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2651 * @buffer: The ring buffer
2652 * @cpu: The per CPU buffer to get the number of overruns from
2654 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2656 struct ring_buffer_per_cpu *cpu_buffer;
2657 unsigned long ret;
2659 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2660 return 0;
2662 cpu_buffer = buffer->buffers[cpu];
2663 ret = local_read(&cpu_buffer->overrun);
2665 return ret;
2667 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2670 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2671 * @buffer: The ring buffer
2672 * @cpu: The per CPU buffer to get the number of overruns from
2674 unsigned long
2675 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2677 struct ring_buffer_per_cpu *cpu_buffer;
2678 unsigned long ret;
2680 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2681 return 0;
2683 cpu_buffer = buffer->buffers[cpu];
2684 ret = local_read(&cpu_buffer->commit_overrun);
2686 return ret;
2688 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2691 * ring_buffer_entries - get the number of entries in a buffer
2692 * @buffer: The ring buffer
2694 * Returns the total number of entries in the ring buffer
2695 * (all CPU entries)
2697 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2699 struct ring_buffer_per_cpu *cpu_buffer;
2700 unsigned long entries = 0;
2701 int cpu;
2703 /* if you care about this being correct, lock the buffer */
2704 for_each_buffer_cpu(buffer, cpu) {
2705 cpu_buffer = buffer->buffers[cpu];
2706 entries += rb_num_of_entries(cpu_buffer);
2709 return entries;
2711 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2714 * ring_buffer_overruns - get the number of overruns in buffer
2715 * @buffer: The ring buffer
2717 * Returns the total number of overruns in the ring buffer
2718 * (all CPU entries)
2720 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2722 struct ring_buffer_per_cpu *cpu_buffer;
2723 unsigned long overruns = 0;
2724 int cpu;
2726 /* if you care about this being correct, lock the buffer */
2727 for_each_buffer_cpu(buffer, cpu) {
2728 cpu_buffer = buffer->buffers[cpu];
2729 overruns += local_read(&cpu_buffer->overrun);
2732 return overruns;
2734 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2736 static void rb_iter_reset(struct ring_buffer_iter *iter)
2738 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2740 /* Iterator usage is expected to have record disabled */
2741 if (list_empty(&cpu_buffer->reader_page->list)) {
2742 iter->head_page = rb_set_head_page(cpu_buffer);
2743 if (unlikely(!iter->head_page))
2744 return;
2745 iter->head = iter->head_page->read;
2746 } else {
2747 iter->head_page = cpu_buffer->reader_page;
2748 iter->head = cpu_buffer->reader_page->read;
2750 if (iter->head)
2751 iter->read_stamp = cpu_buffer->read_stamp;
2752 else
2753 iter->read_stamp = iter->head_page->page->time_stamp;
2754 iter->cache_reader_page = cpu_buffer->reader_page;
2755 iter->cache_read = cpu_buffer->read;
2759 * ring_buffer_iter_reset - reset an iterator
2760 * @iter: The iterator to reset
2762 * Resets the iterator, so that it will start from the beginning
2763 * again.
2765 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2767 struct ring_buffer_per_cpu *cpu_buffer;
2768 unsigned long flags;
2770 if (!iter)
2771 return;
2773 cpu_buffer = iter->cpu_buffer;
2775 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2776 rb_iter_reset(iter);
2777 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2779 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2782 * ring_buffer_iter_empty - check if an iterator has no more to read
2783 * @iter: The iterator to check
2785 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2787 struct ring_buffer_per_cpu *cpu_buffer;
2789 cpu_buffer = iter->cpu_buffer;
2791 return iter->head_page == cpu_buffer->commit_page &&
2792 iter->head == rb_commit_index(cpu_buffer);
2794 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2796 static void
2797 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2798 struct ring_buffer_event *event)
2800 u64 delta;
2802 switch (event->type_len) {
2803 case RINGBUF_TYPE_PADDING:
2804 return;
2806 case RINGBUF_TYPE_TIME_EXTEND:
2807 delta = event->array[0];
2808 delta <<= TS_SHIFT;
2809 delta += event->time_delta;
2810 cpu_buffer->read_stamp += delta;
2811 return;
2813 case RINGBUF_TYPE_TIME_STAMP:
2814 /* FIXME: not implemented */
2815 return;
2817 case RINGBUF_TYPE_DATA:
2818 cpu_buffer->read_stamp += event->time_delta;
2819 return;
2821 default:
2822 BUG();
2824 return;
2827 static void
2828 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2829 struct ring_buffer_event *event)
2831 u64 delta;
2833 switch (event->type_len) {
2834 case RINGBUF_TYPE_PADDING:
2835 return;
2837 case RINGBUF_TYPE_TIME_EXTEND:
2838 delta = event->array[0];
2839 delta <<= TS_SHIFT;
2840 delta += event->time_delta;
2841 iter->read_stamp += delta;
2842 return;
2844 case RINGBUF_TYPE_TIME_STAMP:
2845 /* FIXME: not implemented */
2846 return;
2848 case RINGBUF_TYPE_DATA:
2849 iter->read_stamp += event->time_delta;
2850 return;
2852 default:
2853 BUG();
2855 return;
2858 static struct buffer_page *
2859 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2861 struct buffer_page *reader = NULL;
2862 unsigned long overwrite;
2863 unsigned long flags;
2864 int nr_loops = 0;
2865 int ret;
2867 local_irq_save(flags);
2868 arch_spin_lock(&cpu_buffer->lock);
2870 again:
2872 * This should normally only loop twice. But because the
2873 * start of the reader inserts an empty page, it causes
2874 * a case where we will loop three times. There should be no
2875 * reason to loop four times (that I know of).
