3 <style|<tuple|tmdoc|maxima>>
7 Using Octave sessions inside <TeXmacs>
10 GNU <name|Octave> is a free clone of <name|Matlab>, which can be downloaded
14 \ \ \ \ http://octave.sf.net
17 An <name|Octave> session is started using <apply|menu|Text|Session|Octave>.
18 Below, it is shown how to do linear algebra operations with <name|Octave>,
19 such as matrix multiplication, inversion and diagonalization. Notice that
20 you need to use the <verbatim|tmdisp> command (at the moment) in order to
21 display the output in mathematical form.
23 <\session|octave|default>
25 GNU Octave, version 2.1.40 (i386-redhat-linux-gnu).
27 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 John W. Eaton.
29 This is free software; see the source code for copying conditions.
31 There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or
33 FITNESS FOR A PARTICULAR PURPOSE.
37 Report bugs to \<less\>bug-octave@bevo.che.wisc.edu\<gtr\>.
42 <\input|octave\<gtr\> >
43 A=[1 0 0 0;2 2 0 0;-1 0 2 0;0 -1 2 2]
51 \ \ \ 1 \ \ 0 \ \ 0 \ \ 0
53 \ \ \ 2 \ \ 2 \ \ 0 \ \ 0
55 \ \ -1 \ \ 0 \ \ 2 \ \ 0
57 \ \ \ 0 \ -1 \ \ 2 \ \ 2
64 <\input|octave\<gtr\> >
69 <with|mode|math|formula style|true|<matrix|<tformat|<table|<row|<cell|<with|mode|math|1>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|6>>|<cell|<with|mode|math|4>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|-3>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|4>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|-4>>|<cell|<with|mode|math|-4>>|<cell|<with|mode|math|8>>|<cell|<with|mode|math|4>>>>>>>
74 <\input|octave\<gtr\> >
79 <with|mode|math|formula style|true|<matrix|<tformat|<table|<row|<cell|<with|mode|math|1>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|4>>|<cell|<with|mode|math|4>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|1>>|<cell|<with|mode|math|0>>|<cell|<with|mode|math|4>>|<cell|<with|mode|math|0>>>|<row|<cell|<with|mode|math|0>>|<cell|<with|mode|math|1>>|<cell|<with|mode|math|4>>|<cell|<with|mode|math|4>>>>>>>
84 <\input|octave\<gtr\> >
93 \ \ \ 0.00000 \ \ 0.00000 \ \ 0.00000 \ \ 0.21320
95 \ \ \ 0.00000 \ \ 0.00000 \ \ 0.00000 \ -0.42640
97 \ \ \ 0.00000 \ \ 0.00000 \ \ 0.00000 \ \ 0.21320
99 \ \ \ 1.00000 \ \ 1.00000 \ -1.00000 \ -0.85280
120 <\input|octave\<gtr\> >
121 Q=[1 0 0 0;-2 2 1 0;1 1 0 0;-4 0 0 -1]
129 \ \ \ 1 \ \ 0 \ \ 0 \ \ 0
131 \ \ -2 \ \ 2 \ \ 1 \ \ 0
133 \ \ \ 1 \ \ 1 \ \ 0 \ \ 0
135 \ \ -4 \ \ 0 \ \ 0 \ -1
142 <\input|octave\<gtr\> >
151 \ \ \ 1 \ -0 \ \ 0 \ \ 0
153 \ \ -1 \ \ 0 \ \ 1 \ \ 0
155 \ \ \ 4 \ \ 1 \ -2 \ \ 0
157 \ \ -4 \ \ 0 \ \ 0 \ -1
164 <\input|octave\<gtr\> >
186 <\input|octave\<gtr\> >
191 The second part shows the graph capacity of Octave, 2D and 3D graphs. 2D
192 graphs can be automatically embedded into the worksheet but 3D graphs are
195 <\session|octave|default>
196 <\input|octave\<gtr\> >
197 x=linspace(-10,10,1000);
200 <\input|octave\<gtr\> >
204 <\input|octave\<gtr\> >
205 plot(x,y,";Function y=x+sin(x);");
213 <postscript|<tuple|<raw_data|%!PS-Adobe-2.0 EPSF-2.0\n%%Title:
214 /tmp/tmplot.eps\n%%Creator: gnuplot 3.7 patchlevel 2\n%%CreationDate:
215 Wed Jul 23 17:35:03 2003\n%%DocumentFonts: (atend)\n%%BoundingBox: 50
216 50 230 176\n%%Orientation: Portrait\n%%EndComments\n/gnudict 256 dict
217 def\ngnudict begin\n/Color true def\n/Solid false def\n/gnulinewidth
218 5.000 def\n/userlinewidth gnulinewidth def\n/vshift -46 def\n/dl {10
219 mul} def\n/hpt_ 31.5 def\n/vpt_ 31.5 def\n/hpt hpt_ def\n/vpt vpt_
220 def\n/M {moveto} bind def\n/L {lineto} bind def\n/R {rmoveto} bind
221 def\n/V {rlineto} bind def\n/vpt2 vpt 2 mul def\n/hpt2 hpt 2 mul
222 def\n/Lshow { currentpoint stroke M\n \ 0 vshift R show } def\n/Rshow {
223 currentpoint stroke M\n \ dup stringwidth pop neg vshift R show }
224 def\n/Cshow { currentpoint stroke M\n \ dup stringwidth pop -2 div
225 vshift R show } def\n/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt
226 exch def\n \ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def\n/DL { Color
227 {setrgbcolor Solid {pop []} if 0 setdash }\n {pop pop pop Solid {pop
228 []} if 0 setdash} ifelse } def\n/BL { stroke userlinewidth 2 mul
229 setlinewidth } def\n/AL { stroke userlinewidth 2 div setlinewidth }
230 def\n/UL { dup gnulinewidth mul /userlinewidth exch def\n \ \ \ \ \ dup
231 1 lt {pop 1} if 10 mul /udl exch def } def\n/PL { stroke userlinewidth
232 setlinewidth } def\n/LTb { BL [] 0 0 0 DL } def\n/LTa { AL [1 udl mul 2
233 udl mul] 0 setdash 0 0 0 setrgbcolor } def\n/LT0 { PL [] 1 0 0 DL }
234 def\n/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def\n/LT2 { PL [2 dl 3 dl] 0 0 1
235 DL } def\n/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def\n/LT4 { PL [5 dl 2 dl
236 1 dl 2 dl] 0 1 1 DL } def\n/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL }
237 def\n/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def\n/LT7 { PL [2 dl 2
238 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def\n/LT8 { PL [2 dl 2 dl 2 dl 2
239 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def\n/Pnt { stroke [] 0
240 setdash\n \ \ gsave 1 setlinecap M 0 0 V stroke grestore } def\n/Dia {
241 stroke [] 0 setdash 2 copy vpt add M\n \ hpt neg vpt neg V hpt vpt neg
242 V\n \ hpt vpt V hpt neg vpt V closepath stroke\n \ Pnt } def\n/Pls {
243 stroke [] 0 setdash vpt sub M 0 vpt2 V\n \ currentpoint stroke M\n
244 \ hpt neg vpt neg R hpt2 0 V stroke\n \ } def\n/Box { stroke [] 0
245 setdash 2 copy exch hpt sub exch vpt add M\n \ 0 vpt2 neg V hpt2 0 V 0
246 vpt2 V\n \ hpt2 neg 0 V closepath stroke\n \ Pnt } def\n/Crs { stroke
247 [] 0 setdash exch hpt sub exch vpt add M\n \ hpt2 vpt2 neg V
248 currentpoint stroke M\n \ hpt2 neg 0 R hpt2 vpt2 V stroke } def\n/TriU
249 { stroke [] 0 setdash 2 copy vpt 1.12 mul add M\n \ hpt neg vpt -1.62
250 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V closepath stroke\n
251 \ Pnt \ } def\n/Star { 2 copy Pls Crs } def\n/BoxF { stroke [] 0
252 setdash exch hpt sub exch vpt add M\n \ 0 vpt2 neg V \ hpt2 0 V \ 0
253 vpt2 V\n \ hpt2 neg 0 V \ closepath fill } def\n/TriUF { stroke [] 0
254 setdash vpt 1.12 mul add M\n \ hpt neg vpt -1.62 mul V\n \ hpt 2 mul 0
255 V\n \ hpt neg vpt 1.62 mul V closepath fill } def\n/TriD { stroke [] 0
256 setdash 2 copy vpt 1.12 mul sub M\n \ hpt neg vpt 1.62 mul V\n \ hpt 2
257 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath stroke\n \ Pnt \ }
258 def\n/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg vpt
259 1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath
