2 #ifdef BN_MP_EXPTMOD_FAST_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality.
8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place.
12 * The library is free for all purposes without any express
15 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
18 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
20 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
21 * The value of k changes based on the size of the exponent.
23 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
32 int mp_exptmod_fast (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
)
34 mp_int M
[TAB_SIZE
], res
;
36 int err
, bitbuf
, bitcpy
, bitcnt
, mode
, digidx
, x
, y
, winsize
;
38 /* use a pointer to the reduction algorithm. This allows us to use
39 * one of many reduction algorithms without modding the guts of
40 * the code with if statements everywhere.
42 int (*redux
)(mp_int
*,mp_int
*,mp_digit
);
44 /* find window size */
45 x
= mp_count_bits (X
);
50 } else if (x
<= 140) {
52 } else if (x
<= 450) {
54 } else if (x
<= 1303) {
56 } else if (x
<= 3529) {
70 if ((err
= mp_init_size(&M
[1], P
->alloc
)) != MP_OKAY
) {
74 /* now init the second half of the array */
75 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
76 if ((err
= mp_init_size(&M
[x
], P
->alloc
)) != MP_OKAY
) {
77 for (y
= 1<<(winsize
-1); y
< x
; y
++) {
85 /* determine and setup reduction code */
87 #ifdef BN_MP_MONTGOMERY_SETUP_C
88 /* now setup montgomery */
89 if ((err
= mp_montgomery_setup (P
, &mp
)) != MP_OKAY
) {
97 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
98 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
99 if (((P
->used
* 2 + 1) < MP_WARRAY
) &&
100 P
->used
< (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
101 redux
= fast_mp_montgomery_reduce
;
105 #ifdef BN_MP_MONTGOMERY_REDUCE_C
106 /* use slower baseline Montgomery method */
107 redux
= mp_montgomery_reduce
;
113 } else if (redmode
== 1) {
114 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
115 /* setup DR reduction for moduli of the form B**k - b */
117 redux
= mp_dr_reduce
;
123 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
124 /* setup DR reduction for moduli of the form 2**k - b */
125 if ((err
= mp_reduce_2k_setup(P
, &mp
)) != MP_OKAY
) {
128 redux
= mp_reduce_2k
;
136 if ((err
= mp_init_size (&res
, P
->alloc
)) != MP_OKAY
) {
144 * The first half of the table is not computed though accept for M[0] and M[1]
148 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
149 /* now we need R mod m */
150 if ((err
= mp_montgomery_calc_normalization (&res
, P
)) != MP_OKAY
) {
158 /* now set M[1] to G * R mod m */
159 if ((err
= mp_mulmod (G
, &res
, P
, &M
[1])) != MP_OKAY
) {
164 if ((err
= mp_mod(G
, P
, &M
[1])) != MP_OKAY
) {
169 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
170 if ((err
= mp_copy (&M
[1], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
174 for (x
= 0; x
< (winsize
- 1); x
++) {
175 if ((err
= mp_sqr (&M
[1 << (winsize
- 1)], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
178 if ((err
= redux (&M
[1 << (winsize
- 1)], P
, mp
)) != MP_OKAY
) {
183 /* create upper table */
184 for (x
= (1 << (winsize
- 1)) + 1; x
< (1 << winsize
); x
++) {
185 if ((err
= mp_mul (&M
[x
- 1], &M
[1], &M
[x
])) != MP_OKAY
) {
188 if ((err
= redux (&M
[x
], P
, mp
)) != MP_OKAY
) {
193 /* set initial mode and bit cnt */
197 digidx
= X
->used
- 1;
202 /* grab next digit as required */
204 /* if digidx == -1 we are out of digits so break */
208 /* read next digit and reset bitcnt */
209 buf
= X
->dp
[digidx
--];
210 bitcnt
= (int)DIGIT_BIT
;
213 /* grab the next msb from the exponent */
214 y
= (mp_digit
)(buf
>> (DIGIT_BIT
- 1)) & 1;
217 /* if the bit is zero and mode == 0 then we ignore it
218 * These represent the leading zero bits before the first 1 bit
219 * in the exponent. Technically this opt is not required but it
220 * does lower the # of trivial squaring/reductions used
222 if (mode
== 0 && y
== 0) {
226 /* if the bit is zero and mode == 1 then we square */
227 if (mode
== 1 && y
== 0) {
228 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
231 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
237 /* else we add it to the window */
238 bitbuf
|= (y
<< (winsize
- ++bitcpy
));
241 if (bitcpy
== winsize
) {
242 /* ok window is filled so square as required and multiply */
244 for (x
= 0; x
< winsize
; x
++) {
245 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
248 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
254 if ((err
= mp_mul (&res
, &M
[bitbuf
], &res
)) != MP_OKAY
) {
257 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
261 /* empty window and reset */
268 /* if bits remain then square/multiply */
269 if (mode
== 2 && bitcpy
> 0) {
270 /* square then multiply if the bit is set */
271 for (x
= 0; x
< bitcpy
; x
++) {
272 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
275 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
279 /* get next bit of the window */
281 if ((bitbuf
& (1 << winsize
)) != 0) {
283 if ((err
= mp_mul (&res
, &M
[1], &res
)) != MP_OKAY
) {
286 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
294 /* fixup result if Montgomery reduction is used
295 * recall that any value in a Montgomery system is
296 * actually multiplied by R mod n. So we have
297 * to reduce one more time to cancel out the factor
300 if ((err
= redux(&res
, P
, mp
)) != MP_OKAY
) {
305 /* swap res with Y */
308 LBL_RES
:mp_clear (&res
);
311 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
319 /* $Source: /cvs/libtom/libtommath/bn_mp_exptmod_fast.c,v $ */
320 /* $Revision: 1.3 $ */
321 /* $Date: 2006/03/31 14:18:44 $ */