2877 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2878 reader = NULL;
2879 goto out;
2882 reader = cpu_buffer->reader_page;
2884 /* If there's more to read, return this page */
2885 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2886 goto out;
2888 /* Never should we have an index greater than the size */
2889 if (RB_WARN_ON(cpu_buffer,
2890 cpu_buffer->reader_page->read > rb_page_size(reader)))
2891 goto out;
2893 /* check if we caught up to the tail */
2894 reader = NULL;
2895 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2896 goto out;
2899 * Reset the reader page to size zero.
2901 local_set(&cpu_buffer->reader_page->write, 0);
2902 local_set(&cpu_buffer->reader_page->entries, 0);
2903 local_set(&cpu_buffer->reader_page->page->commit, 0);
2904 cpu_buffer->reader_page->real_end = 0;
2906 spin:
2908 * Splice the empty reader page into the list around the head.
2910 reader = rb_set_head_page(cpu_buffer);
2911 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2912 cpu_buffer->reader_page->list.prev = reader->list.prev;
2915 * cpu_buffer->pages just needs to point to the buffer, it
2916 * has no specific buffer page to point to. Lets move it out
2917 * of our way so we don't accidently swap it.
2919 cpu_buffer->pages = reader->list.prev;
2921 /* The reader page will be pointing to the new head */
2922 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2925 * We want to make sure we read the overruns after we set up our
2926 * pointers to the next object. The writer side does a
2927 * cmpxchg to cross pages which acts as the mb on the writer
2928 * side. Note, the reader will constantly fail the swap
2929 * while the writer is updating the pointers, so this
2930 * guarantees that the overwrite recorded here is the one we
2931 * want to compare with the last_overrun.
2933 smp_mb();
2934 overwrite = local_read(&(cpu_buffer->overrun));
2937 * Here's the tricky part.
2939 * We need to move the pointer past the header page.
2940 * But we can only do that if a writer is not currently
2941 * moving it. The page before the header page has the
2942 * flag bit '1' set if it is pointing to the page we want.
2943 * but if the writer is in the process of moving it
2944 * than it will be '2' or already moved '0'.
2947 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2950 * If we did not convert it, then we must try again.
2952 if (!ret)
2953 goto spin;
2956 * Yeah! We succeeded in replacing the page.
2958 * Now make the new head point back to the reader page.
2960 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2961 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2963 /* Finally update the reader page to the new head */
2964 cpu_buffer->reader_page = reader;
2965 rb_reset_reader_page(cpu_buffer);
2967 if (overwrite != cpu_buffer->last_overrun) {
2968 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
2969 cpu_buffer->last_overrun = overwrite;
2972 goto again;
2974 out:
2975 arch_spin_unlock(&cpu_buffer->lock);
2976 local_irq_restore(flags);
2978 return reader;
2981 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2983 struct ring_buffer_event *event;
2984 struct buffer_page *reader;
2985 unsigned length;
2987 reader = rb_get_reader_page(cpu_buffer);
2989 /* This function should not be called when buffer is empty */
2990 if (RB_WARN_ON(cpu_buffer, !reader))
2991 return;
2993 event = rb_reader_event(cpu_buffer);
2995 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2996 cpu_buffer->read++;
2998 rb_update_read_stamp(cpu_buffer, event);
3000 length = rb_event_length(event);
3001 cpu_buffer->reader_page->read += length;
3004 static void rb_advance_iter(struct ring_buffer_iter *iter)
3006 struct ring_buffer_per_cpu *cpu_buffer;
3007 struct ring_buffer_event *event;
3008 unsigned length;
3010 cpu_buffer = iter->cpu_buffer;
3013 * Check if we are at the end of the buffer.