260 fill} def\n/DiaF { stroke [] 0 setdash vpt add M\n \ hpt neg vpt neg V
261 hpt vpt neg V\n \ hpt vpt V hpt neg vpt V closepath fill } def\n/Pent {
262 stroke [] 0 setdash 2 copy gsave\n \ translate 0 hpt M 4 {72 rotate 0
263 hpt L} repeat\n \ closepath stroke grestore Pnt } def\n/PentF { stroke
264 [] 0 setdash gsave\n \ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat\n
265 \ closepath fill grestore } def\n/Circle { stroke [] 0 setdash 2 copy\n
266 \ hpt 0 360 arc stroke Pnt } def\n/CircleF { stroke [] 0 setdash hpt 0
267 360 arc fill } def\n/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450
268 \ arc } bind def\n/C1 { BL [] 0 setdash 2 copy \ \ \ \ \ \ \ moveto\n
269 \ \ \ \ \ \ 2 copy \ vpt 0 90 arc closepath fill\n
270 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C2 {
271 BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 90 180 arc
272 closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath }
273 bind def\n/C3 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy
274 \ vpt 0 180 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360
275 arc closepath } bind def\n/C4 { BL [] 0 setdash 2 copy moveto\n
276 \ \ \ \ \ \ 2 copy \ vpt 180 270 arc closepath fill\n
277 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C5 {
278 BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 0 90 arc\n
279 \ \ \ \ \ \ 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 180 270 arc
280 closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc } bind
281 def\n/C6 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ 2 copy \ vpt 90
282 270 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc
283 closepath } bind def\n/C7 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ 2
284 copy \ vpt 0 270 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0
285 360 arc closepath } bind def\n/C8 { BL [] 0 setdash 2 copy moveto\n
286 \ \ \ \ \ 2 copy vpt 270 360 arc closepath fill\n
287 \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C9 { BL
288 [] 0 setdash 2 copy moveto\n \ \ \ \ \ 2 copy \ vpt 270 450 arc
289 closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath }
290 bind def\n/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc
291 closepath fill\n \ \ \ \ \ \ 2 copy moveto\n \ \ \ \ \ \ 2 copy vpt 90
292 180 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc
293 closepath } bind def\n/C11 { BL [] 0 setdash 2 copy moveto\n
294 \ \ \ \ \ \ 2 copy \ vpt 0 180 arc closepath fill\n \ \ \ \ \ \ 2 copy
295 moveto\n \ \ \ \ \ \ 2 copy \ vpt 270 360 arc closepath fill\n
296 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C12 {
297 BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 180 360 arc
298 closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath }
299 bind def\n/C13 { BL [] 0 setdash \ 2 copy moveto\n \ \ \ \ \ \ 2 copy
300 \ vpt 0 90 arc closepath fill\n \ \ \ \ \ \ 2 copy moveto\n
301 \ \ \ \ \ \ 2 copy \ vpt 180 360 arc closepath fill\n
302 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C14 {
303 BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 90 360 arc
304 closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc } bind
305 def\n/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill\n
306 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/Rec
307 \ \ { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto\n
308 \ \ \ \ \ \ neg 0 rlineto closepath } bind def\n/Square { dup Rec }
309 bind def\n/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind
310 def\n/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare }
311 bind def\n/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind
312 def\n/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill
313 Bsquare } bind def\n/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2
314 vpt Rec fill Bsquare } bind def\n/S4 { BL [] 0 setdash 2 copy exch vpt
315 sub exch vpt sub vpt Square fill Bsquare } bind def\n/S5 { BL [] 0
316 setdash 2 copy 2 copy vpt Square fill\n \ \ \ \ \ \ exch vpt sub exch
317 vpt sub vpt Square fill Bsquare } bind def\n/S6 { BL [] 0 setdash 2
318 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind
319 def\n/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2
320 Rec fill\n \ \ \ \ \ \ 2 copy vpt Square fill\n \ \ \ \ \ \ Bsquare }
321 bind def\n/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare
322 } bind def\n/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill
323 Bsquare } bind def\n/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square
324 fill 2 copy exch vpt sub exch vpt Square fill\n \ \ \ \ \ \ Bsquare }
325 bind def\n/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy
326 exch vpt sub exch vpt2 vpt Rec fill\n \ \ \ \ \ \ Bsquare } bind
327 def\n/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt
328 Rec fill Bsquare } bind def\n/S13 { BL [] 0 setdash 2 copy exch vpt sub
329 exch vpt sub vpt2 vpt Rec fill\n \ \ \ \ \ \ 2 copy vpt Square fill
330 Bsquare } bind def\n/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt
331 sub vpt2 vpt Rec fill\n \ \ \ \ \ \ 2 copy exch vpt sub exch vpt Square
332 fill Bsquare } bind def\n/S15 { BL [] 0 setdash 2 copy Bsquare fill
333 Bsquare } bind def\n/D0 { gsave translate 45 rotate 0 0 S0 stroke
334 grestore } bind def\n/D1 { gsave translate 45 rotate 0 0 S1 stroke
335 grestore } bind def\n/D2 { gsave translate 45 rotate 0 0 S2 stroke
336 grestore } bind def\n/D3 { gsave translate 45 rotate 0 0 S3 stroke
337 grestore } bind def\n/D4 { gsave translate 45 rotate 0 0 S4 stroke
338 grestore } bind def\n/D5 { gsave translate 45 rotate 0 0 S5 stroke
339 grestore } bind def\n/D6 { gsave translate 45 rotate 0 0 S6 stroke
340 grestore } bind def\n/D7 { gsave translate 45 rotate 0 0 S7 stroke
341 grestore } bind def\n/D8 { gsave translate 45 rotate 0 0 S8 stroke
342 grestore } bind def\n/D9 { gsave translate 45 rotate 0 0 S9 stroke
343 grestore } bind def\n/D10 { gsave translate 45 rotate 0 0 S10 stroke
344 grestore } bind def\n/D11 { gsave translate 45 rotate 0 0 S11 stroke
345 grestore } bind def\n/D12 { gsave translate 45 rotate 0 0 S12 stroke
346 grestore } bind def\n/D13 { gsave translate 45 rotate 0 0 S13 stroke
347 grestore } bind def\n/D14 { gsave translate 45 rotate 0 0 S14 stroke
348 grestore } bind def\n/D15 { gsave translate 45 rotate 0 0 S15 stroke
349 grestore } bind def\n/DiaE { stroke [] 0 setdash vpt add M\n \ hpt neg
350 vpt neg V hpt vpt neg V\n \ hpt vpt V hpt neg vpt V closepath stroke }
