1 /* $OpenBSD: queue.h,v 1.44 2016/09/09 20:31:46 millert Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 #ifndef _COMPAT_QUEUE_H_
36 #define _COMPAT_QUEUE_H_
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues and XOR simple queues.
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
60 * A simple queue is headed by a pair of pointers, one to the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
74 * An XOR simple queue is used in the same way as a regular simple queue.
75 * The difference is that the head structure also includes a "cookie" that
76 * is XOR'd with the queue pointer (first, last or next) to generate the
79 * For details on the use of these macros, see the queue(3) manual page.
82 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
83 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
85 #define _Q_INVALIDATE(a)
89 * Singly-linked List definitions.
91 #define SLIST_HEAD(name, type) \
93 struct type *slh_first; /* first element */ \
96 #define SLIST_HEAD_INITIALIZER(head) \
99 #define SLIST_ENTRY(type) \
101 struct type *sle_next; /* next element */ \
105 * Singly-linked List access methods.
107 #define SLIST_FIRST(head) ((head)->slh_first)
108 #define SLIST_END(head) NULL
109 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
110 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
112 #define SLIST_FOREACH(var, head, field) \
113 for((var) = SLIST_FIRST(head); \
114 (var) != SLIST_END(head); \
115 (var) = SLIST_NEXT(var, field))
117 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \
118 for ((var) = SLIST_FIRST(head); \
119 (var) && ((tvar) = SLIST_NEXT(var, field), 1); \
123 * Singly-linked List functions.
125 #define SLIST_INIT(head) { \
126 SLIST_FIRST(head) = SLIST_END(head); \
129 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
130 (elm)->field.sle_next = (slistelm)->field.sle_next; \
131 (slistelm)->field.sle_next = (elm); \
134 #define SLIST_INSERT_HEAD(head, elm, field) do { \
135 (elm)->field.sle_next = (head)->slh_first; \
136 (head)->slh_first = (elm); \
139 #define SLIST_REMOVE_AFTER(elm, field) do { \
140 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
143 #define SLIST_REMOVE_HEAD(head, field) do { \
144 (head)->slh_first = (head)->slh_first->field.sle_next; \
147 #define SLIST_REMOVE(head, elm, type, field) do { \
148 if ((head)->slh_first == (elm)) { \
149 SLIST_REMOVE_HEAD((head), field); \
151 struct type *curelm = (head)->slh_first; \
153 while (curelm->field.sle_next != (elm)) \
154 curelm = curelm->field.sle_next; \
155 curelm->field.sle_next = \
156 curelm->field.sle_next->field.sle_next; \
158 _Q_INVALIDATE((elm)->field.sle_next); \
164 #define LIST_HEAD(name, type) \
166 struct type *lh_first; /* first element */ \
169 #define LIST_HEAD_INITIALIZER(head) \
172 #define LIST_ENTRY(type) \
174 struct type *le_next; /* next element */ \
175 struct type **le_prev; /* address of previous next element */ \
179 * List access methods.
181 #define LIST_FIRST(head) ((head)->lh_first)
182 #define LIST_END(head) NULL
183 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
184 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
186 #define LIST_FOREACH(var, head, field) \
187 for((var) = LIST_FIRST(head); \
188 (var)!= LIST_END(head); \
189 (var) = LIST_NEXT(var, field))
191 #define LIST_FOREACH_SAFE(var, head, field, tvar) \
192 for ((var) = LIST_FIRST(head); \
193 (var) && ((tvar) = LIST_NEXT(var, field), 1); \
199 #define LIST_INIT(head) do { \
200 LIST_FIRST(head) = LIST_END(head); \
203 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
204 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
205 (listelm)->field.le_next->field.le_prev = \
206 &(elm)->field.le_next; \
207 (listelm)->field.le_next = (elm); \
208 (elm)->field.le_prev = &(listelm)->field.le_next; \
211 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
212 (elm)->field.le_prev = (listelm)->field.le_prev; \
213 (elm)->field.le_next = (listelm); \
214 *(listelm)->field.le_prev = (elm); \
215 (listelm)->field.le_prev = &(elm)->field.le_next; \
218 #define LIST_INSERT_HEAD(head, elm, field) do { \
219 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
220 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
221 (head)->lh_first = (elm); \
222 (elm)->field.le_prev = &(head)->lh_first; \
225 #define LIST_REMOVE(elm, field) do { \
226 if ((elm)->field.le_next != NULL) \
227 (elm)->field.le_next->field.le_prev = \
228 (elm)->field.le_prev; \
229 *(elm)->field.le_prev = (elm)->field.le_next; \
230 _Q_INVALIDATE((elm)->field.le_prev); \
231 _Q_INVALIDATE((elm)->field.le_next); \
234 #define LIST_REPLACE(elm, elm2, field) do { \
235 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
236 (elm2)->field.le_next->field.le_prev = \
237 &(elm2)->field.le_next; \
238 (elm2)->field.le_prev = (elm)->field.le_prev; \
239 *(elm2)->field.le_prev = (elm2); \
240 _Q_INVALIDATE((elm)->field.le_prev); \
241 _Q_INVALIDATE((elm)->field.le_next); \
245 * Simple queue definitions.