3015 if (iter->head >= rb_page_size(iter->head_page)) {
3016 /* discarded commits can make the page empty */
3017 if (iter->head_page == cpu_buffer->commit_page)
3018 return;
3019 rb_inc_iter(iter);
3020 return;
3023 event = rb_iter_head_event(iter);
3025 length = rb_event_length(event);
3028 * This should not be called to advance the header if we are
3029 * at the tail of the buffer.
3031 if (RB_WARN_ON(cpu_buffer,
3032 (iter->head_page == cpu_buffer->commit_page) &&
3033 (iter->head + length > rb_commit_index(cpu_buffer))))
3034 return;
3036 rb_update_iter_read_stamp(iter, event);
3038 iter->head += length;
3040 /* check for end of page padding */
3041 if ((iter->head >= rb_page_size(iter->head_page)) &&
3042 (iter->head_page != cpu_buffer->commit_page))
3043 rb_advance_iter(iter);
3046 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3048 return cpu_buffer->lost_events;
3051 static struct ring_buffer_event *
3052 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3053 unsigned long *lost_events)
3055 struct ring_buffer_event *event;
3056 struct buffer_page *reader;
3057 int nr_loops = 0;
3059 again:
3061 * We repeat when a time extend is encountered.
3062 * Since the time extend is always attached to a data event,
3063 * we should never loop more than once.
3064 * (We never hit the following condition more than twice).
3066 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3067 return NULL;
3069 reader = rb_get_reader_page(cpu_buffer);
3070 if (!reader)
3071 return NULL;
3073 event = rb_reader_event(cpu_buffer);
3075 switch (event->type_len) {
3076 case RINGBUF_TYPE_PADDING:
3077 if (rb_null_event(event))
3078 RB_WARN_ON(cpu_buffer, 1);
3080 * Because the writer could be discarding every
3081 * event it creates (which would probably be bad)
3082 * if we were to go back to "again" then we may never
3083 * catch up, and will trigger the warn on, or lock
3084 * the box. Return the padding, and we will release
3085 * the current locks, and try again.
3087 return event;
3089 case RINGBUF_TYPE_TIME_EXTEND:
3090 /* Internal data, OK to advance */
3091 rb_advance_reader(cpu_buffer);
3092 goto again;
3094 case RINGBUF_TYPE_TIME_STAMP:
3095 /* FIXME: not implemented */
3096 rb_advance_reader(cpu_buffer);
3097 goto again;
3099 case RINGBUF_TYPE_DATA:
3100 if (ts) {
3101 *ts = cpu_buffer->read_stamp + event->time_delta;
3102 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3103 cpu_buffer->cpu, ts);
3105 if (lost_events)
3106 *lost_events = rb_lost_events(cpu_buffer);
3107 return event;
3109 default:
3110 BUG();
3113 return NULL;
3115 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3117 static struct ring_buffer_event *
3118 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3120 struct ring_buffer *buffer;
3121 struct ring_buffer_per_cpu *cpu_buffer;
3122 struct ring_buffer_event *event;
3123 int nr_loops = 0;
3125 cpu_buffer = iter->cpu_buffer;
3126 buffer = cpu_buffer->buffer;
3129 * Check if someone performed a consuming read to
3130 * the buffer. A consuming read invalidates the iterator
3131 * and we need to reset the iterator in this case.
3133 if (unlikely(iter->cache_read != cpu_buffer->read ||
3134 iter->cache_reader_page != cpu_buffer->reader_page))
3135 rb_iter_reset(iter);
3137 again:
3138 if (ring_buffer_iter_empty(iter))
3139 return NULL;
3142 * We repeat when a time extend is encountered.
3143 * Since the time extend is always attached to a data event,
3144 * we should never loop more than once.
3145 * (We never hit the following condition more than twice).
3147 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3148 return NULL;
3150 if (rb_per_cpu_empty(cpu_buffer))
3151 return NULL;
3153 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3154 rb_inc_iter(iter);
3155 goto again;
3158 event = rb_iter_head_event(iter);
3160 switch (event->type_len) {
3161 case RINGBUF_TYPE_PADDING:
3162 if (rb_null_event(event)) {
3163 rb_inc_iter(iter);
3164 goto again;
3166 rb_advance_iter(iter);
3167 return event;
3169 case RINGBUF_TYPE_TIME_EXTEND:
3170 /* Internal data, OK to advance */
3171 rb_advance_iter(iter);
3172 goto again;
3174 case RINGBUF_TYPE_TIME_STAMP:
3175 /* FIXME: not implemented */
3176 rb_advance_iter(iter);
3177 goto again;
3179 case RINGBUF_TYPE_DATA:
3180 if (ts) {
3181 *ts = iter->read_stamp + event->time_delta;
3182 ring_buffer_normalize_time_stamp(buffer,
3183 cpu_buffer->cpu, ts);
3185 return event;
3187 default:
3188 BUG();
3191 return NULL;
3193 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3195 static inline int rb_ok_to_lock(void)
3198 * If an NMI die dumps out the content of the ring buffer
3199 * do not grab locks. We also permanently disable the ring
3200 * buffer too. A one time deal is all you get from reading
3201 * the ring buffer from an NMI.
