2 #ifdef BN_MP_KARATSUBA_MUL_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality.
8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place.
12 * The library is free for all purposes without any express
15 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
18 /* c = |a| * |b| using Karatsuba Multiplication using
19 * three half size multiplications
21 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
22 * let n represent half of the number of digits in
29 a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
31 * Note that a1b1 and a0b0 are used twice and only need to be
32 * computed once. So in total three half size (half # of
33 * digit) multiplications are performed, a0b0, a1b1 and
36 * Note that a multiplication of half the digits requires
37 * 1/4th the number of single precision multiplications so in
38 * total after one call 25% of the single precision multiplications
39 * are saved. Note also that the call to mp_mul can end up back
40 * in this function if the a0, a1, b0, or b1 are above the threshold.
41 * This is known as divide-and-conquer and leads to the famous
42 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
43 * the standard O(N**2) that the baseline/comba methods use.
44 * Generally though the overhead of this method doesn't pay off
45 * until a certain size (N ~ 80) is reached.
47 int mp_karatsuba_mul (mp_int
* a
, mp_int
* b
, mp_int
* c
)
49 mp_int x0
, x1
, y0
, y1
, t1
, x0y0
, x1y1
;
52 /* default the return code to an error */
56 B
= MIN (a
->used
, b
->used
);
58 /* now divide in two */
61 /* init copy all the temps */
62 if (mp_init_size (&x0
, B
) != MP_OKAY
)
64 if (mp_init_size (&x1
, a
->used
- B
) != MP_OKAY
)
66 if (mp_init_size (&y0
, B
) != MP_OKAY
)
68 if (mp_init_size (&y1
, b
->used
- B
) != MP_OKAY
)
72 if (mp_init_size (&t1
, B
* 2) != MP_OKAY
)
74 if (mp_init_size (&x0y0
, B
* 2) != MP_OKAY
)
76 if (mp_init_size (&x1y1
, B
* 2) != MP_OKAY
)
79 /* now shift the digits */
80 x0
.used
= y0
.used
= B
;
81 x1
.used
= a
->used
- B
;
82 y1
.used
= b
->used
- B
;
86 register mp_digit
*tmpa
, *tmpb
, *tmpx
, *tmpy
;
88 /* we copy the digits directly instead of using higher level functions
89 * since we also need to shift the digits
96 for (x
= 0; x
< B
; x
++) {
102 for (x
= B
; x
< a
->used
; x
++) {
107 for (x
= B
; x
< b
->used
; x
++) {
112 /* only need to clamp the lower words since by definition the
113 * upper words x1/y1 must have a known number of digits
118 /* now calc the products x0y0 and x1y1 */
119 /* after this x0 is no longer required, free temp [x0==t2]! */
120 if (mp_mul (&x0
, &y0
, &x0y0
) != MP_OKAY
)
121 goto X1Y1
; /* x0y0 = x0*y0 */
122 if (mp_mul (&x1
, &y1
, &x1y1
) != MP_OKAY
)
123 goto X1Y1
; /* x1y1 = x1*y1 */
125 /* now calc x1+x0 and y1+y0 */
126 if (s_mp_add (&x1
, &x0
, &t1
) != MP_OKAY
)
127 goto X1Y1
; /* t1 = x1 - x0 */
128 if (s_mp_add (&y1
, &y0
, &x0
) != MP_OKAY
)
129 goto X1Y1
; /* t2 = y1 - y0 */
130 if (mp_mul (&t1
, &x0
, &t1
) != MP_OKAY
)
131 goto X1Y1
; /* t1 = (x1 + x0) * (y1 + y0) */
134 if (mp_add (&x0y0
, &x1y1
, &x0
) != MP_OKAY
)
135 goto X1Y1
; /* t2 = x0y0 + x1y1 */
136 if (s_mp_sub (&t1
, &x0
, &t1
) != MP_OKAY
)
137 goto X1Y1
; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
140 if (mp_lshd (&t1
, B
) != MP_OKAY
)
141 goto X1Y1
; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
142 if (mp_lshd (&x1y1
, B
* 2) != MP_OKAY
)
143 goto X1Y1
; /* x1y1 = x1y1 << 2*B */
145 if (mp_add (&x0y0
, &t1
, &t1
) != MP_OKAY
)
146 goto X1Y1
; /* t1 = x0y0 + t1 */
147 if (mp_add (&t1
, &x1y1
, c
) != MP_OKAY
)
148 goto X1Y1
; /* t1 = x0y0 + t1 + x1y1 */
150 /* Algorithm succeeded set the return code to MP_OKAY */
153 X1Y1
:mp_clear (&x1y1
);
154 X0Y0
:mp_clear (&x0y0
);
165 /* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */
166 /* $Revision: 1.5 $ */
167 /* $Date: 2006/03/31 14:18:44 $ */