351 def\n/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M\n \ 0 vpt2
352 neg V hpt2 0 V 0 vpt2 V\n \ hpt2 neg 0 V closepath stroke } def\n/TriUE
353 { stroke [] 0 setdash vpt 1.12 mul add M\n \ hpt neg vpt -1.62 mul V\n
354 \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V closepath stroke }
355 def\n/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg vpt
356 1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath
357 stroke } def\n/PentE { stroke [] 0 setdash gsave\n \ translate 0 hpt M
358 4 {72 rotate 0 hpt L} repeat\n \ closepath stroke grestore }
359 def\n/CircE { stroke [] 0 setdash \n \ hpt 0 360 arc stroke }
360 def\n/Opaque { gsave closepath 1 setgray fill grestore 0 setgray
361 closepath } def\n/DiaW { stroke [] 0 setdash vpt add M\n \ hpt neg vpt
362 neg V hpt vpt neg V\n \ hpt vpt V hpt neg vpt V Opaque stroke }
363 def\n/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M\n \ 0 vpt2
364 neg V hpt2 0 V 0 vpt2 V\n \ hpt2 neg 0 V Opaque stroke } def\n/TriUW {
365 stroke [] 0 setdash vpt 1.12 mul add M\n \ hpt neg vpt -1.62 mul V\n
366 \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V Opaque stroke } def\n/TriDW
367 { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg vpt 1.62 mul V\n
368 \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V Opaque stroke } def\n/PentW
369 { stroke [] 0 setdash gsave\n \ translate 0 hpt M 4 {72 rotate 0 hpt L}
370 repeat\n \ Opaque stroke grestore } def\n/CircW { stroke [] 0 setdash
371 \n \ hpt 0 360 arc Opaque stroke } def\n/BoxFill { gsave Rec 1 setgray
372 fill grestore } def\n/Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0]
373 makefont\ndup length dict begin {1 index /FID eq {pop pop} {def}
374 ifelse} forall\ncurrentdict end definefont\n/MFshow {{dup dup 0 get
375 findfont exch 1 get scalefont setfont\n \ \ \ \ [ currentpoint ] exch
376 dup 2 get 0 exch rmoveto dup dup 5 get exch 4 get\n \ \ \ \ {show}
377 {stringwidth pop 0 rmoveto}ifelse dup 3 get\n \ \ \ \ {2 get neg 0 exch
378 rmoveto pop} {pop aload pop moveto}ifelse} forall} bind def\n/MFwidth
379 {0 exch {dup 3 get{dup dup 0 get findfont exch 1 get scalefont
380 setfont\n \ \ \ \ \ 5 get stringwidth pop add}\n \ \ \ {pop} ifelse}
381 forall} bind def\n/MLshow { currentpoint stroke M\n \ 0 exch R MFshow }
382 bind def\n/MRshow { currentpoint stroke M\n \ exch dup MFwidth neg 3 -1
383 roll R MFshow } def\n/MCshow { currentpoint stroke M\n \ exch dup
384 MFwidth -2 div 3 -1 roll R MFshow } def\nend\n%%EndProlog\ngnudict
385 begin\ngsave\n50 50 translate\n0.050 0.050 scale\n0
386 setgray\nnewpath\n(Helvetica) findfont 140 scalefont setfont\n1.000
387 UL\nLTb\n490 280 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 280 M\n[
388 [(Helvetica) 140.0 0.0 true true (-10)]\n] -46.7 MRshow\n490 487 M\n63
389 0 V\n2809 0 R\n-63 0 V\n stroke\n406 487 M\n[ [(Helvetica) 140.0 0.0
390 true true (-8)]\n] -46.7 MRshow\n490 694 M\n63 0 V\n2809 0 R\n-63 0 V\n
391 stroke\n406 694 M\n[ [(Helvetica) 140.0 0.0 true true (-6)]\n] -46.7
392 MRshow\n490 902 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 902 M\n[
393 [(Helvetica) 140.0 0.0 true true (-4)]\n] -46.7 MRshow\n490 1109 M\n63
394 0 V\n2809 0 R\n-63 0 V\n stroke\n406 1109 M\n[ [(Helvetica) 140.0 0.0
395 true true (-2)]\n] -46.7 MRshow\n490 1316 M\n63 0 V\n2809 0 R\n-63 0
396 V\n stroke\n406 1316 M\n[ [(Helvetica) 140.0 0.0 true true ( 0)]\n]
397 -46.7 MRshow\n490 1523 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 1523
398 M\n[ [(Helvetica) 140.0 0.0 true true ( 2)]\n] -46.7 MRshow\n490 1730
399 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 1730 M\n[ [(Helvetica) 140.0
400 0.0 true true ( 4)]\n] -46.7 MRshow\n490 1938 M\n63 0 V\n2809 0 R\n-63
401 0 V\n stroke\n406 1938 M\n[ [(Helvetica) 140.0 0.0 true true ( 6)]\n]
402 -46.7 MRshow\n490 2145 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 2145
403 M\n[ [(Helvetica) 140.0 0.0 true true ( 8)]\n] -46.7 MRshow\n490 2352
404 M\n63 0 V\n2809 0 R\n-63 0 V\n stroke\n406 2352 M\n[ [(Helvetica) 140.0
405 0.0 true true ( 10)]\n] -46.7 MRshow\n490 280 M\n0 63 V\n0 2009 R\n0
406 -63 V\n stroke\n490 140 M\n[ [(Helvetica) 140.0 0.0 true true (-10)]\n]
407 -46.7 MCshow\n1208 280 M\n0 63 V\n0 2009 R\n0 -63 V\n stroke\n1208 140
408 M\n[ [(Helvetica) 140.0 0.0 true true (-5)]\n] -46.7 MCshow\n1926 280
409 M\n0 63 V\n0 2009 R\n0 -63 V\n stroke\n1926 140 M\n[ [(Helvetica) 140.0
410 0.0 true true ( 0)]\n] -46.7 MCshow\n2644 280 M\n0 63 V\n0 2009 R\n0
411 -63 V\n stroke\n2644 140 M\n[ [(Helvetica) 140.0 0.0 true true ( 5)]\n]
412 -46.7 MCshow\n3362 280 M\n0 63 V\n0 2009 R\n0 -63 V\n stroke\n3362 140
413 M\n[ [(Helvetica) 140.0 0.0 true true ( 10)]\n] -46.7 MCshow\n1.000
414 UL\nLTb\n490 280 M\n2872 0 V\n0 2072 V\n-2872 0 V\n490 280 L\n1.000
415 UL\nLT0\n2711 2219 M\n[ [(Helvetica) 140.0 0.0 true true (Function
416 y=x+sin\\(x\\))]\n] -46.7 MRshow\n2795 2219 M\n399 0 V\n490 336 M\n3 1
417 V\n3 0 V\n3 0 V\n2 1 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0
418 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 1 V\n3 0
419 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0
420 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0
421 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n3 0
422 V\n2 0 V\n3 1 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n2 1 V\n3 0
423 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n2 1 V\n3 0 V\n3 1 V\n3 1
424 V\n3 0 V\n3 1 V\n3 1 V\n3 1 V\n2 1 V\n3 0 V\n3 1 V\n3 1 V\n3 1 V\n3 1
425 V\n3 1 V\n3 1 V\n2 2 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 2 V\n3 1 V\n3 2
426 V\n2 1 V\n3 1 V\n3 2 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 2 V\n2 2 V\n3 2
427 V\n3 2 V\n3 1 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n2 2 V\n3 3 V\n3 2 V\n3 2
428 V\n3 2 V\n3 2 V\n3 3 V\n3 2 V\n2 3 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2
429 V\n3 3 V\n3 3 V\n2 2 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3
430 V\n2 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 4 V\n3 3 V\n2 3 V\n3 4
431 V\n3 3 V\n3 3 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n2 4 V\n3 4 V\n3 3 V\n3 4
432 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n2 4 V\n3 3 V\n3 4 V\n3 4 V\n3 4 V\n3 4
433 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4
434 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 5 V\n3 4
435 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 5 V\n2 4 V\n3 4 V\n3 4 V\n3 4
436 V\n3 4 V\n3 4 V\n3 5 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4