3203 if (likely(!in_nmi()))
3204 return 1;
3206 tracing_off_permanent();
3207 return 0;
3211 * ring_buffer_peek - peek at the next event to be read
3212 * @buffer: The ring buffer to read
3213 * @cpu: The cpu to peak at
3214 * @ts: The timestamp counter of this event.
3215 * @lost_events: a variable to store if events were lost (may be NULL)
3217 * This will return the event that will be read next, but does
3218 * not consume the data.
3220 struct ring_buffer_event *
3221 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3222 unsigned long *lost_events)
3224 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3225 struct ring_buffer_event *event;
3226 unsigned long flags;
3227 int dolock;
3229 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3230 return NULL;
3232 dolock = rb_ok_to_lock();
3233 again:
3234 local_irq_save(flags);
3235 if (dolock)
3236 spin_lock(&cpu_buffer->reader_lock);
3237 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3238 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3239 rb_advance_reader(cpu_buffer);
3240 if (dolock)
3241 spin_unlock(&cpu_buffer->reader_lock);
3242 local_irq_restore(flags);
3244 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3245 goto again;
3247 return event;
3251 * ring_buffer_iter_peek - peek at the next event to be read
3252 * @iter: The ring buffer iterator
3253 * @ts: The timestamp counter of this event.
3255 * This will return the event that will be read next, but does
3256 * not increment the iterator.
3258 struct ring_buffer_event *
3259 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3261 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3262 struct ring_buffer_event *event;
3263 unsigned long flags;
3265 again:
3266 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3267 event = rb_iter_peek(iter, ts);
3268 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3270 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271 goto again;
3273 return event;
3277 * ring_buffer_consume - return an event and consume it
3278 * @buffer: The ring buffer to get the next event from
3279 * @cpu: the cpu to read the buffer from
3280 * @ts: a variable to store the timestamp (may be NULL)
3281 * @lost_events: a variable to store if events were lost (may be NULL)
3283 * Returns the next event in the ring buffer, and that event is consumed.
3284 * Meaning, that sequential reads will keep returning a different event,
3285 * and eventually empty the ring buffer if the producer is slower.
3287 struct ring_buffer_event *
3288 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3289 unsigned long *lost_events)
3291 struct ring_buffer_per_cpu *cpu_buffer;
3292 struct ring_buffer_event *event = NULL;
3293 unsigned long flags;
3294 int dolock;
3296 dolock = rb_ok_to_lock();
3298 again:
3299 /* might be called in atomic */
3300 preempt_disable();
3302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303 goto out;
3305 cpu_buffer = buffer->buffers[cpu];
3306 local_irq_save(flags);
3307 if (dolock)
3308 spin_lock(&cpu_buffer->reader_lock);
3310 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3311 if (event) {
3312 cpu_buffer->lost_events = 0;
3313 rb_advance_reader(cpu_buffer);
3316 if (dolock)
3317 spin_unlock(&cpu_buffer->reader_lock);
3318 local_irq_restore(flags);
3320 out:
3321 preempt_enable();
3323 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3324 goto again;
3326 return event;
3328 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3331 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3332 * @buffer: The ring buffer to read from
3333 * @cpu: The cpu buffer to iterate over
3335 * This performs the initial preparations necessary to iterate
3336 * through the buffer. Memory is allocated, buffer recording
3337 * is disabled, and the iterator pointer is returned to the caller.
3339 * Disabling buffer recordng prevents the reading from being
3340 * corrupted. This is not a consuming read, so a producer is not
3341 * expected.
3343 * After a sequence of ring_buffer_read_prepare calls, the user is
3344 * expected to make at least one call to ring_buffer_prepare_sync.
3345 * Afterwards, ring_buffer_read_start is invoked to get things going
3346 * for real.
3348 * This overall must be paired with ring_buffer_finish.
3350 struct ring_buffer_iter *
3351 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3353 struct ring_buffer_per_cpu *cpu_buffer;
3354 struct ring_buffer_iter *iter;
3356 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3357 return NULL;
3359 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3360 if (!iter)
3361 return NULL;
3363 cpu_buffer = buffer->buffers[cpu];
3365 iter->cpu_buffer = cpu_buffer;
3367 atomic_inc(&cpu_buffer->record_disabled);
3369 return iter;
3371 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3374 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3376 * All previously invoked ring_buffer_read_prepare calls to prepare
3377 * iterators will be synchronized. Afterwards, read_buffer_read_start
3378 * calls on those iterators are allowed.
