ocfs2: Make the left masklogs compat.
[taoma-kernel.git] / security / selinux / netnode.c
blob65ebfe954f85395f490ce74d694d73a859b523ac
1 /*
2 * Network node table
4 * SELinux must keep a mapping of network nodes to labels/SIDs. This
5 * mapping is maintained as part of the normal policy but a fast cache is
6 * needed to reduce the lookup overhead since most of these queries happen on
7 * a per-packet basis.
9 * Author: Paul Moore <paul.moore@hp.com>
11 * This code is heavily based on the "netif" concept originally developed by
12 * James Morris <jmorris@redhat.com>
13 * (see security/selinux/netif.c for more information)
18 * (c) Copyright Hewlett-Packard Development Company, L.P., 2007
20 * This program is free software: you can redistribute it and/or modify
21 * it under the terms of version 2 of the GNU General Public License as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
31 #include <linux/types.h>
32 #include <linux/rcupdate.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/in.h>
37 #include <linux/in6.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <net/ip.h>
41 #include <net/ipv6.h>
43 #include "netnode.h"
44 #include "objsec.h"
46 #define SEL_NETNODE_HASH_SIZE 256
47 #define SEL_NETNODE_HASH_BKT_LIMIT 16
49 struct sel_netnode_bkt {
50 unsigned int size;
51 struct list_head list;
54 struct sel_netnode {
55 struct netnode_security_struct nsec;
57 struct list_head list;
58 struct rcu_head rcu;
61 /* NOTE: we are using a combined hash table for both IPv4 and IPv6, the reason
62 * for this is that I suspect most users will not make heavy use of both
63 * address families at the same time so one table will usually end up wasted,
64 * if this becomes a problem we can always add a hash table for each address
65 * family later */
67 static LIST_HEAD(sel_netnode_list);
68 static DEFINE_SPINLOCK(sel_netnode_lock);
69 static struct sel_netnode_bkt sel_netnode_hash[SEL_NETNODE_HASH_SIZE];
71 /**
72 * sel_netnode_free - Frees a node entry
73 * @p: the entry's RCU field
75 * Description:
76 * This function is designed to be used as a callback to the call_rcu()
77 * function so that memory allocated to a hash table node entry can be
78 * released safely.
81 static void sel_netnode_free(struct rcu_head *p)
83 struct sel_netnode *node = container_of(p, struct sel_netnode, rcu);
84 kfree(node);
87 /**
88 * sel_netnode_hashfn_ipv4 - IPv4 hashing function for the node table
89 * @addr: IPv4 address
91 * Description:
92 * This is the IPv4 hashing function for the node interface table, it returns
93 * the bucket number for the given IP address.
96 static unsigned int sel_netnode_hashfn_ipv4(__be32 addr)
98 /* at some point we should determine if the mismatch in byte order
99 * affects the hash function dramatically */
100 return (addr & (SEL_NETNODE_HASH_SIZE - 1));
104 * sel_netnode_hashfn_ipv6 - IPv6 hashing function for the node table
105 * @addr: IPv6 address
107 * Description:
108 * This is the IPv6 hashing function for the node interface table, it returns
109 * the bucket number for the given IP address.
112 static unsigned int sel_netnode_hashfn_ipv6(const struct in6_addr *addr)
114 /* just hash the least significant 32 bits to keep things fast (they
115 * are the most likely to be different anyway), we can revisit this
116 * later if needed */
117 return (addr->s6_addr32[3] & (SEL_NETNODE_HASH_SIZE - 1));
121 * sel_netnode_find - Search for a node record
122 * @addr: IP address
123 * @family: address family
125 * Description:
126 * Search the network node table and return the record matching @addr. If an
127 * entry can not be found in the table return NULL.
130 static struct sel_netnode *sel_netnode_find(const void *addr, u16 family)
132 unsigned int idx;
133 struct sel_netnode *node;
135 switch (family) {
136 case PF_INET:
137 idx = sel_netnode_hashfn_ipv4(*(__be32 *)addr);
138 break;
139 case PF_INET6:
140 idx = sel_netnode_hashfn_ipv6(addr);
141 break;
142 default:
143 BUG();
146 list_for_each_entry_rcu(node, &sel_netnode_hash[idx].list, list)
147 if (node->nsec.family == family)
148 switch (family) {
149 case PF_INET:
150 if (node->nsec.addr.ipv4 == *(__be32 *)addr)
151 return node;
152 break;
153 case PF_INET6:
154 if (ipv6_addr_equal(&node->nsec.addr.ipv6,
155 addr))
156 return node;
157 break;
160 return NULL;
164 * sel_netnode_insert - Insert a new node into the table
165 * @node: the new node record
167 * Description:
168 * Add a new node record to the network address hash table.