437 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4
438 V\n2 4 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n3 4 V\n3 3 V\n2 4 V\n3 4
439 V\n3 3 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n2 4 V\n3 3 V\n3 3 V\n3 4
440 V\n3 3 V\n3 3 V\n3 4 V\n3 3 V\n2 3 V\n3 3 V\n3 3 V\n3 3 V\n3 4 V\n3 3
441 V\n3 3 V\n3 2 V\n2 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 2 V\n3 3 V\n3 3
442 V\n2 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n3 2 V\n2 3 V\n3 2
443 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n2 2 V\n3 2 V\n3 2 V\n3 2
444 V\n3 1 V\n3 2 V\n3 2 V\n3 2 V\n2 1 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 2
445 V\n3 1 V\n3 1 V\n2 2 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 2
446 V\n2 1 V\n3 0 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 0 V\n2 1 V\n3 1
447 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n2 1 V\n3 0 V\n3 1 V\n3 0
448 V\n3 1 V\n3 0 V\n3 0 V\n3 1 V\n2 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0
449 V\n3 0 V\n3 0 V\n2 1 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0
450 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n2 0 V\n3 0
451 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0
452 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0
453 V\n3 1 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n3 0 V\n3 1
454 V\n2 0 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n2 1 V\n3 0
455 V\n3 1 V\n3 0 V\n3 1 V\n3 1 V\n3 0 V\n3 1 V\n2 1 V\n3 1 V\n3 1 V\n3 1
456 V\n3 0 V\n3 1 V\n3 1 V\n3 1 V\n2 1 V\n3 2 V\ncurrentpoint stroke M\n3 1
457 V\n3 1 V\n3 1 V\n3 1 V\n3 2 V\n3 1 V\n2 1 V\n3 2 V\n3 1 V\n3 2 V\n3 1
458 V\n3 2 V\n3 1 V\n3 2 V\n2 2 V\n3 1 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2
459 V\n3 2 V\n2 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 3 V\n2 2
460 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 3 V\n2 2 V\n3 3 V\n3 3
461 V\n3 3 V\n3 2 V\n3 3 V\n3 3 V\n3 3 V\n2 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3
462 V\n3 3 V\n3 4 V\n3 3 V\n2 3 V\n3 3 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n3 3
463 V\n3 4 V\n2 3 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n2 4
464 V\n3 3 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n2 4 V\n3 4 V\n3 4
465 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 5
466 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 5 V\n3 4
467 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 5 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4
468 V\n3 4 V\n3 4 V\n3 4 V\n3 5 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4
469 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 3 V\n3 4 V\n3 4
470 V\n3 4 V\n3 4 V\n3 3 V\n2 4 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n3 4
471 V\n3 4 V\n2 3 V\n3 4 V\n3 3 V\n3 3 V\n3 4 V\n3 3 V\n3 4 V\n3 3 V\n2 3
472 V\n3 3 V\n3 4 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n2 3 V\n3 3 V\n3 3
473 V\n3 3 V\n3 2 V\n3 3 V\n3 3 V\n3 3 V\n2 2 V\n3 3 V\n3 3 V\n3 2 V\n3 3
474 V\n3 2 V\n3 3 V\n3 2 V\n2 2 V\n3 3 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2
475 V\n3 2 V\n2 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 1 V\n2 2
476 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 2 V\n2 1 V\n3 1 V\n3 2
477 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 2 V\n2 1 V\n3 1 V\n3 1 V\n3 1 V\n3 0
478 V\n3 1 V\n3 1 V\n3 1 V\n2 1 V\n3 1 V\n3 0 V\n3 1 V\n3 1 V\n3 0 V\n3 1
479 V\n3 0 V\n2 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n2 0
480 V\n3 1 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 1
481 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0
482 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0
483 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0
484 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 1 V\n3 0 V\n3 0
485 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n2 0 V\n3 1 V\n3 0 V\n3 0 V\n3 1
486 V\n3 0 V\n3 1 V\n3 0 V\n2 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n3 1
487 V\n3 1 V\n2 1 V\n3 0 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 0 V\n2 1
488 V\n3 2 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n2 2 V\n3 1 V\n3 1
489 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 2 V\n2 1 V\n3 2 V\n3 2 V\n3 2 V\n3 1
490 V\n3 2 V\n3 2 V\n3 2 V\n2 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 2
491 V\n3 2 V\n2 3 V\n3 2 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n2 2
492 V\n3 3 V\n3 3 V\n3 2 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n2 3 V\n3 2 V\n3 3
493 V\n3 3 V\n3 4 V\n3 3 V\n3 3 V\n3 3 V\n2 3 V\n3 3 V\n3 4 V\n3 3 V\n3 3
494 V\n3 4 V\n3 3 V\n3 3 V\n2 4 V\n3 3 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n3 3
495 V\n3 4 V\n2 4 V\n3 3 V\n3 4 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n2 4
496 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4
497 V\ncurrentpoint stroke M\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4
498 V\n3 4 V\n3 5 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 5 V\n3 4
499 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n2 5 V\n3 4 V\n3 4 V\n3 4 V\n3 4
500 V\n3 4 V\n3 4 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4
501 V\n3 4 V\n2 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 4 V\n3 3 V\n2 4
502 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n3 4 V\n3 3 V\n3 4 V\n2 4 V\n3 3 V\n3 4
503 V\n3 3 V\n3 4 V\n3 3 V\n3 3 V\n3 4 V\n2 3 V\n3 3 V\n3 4 V\n3 3 V\n3 3
504 V\n3 3 V\n3 3 V\n3 3 V\n2 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3 V\n3 3
505 V\n3 3 V\n2 2 V\n3 3 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n3 3 V\n3 2 V\n2 3
506 V\n3 2 V\n3 3 V\n3 2 V\n3 2 V\n3 2 V\n3 2 V\n3 3 V\n2 2 V\n3 2 V\n3 2
507 V\n3 2 V\n3 2 V\n3 1 V\n3 2 V\n3 2 V\n2 2 V\n3 2 V\n3 1 V\n3 2 V\n3 1
508 V\n3 2 V\n3 2 V\n3 1 V\n2 1 V\n3 2 V\n3 1 V\n3 2 V\n3 1 V\n3 1 V\n3 1
509 V\n3 1 V\n2 2 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 1 V\n3 0 V\n2 1
510 V\n3 1 V\n3 1 V\n3 1 V\n3 0 V\n3 1 V\n3 1 V\n3 0 V\n2 1 V\n3 0 V\n3 1
511 V\n3 0 V\n3 1 V\n3 0 V\n3 1 V\n3 0 V\n2 1 V\n3 0 V\n3 0 V\n3 1 V\n3 0
512 V\n3 0 V\n3 0 V\n3 1 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0
513 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0
514 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0
515 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n3 0 V\n2 1 V\n3 0 V\n3 0 V\n3 0 V\n3 0
516 V\n3 0 V\n3 0 V\n3 0 V\n2 0 V\n3 0 V\n3 0 V\n3 1 V\n3 0 V\n3 0 V\n3 0
517 V\n3 0 V\n2 1 V\n3 0 V\n3 0 V\n3 1 V\nstroke\ngrestore\nend\nshowpage\n>|ps>||||||>