3380 void
3381 ring_buffer_read_prepare_sync(void)
3383 synchronize_sched();
3385 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3388 * ring_buffer_read_start - start a non consuming read of the buffer
3389 * @iter: The iterator returned by ring_buffer_read_prepare
3391 * This finalizes the startup of an iteration through the buffer.
3392 * The iterator comes from a call to ring_buffer_read_prepare and
3393 * an intervening ring_buffer_read_prepare_sync must have been
3394 * performed.
3396 * Must be paired with ring_buffer_finish.
3398 void
3399 ring_buffer_read_start(struct ring_buffer_iter *iter)
3401 struct ring_buffer_per_cpu *cpu_buffer;
3402 unsigned long flags;
3404 if (!iter)
3405 return;
3407 cpu_buffer = iter->cpu_buffer;
3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410 arch_spin_lock(&cpu_buffer->lock);
3411 rb_iter_reset(iter);
3412 arch_spin_unlock(&cpu_buffer->lock);
3413 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3415 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3418 * ring_buffer_finish - finish reading the iterator of the buffer
3419 * @iter: The iterator retrieved by ring_buffer_start
3421 * This re-enables the recording to the buffer, and frees the
3422 * iterator.
3424 void
3425 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3427 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3429 atomic_dec(&cpu_buffer->record_disabled);
3430 kfree(iter);
3432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3435 * ring_buffer_read - read the next item in the ring buffer by the iterator
3436 * @iter: The ring buffer iterator
3437 * @ts: The time stamp of the event read.
3439 * This reads the next event in the ring buffer and increments the iterator.
3441 struct ring_buffer_event *
3442 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3444 struct ring_buffer_event *event;
3445 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3446 unsigned long flags;
3448 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3449 again:
3450 event = rb_iter_peek(iter, ts);
3451 if (!event)
3452 goto out;
3454 if (event->type_len == RINGBUF_TYPE_PADDING)
3455 goto again;
3457 rb_advance_iter(iter);
3458 out:
3459 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3461 return event;
3463 EXPORT_SYMBOL_GPL(ring_buffer_read);
3466 * ring_buffer_size - return the size of the ring buffer (in bytes)
3467 * @buffer: The ring buffer.
3469 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3471 return BUF_PAGE_SIZE * buffer->pages;
3473 EXPORT_SYMBOL_GPL(ring_buffer_size);
3475 static void
3476 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3478 rb_head_page_deactivate(cpu_buffer);
3480 cpu_buffer->head_page
3481 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3482 local_set(&cpu_buffer->head_page->write, 0);
3483 local_set(&cpu_buffer->head_page->entries, 0);
3484 local_set(&cpu_buffer->head_page->page->commit, 0);
3486 cpu_buffer->head_page->read = 0;
3488 cpu_buffer->tail_page = cpu_buffer->head_page;
3489 cpu_buffer->commit_page = cpu_buffer->head_page;
3491 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3492 local_set(&cpu_buffer->reader_page->write, 0);
3493 local_set(&cpu_buffer->reader_page->entries, 0);
3494 local_set(&cpu_buffer->reader_page->page->commit, 0);
3495 cpu_buffer->reader_page->read = 0;
3497 local_set(&cpu_buffer->commit_overrun, 0);
3498 local_set(&cpu_buffer->overrun, 0);
3499 local_set(&cpu_buffer->entries, 0);
3500 local_set(&cpu_buffer->committing, 0);
3501 local_set(&cpu_buffer->commits, 0);
3502 cpu_buffer->read = 0;
3504 cpu_buffer->write_stamp = 0;
3505 cpu_buffer->read_stamp = 0;
3507 cpu_buffer->lost_events = 0;
3508 cpu_buffer->last_overrun = 0;
3510 rb_head_page_activate(cpu_buffer);
3514 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3515 * @buffer: The ring buffer to reset a per cpu buffer of
3516 * @cpu: The CPU buffer to be reset
3518 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3520 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3521 unsigned long flags;
3523 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3524 return;
3526 atomic_inc(&cpu_buffer->record_disabled);
3528 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3530 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3531 goto out;
3533 arch_spin_lock(&cpu_buffer->lock);
3535 rb_reset_cpu(cpu_buffer);
3537 arch_spin_unlock(&cpu_buffer->lock);
3539 out:
3540 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3542 atomic_dec(&cpu_buffer->record_disabled);
3544 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3547 * ring_buffer_reset - reset a ring buffer
3548 * @buffer: The ring buffer to reset all cpu buffers
3550 void ring_buffer_reset(struct ring_buffer *buffer)
3552 int cpu;
3554 for_each_buffer_cpu(buffer, cpu)
3555 ring_buffer_reset_cpu(buffer, cpu);
3557 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3560 * rind_buffer_empty - is the ring buffer empty?