247 #define SIMPLEQ_HEAD(name, type) \
249 struct type *sqh_first; /* first element */ \
250 struct type **sqh_last; /* addr of last next element */ \
253 #define SIMPLEQ_HEAD_INITIALIZER(head) \
254 { NULL, &(head).sqh_first }
256 #define SIMPLEQ_ENTRY(type) \
258 struct type *sqe_next; /* next element */ \
262 * Simple queue access methods.
264 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
265 #define SIMPLEQ_END(head) NULL
266 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
267 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
269 #define SIMPLEQ_FOREACH(var, head, field) \
270 for((var) = SIMPLEQ_FIRST(head); \
271 (var) != SIMPLEQ_END(head); \
272 (var) = SIMPLEQ_NEXT(var, field))
274 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
275 for ((var) = SIMPLEQ_FIRST(head); \
276 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \
280 * Simple queue functions.
282 #define SIMPLEQ_INIT(head) do { \
283 (head)->sqh_first = NULL; \
284 (head)->sqh_last = &(head)->sqh_first; \
287 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
288 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
289 (head)->sqh_last = &(elm)->field.sqe_next; \
290 (head)->sqh_first = (elm); \
293 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
294 (elm)->field.sqe_next = NULL; \
295 *(head)->sqh_last = (elm); \
296 (head)->sqh_last = &(elm)->field.sqe_next; \
299 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
300 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
301 (head)->sqh_last = &(elm)->field.sqe_next; \
302 (listelm)->field.sqe_next = (elm); \
305 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \
306 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
307 (head)->sqh_last = &(head)->sqh_first; \
310 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
311 if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
313 (head)->sqh_last = &(elm)->field.sqe_next; \
316 #define SIMPLEQ_CONCAT(head1, head2) do { \
317 if (!SIMPLEQ_EMPTY((head2))) { \
318 *(head1)->sqh_last = (head2)->sqh_first; \
319 (head1)->sqh_last = (head2)->sqh_last; \
320 SIMPLEQ_INIT((head2)); \
325 * XOR Simple queue definitions.
327 #define XSIMPLEQ_HEAD(name, type) \
329 struct type *sqx_first; /* first element */ \
330 struct type **sqx_last; /* addr of last next element */ \
331 unsigned long sqx_cookie; \
334 #define XSIMPLEQ_ENTRY(type) \
336 struct type *sqx_next; /* next element */ \
340 * XOR Simple queue access methods.
342 #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \
343 (unsigned long)(ptr)))
344 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
345 #define XSIMPLEQ_END(head) NULL
346 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
347 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
350 #define XSIMPLEQ_FOREACH(var, head, field) \
351 for ((var) = XSIMPLEQ_FIRST(head); \
352 (var) != XSIMPLEQ_END(head); \
353 (var) = XSIMPLEQ_NEXT(head, var, field))
355 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \
356 for ((var) = XSIMPLEQ_FIRST(head); \
357 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \
361 * XOR Simple queue functions.
363 #define XSIMPLEQ_INIT(head) do { \
364 arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \
365 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \
366 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
369 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \
370 if (((elm)->field.sqx_next = (head)->sqx_first) == \
371 XSIMPLEQ_XOR(head, NULL)) \
372 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
373 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \
376 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \
377 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \
378 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \
379 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
382 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
383 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \
384 XSIMPLEQ_XOR(head, NULL)) \
385 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
386 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \
389 #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \
390 if (((head)->sqx_first = XSIMPLEQ_XOR(head, \
391 (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \
392 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \
395 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \
396 if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \
397 (elm)->field.sqx_next)->field.sqx_next) \
398 == XSIMPLEQ_XOR(head, NULL)) \
400 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \
405 * Tail queue definitions.