522 <\input|octave\<gtr\> >
526 <\input|octave\<gtr\> >
527 t = linspace (0,10,800);
530 <\input|octave\<gtr\> >
531 function dx = butter (x ,t) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dx(1)
532 = -10.0*(x(1)-x(2)); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dx(2)
533 = 28.0*x(1)-x(2)-x(1)*x(3); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dx(3)
534 = 8.0/3.0*( x(1)*x(2) -x(3) ); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ end;
537 <\input|octave\<gtr\> >
538 y=lsode("butter",x0,t);
541 <\input|octave\<gtr\> >
545 <\input|octave\<gtr\> >
546 gset set term postscript enhanced color eps;
549 <\input|octave\<gtr\> >
550 gset xtics 10;gset ytics 10; gset ztics 10;
553 <\input|octave\<gtr\> >
554 gset out "/tmp/butterfly.eps";
557 <\input|octave\<gtr\> >
558 gsplot y title "Butterfly Effect"
561 <\input|octave\<gtr\> >
566 In order to embed the 3D graph, we first save it as butterfly.eps in /tmp
567 directory. Then we can embed this EPS file into the worksheet using
568 <apply|menu|Insert|Image>.
570 <expand|big-figure|<postscript|<tuple|<raw_data|%!PS-Adobe-2.0
571 EPSF-2.0\n%%Title: /tmp/butterfly.eps\n%%Creator: gnuplot 3.7 patchlevel
572 3\n%%CreationDate: Wed Jul \ 9 21:26:06 2003\n%%DocumentFonts:
573 (atend)\n%%BoundingBox: 50 50 230 176\n%%Orientation:
574 Portrait\n%%EndComments\n/gnudict 256 dict def\ngnudict begin\n/Color true
575 def\n/Solid false def\n/gnulinewidth 5.000 def\n/userlinewidth gnulinewidth
576 def\n/vshift -46 def\n/dl {10 mul} def\n/hpt_ 31.5 def\n/vpt_ 31.5
577 def\n/hpt hpt_ def\n/vpt vpt_ def\n/M {moveto} bind def\n/L {lineto} bind
578 def\n/R {rmoveto} bind def\n/V {rlineto} bind def\n/vpt2 vpt 2 mul
579 def\n/hpt2 hpt 2 mul def\n/Lshow { currentpoint stroke M\n \ 0 vshift R
580 show } def\n/Rshow { currentpoint stroke M\n \ dup stringwidth pop neg
581 vshift R show } def\n/Cshow { currentpoint stroke M\n \ dup stringwidth pop
582 -2 div vshift R show } def\n/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt
583 exch def\n \ /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def\n/DL { Color
584 {setrgbcolor Solid {pop []} if 0 setdash }\n {pop pop pop Solid {pop []} if
585 0 setdash} ifelse } def\n/BL { stroke userlinewidth 2 mul setlinewidth }
586 def\n/AL { stroke userlinewidth 2 div setlinewidth } def\n/UL { dup
587 gnulinewidth mul /userlinewidth exch def\n \ \ \ \ \ dup 1 lt {pop 1} if 10
588 mul /udl exch def } def\n/PL { stroke userlinewidth setlinewidth }
589 def\n/LTb { BL [] 0 0 0 DL } def\n/LTa { AL [1 udl mul 2 udl mul] 0 setdash
590 0 0 0 setrgbcolor } def\n/LT0 { PL [] 1 0 0 DL } def\n/LT1 { PL [4 dl 2 dl]
591 0 1 0 DL } def\n/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def\n/LT3 { PL [1 dl 1.5
592 dl] 1 0 1 DL } def\n/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def\n/LT5 {
593 PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def\n/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0
594 0 0 DL } def\n/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL }
595 def\n/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL }
596 def\n/Pnt { stroke [] 0 setdash\n \ \ gsave 1 setlinecap M 0 0 V stroke
597 grestore } def\n/Dia { stroke [] 0 setdash 2 copy vpt add M\n \ hpt neg vpt
598 neg V hpt vpt neg V\n \ hpt vpt V hpt neg vpt V closepath stroke\n \ Pnt }
599 def\n/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V\n \ currentpoint stroke
600 M\n \ hpt neg vpt neg R hpt2 0 V stroke\n \ } def\n/Box { stroke [] 0
601 setdash 2 copy exch hpt sub exch vpt add M\n \ 0 vpt2 neg V hpt2 0 V 0 vpt2
602 V\n \ hpt2 neg 0 V closepath stroke\n \ Pnt } def\n/Crs { stroke [] 0
603 setdash exch hpt sub exch vpt add M\n \ hpt2 vpt2 neg V currentpoint stroke
604 M\n \ hpt2 neg 0 R hpt2 vpt2 V stroke } def\n/TriU { stroke [] 0 setdash 2
605 copy vpt 1.12 mul add M\n \ hpt neg vpt -1.62 mul V\n \ hpt 2 mul 0 V\n
606 \ hpt neg vpt 1.62 mul V closepath stroke\n \ Pnt \ } def\n/Star { 2 copy
607 Pls Crs } def\n/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M\n
608 \ 0 vpt2 neg V \ hpt2 0 V \ 0 vpt2 V\n \ hpt2 neg 0 V \ closepath fill }
609 def\n/TriUF { stroke [] 0 setdash vpt 1.12 mul add M\n \ hpt neg vpt -1.62
610 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V closepath fill }
611 def\n/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M\n \ hpt neg vpt
612 1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath stroke\n
613 \ Pnt \ } def\n/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg
614 vpt 1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath
615 fill} def\n/DiaF { stroke [] 0 setdash vpt add M\n \ hpt neg vpt neg V hpt
616 vpt neg V\n \ hpt vpt V hpt neg vpt V closepath fill } def\n/Pent { stroke
617 [] 0 setdash 2 copy gsave\n \ translate 0 hpt M 4 {72 rotate 0 hpt L}
618 repeat\n \ closepath stroke grestore Pnt } def\n/PentF { stroke [] 0
619 setdash gsave\n \ translate 0 hpt M 4 {72 rotate 0 hpt L} repeat\n
620 \ closepath fill grestore } def\n/Circle { stroke [] 0 setdash 2 copy\n
621 \ hpt 0 360 arc stroke Pnt } def\n/CircleF { stroke [] 0 setdash hpt 0 360
622 arc fill } def\n/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 \ arc } bind
623 def\n/C1 { BL [] 0 setdash 2 copy \ \ \ \ \ \ \ moveto\n \ \ \ \ \ \ 2 copy
624 \ vpt 0 90 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc
625 closepath } bind def\n/C2 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2
626 copy \ vpt 90 180 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0
627 360 arc closepath } bind def\n/C3 { BL [] 0 setdash 2 copy moveto\n
628 \ \ \ \ \ \ 2 copy \ vpt 0 180 arc closepath fill\n
629 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C4 { BL []
630 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 180 270 arc closepath
631 fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C5
632 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 0 90 arc\n
633 \ \ \ \ \ \ 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 180 270 arc closepath
634 fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc } bind def\n/C6 { BL [] 0
635 setdash 2 copy moveto\n \ \ \ \ \ 2 copy \ vpt 90 270 arc closepath fill\n
636 \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C7 { BL [] 0
637 setdash 2 copy moveto\n \ \ \ \ \ 2 copy \ vpt 0 270 arc closepath fill\n
638 \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C8 { BL [] 0
639 setdash 2 copy moveto\n \ \ \ \ \ 2 copy vpt 270 360 arc closepath fill\n