3561 * @buffer: The ring buffer to test
3563 int ring_buffer_empty(struct ring_buffer *buffer)
3565 struct ring_buffer_per_cpu *cpu_buffer;
3566 unsigned long flags;
3567 int dolock;
3568 int cpu;
3569 int ret;
3571 dolock = rb_ok_to_lock();
3573 /* yes this is racy, but if you don't like the race, lock the buffer */
3574 for_each_buffer_cpu(buffer, cpu) {
3575 cpu_buffer = buffer->buffers[cpu];
3576 local_irq_save(flags);
3577 if (dolock)
3578 spin_lock(&cpu_buffer->reader_lock);
3579 ret = rb_per_cpu_empty(cpu_buffer);
3580 if (dolock)
3581 spin_unlock(&cpu_buffer->reader_lock);
3582 local_irq_restore(flags);
3584 if (!ret)
3585 return 0;
3588 return 1;
3590 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3593 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3594 * @buffer: The ring buffer
3595 * @cpu: The CPU buffer to test
3597 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3599 struct ring_buffer_per_cpu *cpu_buffer;
3600 unsigned long flags;
3601 int dolock;
3602 int ret;
3604 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3605 return 1;
3607 dolock = rb_ok_to_lock();
3609 cpu_buffer = buffer->buffers[cpu];
3610 local_irq_save(flags);
3611 if (dolock)
3612 spin_lock(&cpu_buffer->reader_lock);
3613 ret = rb_per_cpu_empty(cpu_buffer);
3614 if (dolock)
3615 spin_unlock(&cpu_buffer->reader_lock);
3616 local_irq_restore(flags);
3618 return ret;
3620 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3622 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3624 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3625 * @buffer_a: One buffer to swap with
3626 * @buffer_b: The other buffer to swap with
3628 * This function is useful for tracers that want to take a "snapshot"
3629 * of a CPU buffer and has another back up buffer lying around.
3630 * it is expected that the tracer handles the cpu buffer not being
3631 * used at the moment.
3633 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3634 struct ring_buffer *buffer_b, int cpu)
3636 struct ring_buffer_per_cpu *cpu_buffer_a;
3637 struct ring_buffer_per_cpu *cpu_buffer_b;
3638 int ret = -EINVAL;
3640 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3641 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3642 goto out;
3644 /* At least make sure the two buffers are somewhat the same */
3645 if (buffer_a->pages != buffer_b->pages)
3646 goto out;
3648 ret = -EAGAIN;
3650 if (ring_buffer_flags != RB_BUFFERS_ON)
3651 goto out;
3653 if (atomic_read(&buffer_a->record_disabled))
3654 goto out;
3656 if (atomic_read(&buffer_b->record_disabled))
3657 goto out;
3659 cpu_buffer_a = buffer_a->buffers[cpu];
3660 cpu_buffer_b = buffer_b->buffers[cpu];
3662 if (atomic_read(&cpu_buffer_a->record_disabled))
3663 goto out;
3665 if (atomic_read(&cpu_buffer_b->record_disabled))
3666 goto out;
3669 * We can't do a synchronize_sched here because this
3670 * function can be called in atomic context.
3671 * Normally this will be called from the same CPU as cpu.
3672 * If not it's up to the caller to protect this.
3674 atomic_inc(&cpu_buffer_a->record_disabled);
3675 atomic_inc(&cpu_buffer_b->record_disabled);
3677 ret = -EBUSY;
3678 if (local_read(&cpu_buffer_a->committing))
3679 goto out_dec;
3680 if (local_read(&cpu_buffer_b->committing))
3681 goto out_dec;
3683 buffer_a->buffers[cpu] = cpu_buffer_b;
3684 buffer_b->buffers[cpu] = cpu_buffer_a;
3686 cpu_buffer_b->buffer = buffer_a;
3687 cpu_buffer_a->buffer = buffer_b;
3689 ret = 0;
3691 out_dec:
3692 atomic_dec(&cpu_buffer_a->record_disabled);
3693 atomic_dec(&cpu_buffer_b->record_disabled);
3694 out:
3695 return ret;
3697 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3698 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3701 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3702 * @buffer: the buffer to allocate for.
3704 * This function is used in conjunction with ring_buffer_read_page.