171 static void sel_netnode_insert(struct sel_netnode *node)
173 unsigned int idx;
175 switch (node->nsec.family) {
176 case PF_INET:
177 idx = sel_netnode_hashfn_ipv4(node->nsec.addr.ipv4);
178 break;
179 case PF_INET6:
180 idx = sel_netnode_hashfn_ipv6(&node->nsec.addr.ipv6);
181 break;
182 default:
183 BUG();
186 /* we need to impose a limit on the growth of the hash table so check
187 * this bucket to make sure it is within the specified bounds */
188 list_add_rcu(&node->list, &sel_netnode_hash[idx].list);
189 if (sel_netnode_hash[idx].size == SEL_NETNODE_HASH_BKT_LIMIT) {
190 struct sel_netnode *tail;
191 tail = list_entry(
192 rcu_dereference(sel_netnode_hash[idx].list.prev),
193 struct sel_netnode, list);
194 list_del_rcu(&tail->list);
195 call_rcu(&tail->rcu, sel_netnode_free);
196 } else
197 sel_netnode_hash[idx].size++;
201 * sel_netnode_sid_slow - Lookup the SID of a network address using the policy
202 * @addr: the IP address
203 * @family: the address family
204 * @sid: node SID
206 * Description:
207 * This function determines the SID of a network address by quering the
208 * security policy. The result is added to the network address table to
209 * speedup future queries. Returns zero on success, negative values on
210 * failure.
213 static int sel_netnode_sid_slow(void *addr, u16 family, u32 *sid)
215 int ret = -ENOMEM;
216 struct sel_netnode *node;
217 struct sel_netnode *new = NULL;
219 spin_lock_bh(&sel_netnode_lock);
220 node = sel_netnode_find(addr, family);
221 if (node != NULL) {
222 *sid = node->nsec.sid;
223 spin_unlock_bh(&sel_netnode_lock);
224 return 0;
226 new = kzalloc(sizeof(*new), GFP_ATOMIC);
227 if (new == NULL)
228 goto out;
229 switch (family) {
230 case PF_INET:
231 ret = security_node_sid(PF_INET,
232 addr, sizeof(struct in_addr), sid);
233 new->nsec.addr.ipv4 = *(__be32 *)addr;
234 break;
235 case PF_INET6:
236 ret = security_node_sid(PF_INET6,
237 addr, sizeof(struct in6_addr), sid);
238 ipv6_addr_copy(&new->nsec.addr.ipv6, addr);
239 break;
240 default:
241 BUG();
243 if (ret != 0)
244 goto out;
246 new->nsec.family = family;
247 new->nsec.sid = *sid;
248 sel_netnode_insert(new);
250 out:
251 spin_unlock_bh(&sel_netnode_lock);
252 if (unlikely(ret)) {
253 printk(KERN_WARNING
254 "SELinux: failure in sel_netnode_sid_slow(),"
255 " unable to determine network node label\n");
256 kfree(new);
258 return ret;
262 * sel_netnode_sid - Lookup the SID of a network address
263 * @addr: the IP address
264 * @family: the address family
265 * @sid: node SID
267 * Description:
268 * This function determines the SID of a network address using the fastest
269 * method possible. First the address table is queried, but if an entry
270 * can't be found then the policy is queried and the result is added to the
271 * table to speedup future queries. Returns zero on success, negative values
272 * on failure.
275 int sel_netnode_sid(void *addr, u16 family, u32 *sid)
277 struct sel_netnode *node;
279 rcu_read_lock();
280 node = sel_netnode_find(addr, family);
281 if (node != NULL) {
282 *sid = node->nsec.sid;
283 rcu_read_unlock();
284 return 0;
286 rcu_read_unlock();
288 return sel_netnode_sid_slow(addr, family, sid);
292 * sel_netnode_flush - Flush the entire network address table
294 * Description:
295 * Remove all entries from the network address table.
298 static void sel_netnode_flush(void)
300 unsigned int idx;
301 struct sel_netnode *node, *node_tmp;
303 spin_lock_bh(&sel_netnode_lock);
304 for (idx = 0; idx < SEL_NETNODE_HASH_SIZE; idx++) {
305 list_for_each_entry_safe(node, node_tmp,
306 &sel_netnode_hash[idx].list, list) {
307 list_del_rcu(&node->list);
308 call_rcu(&node->rcu, sel_netnode_free);
310 sel_netnode_hash[idx].size = 0;
312 spin_unlock_bh(&sel_netnode_lock);
315 static int sel_netnode_avc_callback(u32 event, u32 ssid, u32 tsid,
316 u16 class, u32 perms, u32 *retained)
318 if (event == AVC_CALLBACK_RESET) {
319 sel_netnode_flush();
320 synchronize_net();
322 return 0;
325 static __init int sel_netnode_init(void)
327 int iter;
328 int ret;
330 if (!selinux_enabled)
331 return 0;
333 for (iter = 0; iter < SEL_NETNODE_HASH_SIZE; iter++) {
334 INIT_LIST_HEAD(&sel_netnode_hash[iter].list);
335 sel_netnode_hash[iter].size = 0;
338 ret = avc_add_callback(sel_netnode_avc_callback, AVC_CALLBACK_RESET,
339 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
340 if (ret != 0)
341 panic("avc_add_callback() failed, error %d\n", ret);
343 return ret;
346 __initcall(sel_netnode_init);