407 #define TAILQ_HEAD(name, type) \
409 struct type *tqh_first; /* first element */ \
410 struct type **tqh_last; /* addr of last next element */ \
413 #define TAILQ_HEAD_INITIALIZER(head) \
414 { NULL, &(head).tqh_first }
416 #define TAILQ_ENTRY(type) \
418 struct type *tqe_next; /* next element */ \
419 struct type **tqe_prev; /* address of previous next element */ \
423 * Tail queue access methods.
425 #define TAILQ_FIRST(head) ((head)->tqh_first)
426 #define TAILQ_END(head) NULL
427 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
428 #define TAILQ_LAST(head, headname) \
429 (*(((struct headname *)((head)->tqh_last))->tqh_last))
431 #define TAILQ_PREV(elm, headname, field) \
432 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
433 #define TAILQ_EMPTY(head) \
434 (TAILQ_FIRST(head) == TAILQ_END(head))
436 #define TAILQ_FOREACH(var, head, field) \
437 for((var) = TAILQ_FIRST(head); \
438 (var) != TAILQ_END(head); \
439 (var) = TAILQ_NEXT(var, field))
441 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \
442 for ((var) = TAILQ_FIRST(head); \
443 (var) != TAILQ_END(head) && \
444 ((tvar) = TAILQ_NEXT(var, field), 1); \
448 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
449 for((var) = TAILQ_LAST(head, headname); \
450 (var) != TAILQ_END(head); \
451 (var) = TAILQ_PREV(var, headname, field))
453 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \
454 for ((var) = TAILQ_LAST(head, headname); \
455 (var) != TAILQ_END(head) && \
456 ((tvar) = TAILQ_PREV(var, headname, field), 1); \
460 * Tail queue functions.
462 #define TAILQ_INIT(head) do { \
463 (head)->tqh_first = NULL; \
464 (head)->tqh_last = &(head)->tqh_first; \
467 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
468 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
469 (head)->tqh_first->field.tqe_prev = \
470 &(elm)->field.tqe_next; \
472 (head)->tqh_last = &(elm)->field.tqe_next; \
473 (head)->tqh_first = (elm); \
474 (elm)->field.tqe_prev = &(head)->tqh_first; \
477 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
478 (elm)->field.tqe_next = NULL; \
479 (elm)->field.tqe_prev = (head)->tqh_last; \
480 *(head)->tqh_last = (elm); \
481 (head)->tqh_last = &(elm)->field.tqe_next; \
484 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
485 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
486 (elm)->field.tqe_next->field.tqe_prev = \
487 &(elm)->field.tqe_next; \
489 (head)->tqh_last = &(elm)->field.tqe_next; \
490 (listelm)->field.tqe_next = (elm); \
491 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
494 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
495 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
496 (elm)->field.tqe_next = (listelm); \
497 *(listelm)->field.tqe_prev = (elm); \
498 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
501 #define TAILQ_REMOVE(head, elm, field) do { \
502 if (((elm)->field.tqe_next) != NULL) \
503 (elm)->field.tqe_next->field.tqe_prev = \
504 (elm)->field.tqe_prev; \
506 (head)->tqh_last = (elm)->field.tqe_prev; \
507 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
508 _Q_INVALIDATE((elm)->field.tqe_prev); \
509 _Q_INVALIDATE((elm)->field.tqe_next); \
512 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
513 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
514 (elm2)->field.tqe_next->field.tqe_prev = \
515 &(elm2)->field.tqe_next; \
517 (head)->tqh_last = &(elm2)->field.tqe_next; \
518 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
519 *(elm2)->field.tqe_prev = (elm2); \
520 _Q_INVALIDATE((elm)->field.tqe_prev); \
521 _Q_INVALIDATE((elm)->field.tqe_next); \
524 #define TAILQ_CONCAT(head1, head2, field) do { \
525 if (!TAILQ_EMPTY(head2)) { \
526 *(head1)->tqh_last = (head2)->tqh_first; \
527 (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
528 (head1)->tqh_last = (head2)->tqh_last; \
529 TAILQ_INIT((head2)); \
533 #endif /* !_COMPAT_QUEUE_H_ */