3705 * When reading a full page from the ring buffer, these functions
3706 * can be used to speed up the process. The calling function should
3707 * allocate a few pages first with this function. Then when it
3708 * needs to get pages from the ring buffer, it passes the result
3709 * of this function into ring_buffer_read_page, which will swap
3710 * the page that was allocated, with the read page of the buffer.
3712 * Returns:
3713 * The page allocated, or NULL on error.
3715 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3717 struct buffer_data_page *bpage;
3718 unsigned long addr;
3720 addr = __get_free_page(GFP_KERNEL);
3721 if (!addr)
3722 return NULL;
3724 bpage = (void *)addr;
3726 rb_init_page(bpage);
3728 return bpage;
3730 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3733 * ring_buffer_free_read_page - free an allocated read page
3734 * @buffer: the buffer the page was allocate for
3735 * @data: the page to free
3737 * Free a page allocated from ring_buffer_alloc_read_page.
3739 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3741 free_page((unsigned long)data);
3743 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3746 * ring_buffer_read_page - extract a page from the ring buffer
3747 * @buffer: buffer to extract from
3748 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3749 * @len: amount to extract
3750 * @cpu: the cpu of the buffer to extract
3751 * @full: should the extraction only happen when the page is full.
3753 * This function will pull out a page from the ring buffer and consume it.
3754 * @data_page must be the address of the variable that was returned
3755 * from ring_buffer_alloc_read_page. This is because the page might be used
3756 * to swap with a page in the ring buffer.
3758 * for example:
3759 * rpage = ring_buffer_alloc_read_page(buffer);
3760 * if (!rpage)
3761 * return error;
3762 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3763 * if (ret >= 0)
3764 * process_page(rpage, ret);
3766 * When @full is set, the function will not return true unless
3767 * the writer is off the reader page.
3769 * Note: it is up to the calling functions to handle sleeps and wakeups.
3770 * The ring buffer can be used anywhere in the kernel and can not
3771 * blindly call wake_up. The layer that uses the ring buffer must be
3772 * responsible for that.
3774 * Returns:
3775 * >=0 if data has been transferred, returns the offset of consumed data.
3776 * <0 if no data has been transferred.
3778 int ring_buffer_read_page(struct ring_buffer *buffer,
3779 void **data_page, size_t len, int cpu, int full)
3781 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3782 struct ring_buffer_event *event;
3783 struct buffer_data_page *bpage;
3784 struct buffer_page *reader;
3785 unsigned long missed_events;
3786 unsigned long flags;
3787 unsigned int commit;
3788 unsigned int read;
3789 u64 save_timestamp;
3790 int ret = -1;
3792 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3793 goto out;
3796 * If len is not big enough to hold the page header, then
3797 * we can not copy anything.
3799 if (len <= BUF_PAGE_HDR_SIZE)
3800 goto out;
3802 len -= BUF_PAGE_HDR_SIZE;
3804 if (!data_page)
3805 goto out;
3807 bpage = *data_page;
3808 if (!bpage)
3809 goto out;
3811 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3813 reader = rb_get_reader_page(cpu_buffer);
3814 if (!reader)
3815 goto out_unlock;
3817 event = rb_reader_event(cpu_buffer);
3819 read = reader->read;
3820 commit = rb_page_commit(reader);
3822 /* Check if any events were dropped */
3823 missed_events = cpu_buffer->lost_events;
3826 * If this page has been partially read or
3827 * if len is not big enough to read the rest of the page or
3828 * a writer is still on the page, then
3829 * we must copy the data from the page to the buffer.
3830 * Otherwise, we can simply swap the page with the one passed in.
3832 if (read || (len < (commit - read)) ||
3833 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3834 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3835 unsigned int rpos = read;
3836 unsigned int pos = 0;
3837 unsigned int size;
3839 if (full)
3840 goto out_unlock;
3842 if (len > (commit - read))
3843 len = (commit - read);
3845 /* Always keep the time extend and data together */
3846 size = rb_event_ts_length(event);
3848 if (len < size)
3849 goto out_unlock;
3851 /* save the current timestamp, since the user will need it */
3852 save_timestamp = cpu_buffer->read_stamp;
3854 /* Need to copy one event at a time */
3855 do {
3856 /* We need the size of one event, because
3857 * rb_advance_reader only advances by one event,
3858 * whereas rb_event_ts_length may include the size of
3859 * one or two events.