640 \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C9 { BL [] 0
641 setdash 2 copy moveto\n \ \ \ \ \ 2 copy \ vpt 270 450 arc closepath fill\n
642 \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C10 { BL []
643 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill\n
644 \ \ \ \ \ \ 2 copy moveto\n \ \ \ \ \ \ 2 copy vpt 90 180 arc closepath
645 fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C11
646 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 0 180 arc
647 closepath fill\n \ \ \ \ \ \ 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 270
648 360 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc
649 closepath } bind def\n/C12 { BL [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2
650 copy \ vpt 180 360 arc closepath fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0
651 360 arc closepath } bind def\n/C13 { BL [] 0 setdash \ 2 copy moveto\n
652 \ \ \ \ \ \ 2 copy \ vpt 0 90 arc closepath fill\n \ \ \ \ \ \ 2 copy
653 moveto\n \ \ \ \ \ \ 2 copy \ vpt 180 360 arc closepath fill\n
654 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/C14 { BL
655 [] 0 setdash 2 copy moveto\n \ \ \ \ \ \ 2 copy \ vpt 90 360 arc closepath
656 fill\n \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc } bind def\n/C15 { BL [] 0
657 setdash 2 copy vpt 0 360 arc closepath fill\n
658 \ \ \ \ \ \ \ \ \ \ \ \ \ \ vpt 0 360 arc closepath } bind def\n/Rec \ \ {
659 newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto\n \ \ \ \ \ \ neg
660 0 rlineto closepath } bind def\n/Square { dup Rec } bind def\n/Bsquare {
661 vpt sub exch vpt sub exch vpt2 Square } bind def\n/S0 { BL [] 0 setdash 2
662 copy moveto 0 vpt rlineto BL Bsquare } bind def\n/S1 { BL [] 0 setdash 2
663 copy vpt Square fill Bsquare } bind def\n/S2 { BL [] 0 setdash 2 copy exch
664 vpt sub exch vpt Square fill Bsquare } bind def\n/S3 { BL [] 0 setdash 2
665 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def\n/S4 { BL [] 0
666 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind
667 def\n/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill\n \ \ \ \ \ \ exch
668 vpt sub exch vpt sub vpt Square fill Bsquare } bind def\n/S6 { BL [] 0
669 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind
670 def\n/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec
671 fill\n \ \ \ \ \ \ 2 copy vpt Square fill\n \ \ \ \ \ \ Bsquare } bind
672 def\n/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind
673 def\n/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind
674 def\n/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt
675 sub exch vpt Square fill\n \ \ \ \ \ \ Bsquare } bind def\n/S11 { BL [] 0
676 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt
677 Rec fill\n \ \ \ \ \ \ Bsquare } bind def\n/S12 { BL [] 0 setdash 2 copy
678 exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def\n/S13 { BL
679 [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill\n
680 \ \ \ \ \ \ 2 copy vpt Square fill Bsquare } bind def\n/S14 { BL [] 0
681 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill\n \ \ \ \ \ \ 2
682 copy exch vpt sub exch vpt Square fill Bsquare } bind def\n/S15 { BL [] 0
683 setdash 2 copy Bsquare fill Bsquare } bind def\n/D0 { gsave translate 45
684 rotate 0 0 S0 stroke grestore } bind def\n/D1 { gsave translate 45 rotate 0
685 0 S1 stroke grestore } bind def\n/D2 { gsave translate 45 rotate 0 0 S2
686 stroke grestore } bind def\n/D3 { gsave translate 45 rotate 0 0 S3 stroke
687 grestore } bind def\n/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore
688 } bind def\n/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind
689 def\n/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def\n/D7
690 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def\n/D8 { gsave
691 translate 45 rotate 0 0 S8 stroke grestore } bind def\n/D9 { gsave
692 translate 45 rotate 0 0 S9 stroke grestore } bind def\n/D10 { gsave
693 translate 45 rotate 0 0 S10 stroke grestore } bind def\n/D11 { gsave
694 translate 45 rotate 0 0 S11 stroke grestore } bind def\n/D12 { gsave
695 translate 45 rotate 0 0 S12 stroke grestore } bind def\n/D13 { gsave
696 translate 45 rotate 0 0 S13 stroke grestore } bind def\n/D14 { gsave
697 translate 45 rotate 0 0 S14 stroke grestore } bind def\n/D15 { gsave
698 translate 45 rotate 0 0 S15 stroke grestore } bind def\n/DiaE { stroke [] 0
699 setdash vpt add M\n \ hpt neg vpt neg V hpt vpt neg V\n \ hpt vpt V hpt neg
700 vpt V closepath stroke } def\n/BoxE { stroke [] 0 setdash exch hpt sub exch
701 vpt add M\n \ 0 vpt2 neg V hpt2 0 V 0 vpt2 V\n \ hpt2 neg 0 V closepath
702 stroke } def\n/TriUE { stroke [] 0 setdash vpt 1.12 mul add M\n \ hpt neg
703 vpt -1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V closepath
704 stroke } def\n/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg
705 vpt 1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V closepath
706 stroke } def\n/PentE { stroke [] 0 setdash gsave\n \ translate 0 hpt M 4
707 {72 rotate 0 hpt L} repeat\n \ closepath stroke grestore } def\n/CircE {
708 stroke [] 0 setdash \n \ hpt 0 360 arc stroke } def\n/Opaque { gsave
709 closepath 1 setgray fill grestore 0 setgray closepath } def\n/DiaW { stroke
710 [] 0 setdash vpt add M\n \ hpt neg vpt neg V hpt vpt neg V\n \ hpt vpt V
711 hpt neg vpt V Opaque stroke } def\n/BoxW { stroke [] 0 setdash exch hpt sub
712 exch vpt add M\n \ 0 vpt2 neg V hpt2 0 V 0 vpt2 V\n \ hpt2 neg 0 V Opaque
713 stroke } def\n/TriUW { stroke [] 0 setdash vpt 1.12 mul add M\n \ hpt neg
714 vpt -1.62 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt 1.62 mul V Opaque stroke
715 } def\n/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M\n \ hpt neg vpt 1.62
716 mul V\n \ hpt 2 mul 0 V\n \ hpt neg vpt -1.62 mul V Opaque stroke }
717 def\n/PentW { stroke [] 0 setdash gsave\n \ translate 0 hpt M 4 {72 rotate
718 0 hpt L} repeat\n \ Opaque stroke grestore } def\n/CircW { stroke [] 0
719 setdash \n \ hpt 0 360 arc Opaque stroke } def\n/BoxFill { gsave Rec 1
720 setgray fill grestore } def\n/Symbol-Oblique /Symbol findfont [1 0 .167 1 0
721 0] makefont\ndup length dict begin {1 index /FID eq {pop pop} {def} ifelse}
722 forall\ncurrentdict end definefont pop\n/MFshow {{dup dup 0 get findfont
723 exch 1 get scalefont setfont\n \ \ \ \ [ currentpoint ] exch dup 2 get 0
724 exch rmoveto dup dup 5 get exch 4 get\n \ \ \ \ {show} {stringwidth pop 0
725 rmoveto}ifelse dup 3 get\n \ \ \ \ {2 get neg 0 exch rmoveto pop} {pop
726 aload pop moveto}ifelse} forall} bind def\n/MFwidth {0 exch {dup 3 get{dup
727 dup 0 get findfont exch 1 get scalefont setfont\n \ \ \ \ \ 5 get
728 stringwidth pop add}\n \ \ \ {pop} ifelse} forall} bind def\n/MLshow {
729 currentpoint stroke M\n \ 0 exch R MFshow } bind def\n/MRshow {
730 currentpoint stroke M\n \ exch dup MFwidth neg 3 -1 roll R MFshow }
731 def\n/MCshow { currentpoint stroke M\n \ exch dup MFwidth -2 div 3 -1 roll
732 R MFshow } def\nend\n%%EndProlog\ngnudict begin\ngsave\n50 50
733 translate\n0.050 0.050 scale\n0 setgray\nnewpath\n(Helvetica) findfont 140
734 scalefont setfont\n1.000 UL\nLTb\n1.000 UL\nLT0\n2802 2036 M\n[
735 [(Helvetica) 140.0 0.0 true true (Butterfly Effect)]\n] -46.7 MRshow\n2886
736 2036 M\n399 0 V\n1989 1344 M\n24 3 V\n27 5 V\n29 8 V\n31 10 V\n34 13 V\n36
737 16 V\n39 20 V\n40 22 V\n41 27 V\n40 29 V\n39 33 V\n34 34 V\n27 35 V\n19 35
738 V\n6 30 V\n-6 26 V\n-19 18 V\n-33 9 V\n-44 1 V\n-52 -8 V\n-58 -14 V\n-59
739 -19 V\n-59 -21 V\n-55 -22 V\n-51 -22 V\n-46 -21 V\n-41 -18 V\n-35 -17
740 V\n-30 -15 V\n-26 -13 V\n-23 -12 V\n-19 -11 V\n-16 -10 V\n-13 -10 V\n-12 -9
741 V\n-11 -8 V\n-9 -9 V\n-8 -8 V\n-8 -9 V\n-7 -8 V\n-7 -8 V\n-7 -7 V\n-8 -8
742 V\n-7 -8 V\n-8 -7 V\n-9 -7 V\n-9 -7 V\n-10 -7 V\n-11 -6 V\n-12 -6 V\n-13 -6
743 V\n-14 -5 V\n-16 -4 V\n-17 -4 V\n-18 -3 V\n-20 -3 V\n-21 0 V\n-23 0 V\n-23
744 2 V\n-25 4 V\n-25 5 V\n-26 9 V\n-25 11 V\n-24 13 V\n-22 17 V\n-19 20 V\n-15
745 22 V\n-10 25 V\n-5 26 V\n2 27 V\n8 26 V\n15 25 V\n21 22 V\n26 19 V\n30 14
746 V\n32 10 V\n34 6 V\n34 1 V\n33 -3 V\n31 -6 V\n29 -9 V\n27 -11 V\n23 -12
747 V\n21 -13 V\n18 -13 V\n16 -14 V\n14 -14 V\n11 -13 V\n9 -13 V\n7 -13 V\n6
748 -13 V\n4 -12 V\n4 -11 V\n2 -12 V\n0 -10 V\n0 -11 V\n0 -10 V\n-2 -9 V\n-3
749 -10 V\n-3 -8 V\n-4 -9 V\n-5 -8 V\n-6 -8 V\n-7 -8 V\n-7 -8 V\n-9 -7 V\n-9 -7
750 V\n-11 -6 V\n-12 -6 V\n-13 -6 V\n-15 -5 V\n-17 -5 V\n-18 -4 V\n-19 -4
751 V\n-22 -2 V\n-23 -2 V\n-26 0 V\n-27 2 V\n-28 3 V\n-30 6 V\n-31 9 V\n-30 12
752 V\n-30 16 V\n-28 19 V\n-24 24 V\n-20 27 V\n-14 30 V\n-6 33 V\n2 34 V\n10 33
753 V\n19 32 V\n27 28 V\n34 23 V\n38 17 V\n41 11 V\n42 5 V\n42 0 V\n40 -5 V\n37
754 -9 V\n34 -12 V\n31 -13 V\n27 -15 V\n23 -16 V\n21 -16 V\n17 -15 V\n15 -16
755 V\n12 -14 V\n11 -15 V\n8 -14 V\n7 -13 V\n6 -12 V\n5 -12 V\n4 -12 V\n2 -10
756 V\n3 -11 V\n2 -10 V\n1 -9 V\n1 -9 V\n0 -9 V\n1 -8 V\n0 -8 V\n-1 -8 V\n0 -7
757 V\n-1 -7 V\n-1 -7 V\n-1 -7 V\n-1 -6 V\n-1 -7 V\n-2 -6 V\n-2 -6 V\n-2 -6
758 V\n-2 -5 V\n-3 -6 V\n-3 -5 V\n-4 -5 V\n-4 -6 V\n-4 -5 V\n-5 -5 V\n-6 -5
759 V\n-7 -4 V\n-7 -5 V\n-8 -5 V\n-10 -5 V\n-10 -5 V\n-12 -4 V\n-14 -5 V\n-15
760 -4 V\n-17 -4 V\n-20 -4 V\n-21 -4 V\n-25 -3 V\n-27 -2 V\n-31 -1 V\n-33 1
761 V\n-37 2 V\n-40 5 V\n-42 9 V\n-45 13 V\n-45 18 V\n-44 24 V\n-42 31 V\n-36
762 38 V\n-27 45 V\n-16 51 V\n-2 55 V\n15 56 V\n29 53 V\n45 47 V\n55 37 V\n64
763 26 V\n66 14 V\n67 4 V\n63 -6 V\n59 -12 V\n53 -17 V\n46 -20 V\n41 -21 V\n35
764 -22 V\n29 -21 V\n26 -19 V\n21 -19 V\n18 -17 V\n16 -17 V\n14 -14 V\n11 -14
765 V\n11 -12 V\n10 -11 V\n9 -11 V\n8 -9 V\n9 -8 V\n8 -7 V\n9 -7 V\n9 -6 V\n10
766 -4 V\n10 -4 V\n11 -3 V\n12 -2 V\n12 -2 V\n14 0 V\n15 1 V\n16 2 V\n16 3
767 V\n18 5 V\n19 5 V\n19 7 V\n20 9 V\n21 10 V\n20 11 V\n20 12 V\n19 14 V\n18
768 14 V\n15 15 V\n13 14 V\n9 14 V\n5 14 V\n1 11 V\n-5 10 V\n-8 7 V\n-14 5
769 V\n-17 2 V\n-21 -1 V\n-23 -4 V\n-25 -5 V\n-26 -8 V\n-26 -8 V\n-26 -10
770 V\n-24 -9 V\n-23 -11 V\n-20 -10 V\n-19 -10 V\n-17 -9 V\n-15 -10 V\n-12 -9
771 V\n-11 -8 V\n-8 -9 V\n-7 -8 V\n-6 -7 V\n-4 -8 V\n-2 -7 V\n-1 -6 V\n0 -6
772 V\n1 -6 V\n2 -6 V\n3 -5 V\n5 -5 V\n5 -4 V\n7 -4 V\n7 -4 V\n9 -2 V\n10 -2
773 V\n11 -2 V\n12 0 V\n14 0 V\n15 2 V\n16 2 V\n17 4 V\n19 5 V\n20 6 V\n21 7
774 V\n22 10 V\n22 10 V\n23 13 V\n23 13 V\n22 16 V\n21 16 V\n18 17 V\n16 17
775 V\n12 17 V\n7 15 V\n2 14 V\n-4 12 V\n-9 9 V\n-15 6 V\n-19 3 V\n-24 -1
776 V\n-26 -4 V\n-29 -6 V\n-30 -9 V\n-30 -10 V\n-29 -11 V\n-28 -11 V\n-25 -12
777 V\n-24 -11 V\n-21 -11 V\n-19 -11 V\n-16 -10 V\n-14 -10 V\n-12 -9 V\n-10 -9
778 V\n-8 -8 V\n-6 -8 V\n-5 -8 V\n-3 -8 V\n-2 -7 V\n-1 -7 V\n0 -7 V\n1 -6 V\n3
779 -6 V\n3 -6 V\n4 -5 V\n5 -5 V\n6 -4 V\n7 -4 V\n8 -4 V\n10 -3 V\n10 -2 V\n12
780 -1 V\n13 -1 V\n14 1 V\n15 1 V\n18 2 V\n18 4 V\n20 5 V\n22 7 V\n23 8 V\n25
781 10 V\n25 12 V\n27 13 V\n26 16 V\n26 17 V\n25 19 V\n23 20 V\n20 20 V\n16 20
782 V\n10 20 V\n4 18 V\n-3 15 V\n-9 11 V\n-17 8 V\n-23 3 V\n-28 -1 V\n-32 -4
783 V\n-34 -8 V\n-35 -11 V\n-36 -12 V\n-34 -13 V\n-32 -13 V\n-30 -14 V\n-27 -13
784 V\n-24 -12 V\n-21 -12 V\n-19 -11 V\n-16 -11 V\n-13 -10 V\n-11 -9 V\n-9 -9
785 V\n-8 -9 V\n-6 -8 V\n-4 -9 V\n-4 -8 V\n-2 -7 V\n-1 -8 V\n0 -7 V\n0 -7 V\n1
786 -7 V\n2 -6 V\n3 -6 V\ncurrentpoint stroke M\n3 -6 V\n5 -6 V\n4 -5 V\n6 -5
787 V\n6 -4 V\n8 -4 V\n8 -3 V\n9 -3 V\n11 -2 V\n11 -2 V\n13 -1 V\n14 1 V\n16 1
788 V\n18 2 V\n19 3 V\n22 5 V\n23 7 V\n25 8 V\n28 10 V\n29 13 V\n30 14 V\n32 18
789 V\n33 19 V\n32 22 V\n31 24 V\n29 26 V\n24 27 V\n18 26 V\n11 25 V\n3 22
790 V\n-7 18 V\n-16 13 V\n-26 7 V\n-33 0 V\n-39 -4 V\n-43 -10 V\n-46 -13 V\n-45
791 -15 V\n-44 -17 V\n-41 -17 V\n-37 -16 V\n-34 -16 V\n-30 -15 V\n-26 -14
792 V\n-23 -12 V\n-19 -12 V\n-17 -11 V\n-14 -10 V\n-11 -10 V\n-10 -9 V\n-9 -9
793 V\n-6 -9 V\n-6 -9 V\n-5 -8 V\n-4 -9 V\n-4 -8 V\n-3 -8 V\n-2 -8 V\n-3 -7
794 V\n-2 -8 V\n-2 -7 V\n-2 -8 V\n-2 -7 V\n-2 -7 V\n-3 -7 V\n-2 -7 V\n-3 -6
795 V\n-3 -7 V\n-3 -6 V\n-3 -6 V\n-4 -6 V\n-4 -6 V\n-5 -6 V\n-6 -6 V\n-6 -6
796 V\n-7 -5 V\n-7 -6 V\n-9 -5 V\n-9 -5 V\n-11 -6 V\n-13 -5 V\n-13 -5 V\n-16 -4
797 V\n-17 -5 V\n-20 -4 V\n-21 -3 V\n-25 -3 V\n-27 -2 V\n-29 -1 V\n-33 1 V\n-35
798 3 V\n-38 5 V\n-40 9 V\n-42 13 V\n-41 18 V\n-41 24 V\n-37 30 V\n-32 36
799 V\n-23 42 V\n-13 47 V\n1 51 V\n14 50 V\n28 47 V\n41 42 V\n51 33 V\n57 23
800 V\n61 14 V\n60 3 V\n59 -4 V\n54 -11 V\n49 -15 V\n44 -19 V\n38 -19 V\n33 -20
801 V\n28 -20 V\n24 -19 V\n20 -18 V\n18 -18 V\n15 -16 V\n13 -14 V\n11 -14 V\n10
802 -13 V\n8 -12 V\n9 -11 V\n7 -10 V\n8 -9 V\n7 -8 V\n8 -7 V\n8 -7 V\n8 -6 V\n9
803 -5 V\n9 -5 V\n11 -3 V\n11 -3 V\n12 -2 V\n13 -1 V\n15 0 V\n16 1 V\n17 2
804 V\n18 4 V\n20 4 V\n20 7 V\n23 8 V\n23 9 V\n24 12 V\n24 12 V\n24 15 V\n24 16
805 V\n22 17 V\n20 18 V\n17 19 V\n12 18 V\n8 17 V\n2 15 V\n-4 13 V\n-10 9
806 V\n-16 6 V\n-21 3 V\n-26 -2 V\n-29 -4 V\n-31 -7 V\n-32 -10 V\n-32 -10
807 V\n-31 -12 V\n-29 -12 V\n-27 -13 V\n-24 -12 V\n-22 -11 V\n-20 -11 V\n-17
808 -11 V\n-14 -10 V\n-12 -9 V\n-10 -9 V\n-9 -9 V\n-6 -8 V\n-5 -9 V\n-4 -7
809 V\n-2 -8 V\n-2 -7 V\n0 -7 V\n1 -7 V\n2 -6 V\n2 -6 V\n4 -6 V\n4 -5 V\n6 -5
810 V\n6 -5 V\n7 -4 V\n8 -3 V\n9 -3 V\n10 -3 V\n12 -1 V\n13 -1 V\n14 0 V\n16 1