3860 * We have already ensured there's enough space if this
3861 * is a time extend. */
3862 size = rb_event_length(event);
3863 memcpy(bpage->data + pos, rpage->data + rpos, size);
3865 len -= size;
3867 rb_advance_reader(cpu_buffer);
3868 rpos = reader->read;
3869 pos += size;
3871 if (rpos >= commit)
3872 break;
3874 event = rb_reader_event(cpu_buffer);
3875 /* Always keep the time extend and data together */
3876 size = rb_event_ts_length(event);
3877 } while (len >= size);
3879 /* update bpage */
3880 local_set(&bpage->commit, pos);
3881 bpage->time_stamp = save_timestamp;
3883 /* we copied everything to the beginning */
3884 read = 0;
3885 } else {
3886 /* update the entry counter */
3887 cpu_buffer->read += rb_page_entries(reader);
3889 /* swap the pages */
3890 rb_init_page(bpage);
3891 bpage = reader->page;
3892 reader->page = *data_page;
3893 local_set(&reader->write, 0);
3894 local_set(&reader->entries, 0);
3895 reader->read = 0;
3896 *data_page = bpage;
3899 * Use the real_end for the data size,
3900 * This gives us a chance to store the lost events
3901 * on the page.
3903 if (reader->real_end)
3904 local_set(&bpage->commit, reader->real_end);
3906 ret = read;
3908 cpu_buffer->lost_events = 0;
3910 commit = local_read(&bpage->commit);
3912 * Set a flag in the commit field if we lost events
3914 if (missed_events) {
3915 /* If there is room at the end of the page to save the
3916 * missed events, then record it there.
3918 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3919 memcpy(&bpage->data[commit], &missed_events,
3920 sizeof(missed_events));
3921 local_add(RB_MISSED_STORED, &bpage->commit);
3922 commit += sizeof(missed_events);
3924 local_add(RB_MISSED_EVENTS, &bpage->commit);
3928 * This page may be off to user land. Zero it out here.
3930 if (commit < BUF_PAGE_SIZE)
3931 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3933 out_unlock:
3934 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3936 out:
3937 return ret;
3939 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3941 #ifdef CONFIG_TRACING
3942 static ssize_t
3943 rb_simple_read(struct file *filp, char __user *ubuf,
3944 size_t cnt, loff_t *ppos)
3946 unsigned long *p = filp->private_data;
3947 char buf[64];
3948 int r;
3950 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3951 r = sprintf(buf, "permanently disabled\n");
3952 else
3953 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3955 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3958 static ssize_t
3959 rb_simple_write(struct file *filp, const char __user *ubuf,
3960 size_t cnt, loff_t *ppos)
3962 unsigned long *p = filp->private_data;
3963 char buf[64];
3964 unsigned long val;
3965 int ret;
3967 if (cnt >= sizeof(buf))
3968 return -EINVAL;
3970 if (copy_from_user(&buf, ubuf, cnt))
3971 return -EFAULT;
3973 buf[cnt] = 0;
3975 ret = strict_strtoul(buf, 10, &val);
3976 if (ret < 0)
3977 return ret;
3979 if (val)
3980 set_bit(RB_BUFFERS_ON_BIT, p);
3981 else
3982 clear_bit(RB_BUFFERS_ON_BIT, p);
3984 (*ppos)++;
3986 return cnt;
3989 static const struct file_operations rb_simple_fops = {
3990 .open = tracing_open_generic,
3991 .read = rb_simple_read,
3992 .write = rb_simple_write,
3993 .llseek = default_llseek,
3997 static __init int rb_init_debugfs(void)
3999 struct dentry *d_tracer;
4001 d_tracer = tracing_init_dentry();
4003 trace_create_file("tracing_on", 0644, d_tracer,
4004 &ring_buffer_flags, &rb_simple_fops);
4006 return 0;
4009 fs_initcall(rb_init_debugfs);
4010 #endif
4012 #ifdef CONFIG_HOTPLUG_CPU
4013 static int rb_cpu_notify(struct notifier_block *self,
4014 unsigned long action, void *hcpu)
4016 struct ring_buffer *buffer =
4017 container_of(self, struct ring_buffer, cpu_notify);
4018 long cpu = (long)hcpu;
4020 switch (action) {
4021 case CPU_UP_PREPARE:
4022 case CPU_UP_PREPARE_FROZEN:
4023 if (cpumask_test_cpu(cpu, buffer->cpumask))
4024 return NOTIFY_OK;
4026 buffer->buffers[cpu] =
4027 rb_allocate_cpu_buffer(buffer, cpu);
4028 if (!buffer->buffers[cpu]) {
4029 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4030 cpu);
4031 return NOTIFY_OK;
4033 smp_wmb();
4034 cpumask_set_cpu(cpu, buffer->cpumask);
4035 break;
4036 case CPU_DOWN_PREPARE:
4037 case CPU_DOWN_PREPARE_FROZEN:
4039 * Do nothing.
4040 * If we were to free the buffer, then the user would
4041 * lose any trace that was in the buffer.
4043 break;
4044 default:
4045 break;
4047 return NOTIFY_OK;
4049 #endif