811 V\n17 2 V\n19 4 V\n20 5 V\n22 6 V\n24 8 V\n26 10 V\n27 12 V\n27 14 V\n29 16
812 V\n29 18 V\n27 19 V\n26 22 V\n24 22 V\n19 23 V\n13 22 V\n7 20 V\n0 18 V\n-8
813 14 V\n-15 10 V\n-24 5 V\n-29 0 V\n-34 -5 V\n-37 -8 V\n-39 -11 V\n-39 -13
814 V\n-37 -14 V\n-36 -14 V\n-33 -15 V\n-30 -14 V\n-26 -13 V\n-23 -13 V\n-21
815 -12 V\n-17 -11 V\n-15 -10 V\n-12 -10 V\n-11 -10 V\n-8 -9 V\n-7 -8 V\n-6 -9
816 V\n-4 -8 V\n-3 -8 V\n-2 -8 V\n-2 -8 V\n-1 -7 V\n0 -8 V\n0 -7 V\n1 -7 V\n2
817 -6 V\n2 -6 V\n2 -7 V\n3 -5 V\n3 -6 V\n4 -5 V\n5 -5 V\n5 -5 V\n6 -4 V\n7 -4
818 V\n7 -3 V\n8 -3 V\n10 -2 V\n10 -2 V\n12 -1 V\n13 0 V\n15 1 V\n16 1 V\n18 3
819 V\n21 4 V\n22 5 V\n25 7 V\n27 9 V\n30 12 V\n32 13 V\n34 17 V\n36 19 V\n37
820 22 V\n37 25 V\n37 28 V\n33 30 V\n29 31 V\n23 32 V\n14 30 V\n4 26 V\n-8 22
821 V\n-20 15 V\n-31 8 V\n-40 0 V\n-47 -7 V\n-52 -13 V\n-54 -17 V\n-52 -19
822 V\n-50 -20 V\n-47 -19 V\n-42 -19 V\n-37 -18 V\n-33 -15 V\n-28 -15 V\n-24
823 -13 V\n-21 -11 V\n-18 -11 V\n-15 -11 V\n-13 -9 V\n-11 -10 V\n-9 -9 V\n-8 -8
824 V\n-7 -9 V\n-7 -9 V\n-6 -8 V\n-5 -8 V\n-6 -8 V\n-6 -8 V\n-5 -8 V\n-6 -8
825 V\n-6 -7 V\n-7 -8 V\n-7 -7 V\n-8 -7 V\n-9 -7 V\n-9 -7 V\n-11 -6 V\n-11 -7
826 V\n-13 -6 V\n-15 -5 V\n-15 -5 V\n-17 -5 V\n-19 -3 V\n-21 -3 V\n-22 -2
827 V\n-24 -1 V\n-26 0 V\n-28 3 V\n-29 5 V\n-30 7 V\n-31 10 V\n-30 14 V\n-29 17
828 V\n-26 21 V\n-22 25 V\n-18 28 V\n-10 31 V\n-3 34 V\n5 33 V\n15 33 V\n22 30
829 V\n30 26 V\n35 20 V\n40 15 V\n41 8 V\n42 3 V\n41 -3 V\n39 -6 V\n35 -11
830 V\n33 -12 V\n29 -14 V\n25 -15 V\n22 -16 V\n19 -16 V\n17 -15 V\n13 -15 V\n12
831 -15 V\n9 -14 V\n8 -13 V\n7 -13 V\n5 -13 V\n4 -11 V\n3 -11 V\n3 -11 V\n2 -10
832 V\n1 -10 V\n1 -9 V\n1 -9 V\n0 -9 V\n0 -8 V\n0 -8 V\n-1 -7 V\n0 -8 V\n-1 -7
833 V\n-1 -7 V\n-2 -6 V\n-2 -7 V\n-1 -6 V\n-3 -6 V\n-2 -6 V\n-3 -6 V\n-3 -5
834 V\n-4 -6 V\n-4 -5 V\n-4 -6 V\n-5 -5 V\n-6 -5 V\n-7 -5 V\n-7 -5 V\n-9 -5
835 V\n-9 -5 V\n-11 -5 V\n-12 -5 V\n-14 -5 V\n-15 -4 V\n-17 -4 V\n-20 -4 V\n-22
836 -4 V\n-24 -3 V\n-28 -2 V\n-30 -1 V\n-33 1 V\n-37 3 V\ncurrentpoint stroke
837 M\n-39 5 V\n-42 9 V\n1.000 UL\nLTb\n3024 948 M\n2128 464 L\n575 743 M\n2128
838 464 L\n575 743 M\n896 484 V\n3024 948 M\n1471 1227 L\n575 743 M\n0 968 V\n0
839 -968 R\n55 29 V\n stroke\n501 676 M\n[ [(Helvetica) 140.0 0.0 true true
840 (-20)]\n] -46.7 MCshow\n1471 1227 M\n-56 -30 V\n963 673 M\n55 29 V\n
841 stroke\n889 606 M\n[ [(Helvetica) 140.0 0.0 true true (-10)]\n] -46.7
842 MCshow\n1860 1157 M\n-56 -30 V\n1351 603 M\n55 29 V\n stroke\n1277 536 M\n[
843 [(Helvetica) 140.0 0.0 true true ( 0)]\n] -46.7 MCshow\n2248 1087 M\n-56
844 -30 V\n1739 533 M\n55 29 V\n stroke\n1665 466 M\n[ [(Helvetica) 140.0 0.0
845 true true ( 10)]\n] -46.7 MCshow\n2636 1018 M\n-56 -30 V\n2128 464 M\n55 29
846 V\n stroke\n2054 397 M\n[ [(Helvetica) 140.0 0.0 true true ( 20)]\n] -46.7
847 MCshow\n3024 948 M\n-56 -30 V\n2128 464 M\n-63 11 V\n stroke\n2210 439 M\n[
848 [(Helvetica) 140.0 0.0 true true (-20)]\n] -46.7 MLshow\n575 743 M\n62 -12
849 V\n2352 585 M\n-63 11 V\n stroke\n2434 560 M\n[ [(Helvetica) 140.0 0.0 true
850 true (-10)]\n] -46.7 MLshow\n799 864 M\n62 -12 V\n2576 706 M\n-63 11 V\n
851 stroke\n2658 681 M\n[ [(Helvetica) 140.0 0.0 true true ( 0)]\n] -46.7
852 MLshow\n1023 985 M\n62 -12 V\n2800 827 M\n-63 11 V\n stroke\n2882 802 M\n[
853 [(Helvetica) 140.0 0.0 true true ( 10)]\n] -46.7 MLshow\n1247 1106 M\n62
854 -12 V\n3024 948 M\n-63 11 V\n stroke\n3106 923 M\n[ [(Helvetica) 140.0 0.0
855 true true ( 20)]\n] -46.7 MLshow\n1471 1227 M\n62 -12 V\n575 1066 M\n63 0
856 V\n stroke\n449 1066 M\n[ [(Helvetica) 140.0 0.0 true true ( 0)]\n] -46.7
857 MRshow\n575 1195 M\n63 0 V\n stroke\n449 1195 M\n[ [(Helvetica) 140.0 0.0
858 true true ( 10)]\n] -46.7 MRshow\n575 1324 M\n63 0 V\n stroke\n449 1324
859 M\n[ [(Helvetica) 140.0 0.0 true true ( 20)]\n] -46.7 MRshow\n575 1453
860 M\n63 0 V\n stroke\n449 1453 M\n[ [(Helvetica) 140.0 0.0 true true (
861 30)]\n] -46.7 MRshow\n575 1582 M\n63 0 V\n stroke\n449 1582 M\n[
862 [(Helvetica) 140.0 0.0 true true ( 40)]\n] -46.7 MRshow\n575 1711 M\n63 0
863 V\n stroke\n449 1711 M\n[ [(Helvetica) 140.0 0.0 true true ( 50)]\n] -46.7
864 MRshow\nstroke\ngrestore\nend\nshowpage\n>|eps>||||||>|Embedded 3D graph
867 <apply|tmdoc-copyright|2003|Chu-Ching Huang|Joris van der Hoeven>
869 <expand|tmdoc-license|Permission is granted to copy, distribute and/or
870 modify this document under the terms of the GNU Free Documentation License,
871 Version 1.1 or any later version published by the Free Software Foundation;
872 with no Invariant Sections, with no Front-Cover Texts, and with no
873 Back-Cover Texts. A copy of the license is included in the section entitled
874 "GNU Free Documentation License".>
879 <associate|paragraph width|150mm>
880 <associate|odd page margin|30mm>
881 <associate|page right margin|30mm>
882 <associate|page top margin|30mm>
883 <associate|reduction page right margin|25mm>
884 <associate|page type|a4>
885 <associate|reduction page bottom margin|15mm>
886 <associate|even page margin|30mm>
887 <associate|reduction page left margin|25mm>
888 <associate|page bottom margin|30mm>
889 <associate|reduction page top margin|15mm>
890 <associate|language|english>
896 <associate|toc-10|<tuple|8.2|?>>
897 <associate|toc-11|<tuple|8.3|?>>
898 <associate|gly-1|<tuple|1|?>>
899 <associate|idx-1|<tuple|<uninit>|?>>
900 <associate|toc-12|<tuple|8.4|?>>
901 <associate|gly-2|<tuple|2|?>>
902 <associate|idx-2|<tuple|<uninit>|?>>
903 <associate|gly-3|<tuple|3|?>>
904 <associate|toc-13|<tuple|8.5|?>>
905 <associate|idx-3|<tuple|2|?>>
906 <associate|gly-4|<tuple|4|?>>
907 <associate|toc-14|<tuple|8.6|?>>
908 <associate|idx-4|<tuple|7|?>>
909 <associate|gly-5|<tuple|5|?>>
910 <associate|toc-15|<tuple|8.7|?>>
911 <associate|idx-5|<tuple|8|?>>
912 <associate|toc-16|<tuple|8.8|?>>
913 <associate|gly-6|<tuple|6|?>>
914 <associate|gly-7|<tuple|7|?>>
915 <associate|gly-8|<tuple|8|?>>
916 <associate|gly-9|<tuple|9|?>>
917 <associate|toc-1|<tuple|1|?>>
918 <associate|toc-2|<tuple|2|?>>
919 <associate|toc-3|<tuple|3|?>>
920 <associate|toc-4|<tuple|4|?>>
921 <associate|toc-5|<tuple|5|?>>
922 <associate|toc-6|<tuple|6|?>>
923 <associate|toc-7|<tuple|7|?>>
924 <associate|toc-8|<tuple|8|?>>
925 <associate|toc-9|<tuple|8.1|?>>
932 <tuple|normal||<pageref|gly-1>>
935 <tuple|<tuple|<with|font family|<quote|ss>|Text>|<with|font
936 family|<quote|ss>|Session>|<with|font
937 family|<quote|ss>|Octave>>|<pageref|idx-1>>
939 <tuple|<tuple|<with|font family|<quote|ss>|Octave>>|<pageref|idx-2>>