1 /* crypto/sha/sha512.c */
2 /* ====================================================================
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ====================================================================
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
10 * IMPLEMENTATION NOTES.
12 * As you might have noticed 32-bit hash algorithms:
14 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15 * - optimized versions implement two transform functions: one operating
16 * on [aligned] data in host byte order and one - on data in input
18 * - share common byte-order neutral collector and padding function
19 * implementations, ../md32_common.h;
21 * Neither of the above applies to this SHA-512 implementations. Reasons
22 * [in reverse order] are:
24 * - it's the only 64-bit hash algorithm for the moment of this writing,
25 * there is no need for common collector/padding implementation [yet];
26 * - by supporting only one transform function [which operates on
27 * *aligned* data in input stream byte order, big-endian in this case]
28 * we minimize burden of maintenance in two ways: a) collector/padding
29 * function is simpler; b) only one transform function to stare at;
30 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31 * apply a number of optimizations to mitigate potential performance
32 * penalties caused by previous design decision;
36 * Implementation relies on the fact that "long long" is 64-bit on
37 * both 32- and 64-bit platforms. If some compiler vendor comes up
38 * with 128-bit long long, adjustment to sha.h would be required.
39 * As this implementation relies on 64-bit integer type, it's totally
40 * inappropriate for platforms which don't support it, most notably
42 * <appro@fy.chalmers.se>
47 #include <openssl/crypto.h>
48 #include <openssl/sha.h>
49 #include <openssl/opensslv.h>
53 const char SHA512_version
[]="SHA-512" OPENSSL_VERSION_PTEXT
;
55 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57 defined(__s390__) || defined(__s390x__) || \
59 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
62 fips_md_init_ctx(SHA384
, SHA512
)
64 c
->h
[0]=U64(0xcbbb9d5dc1059ed8);
65 c
->h
[1]=U64(0x629a292a367cd507);
66 c
->h
[2]=U64(0x9159015a3070dd17);
67 c
->h
[3]=U64(0x152fecd8f70e5939);
68 c
->h
[4]=U64(0x67332667ffc00b31);
69 c
->h
[5]=U64(0x8eb44a8768581511);
70 c
->h
[6]=U64(0xdb0c2e0d64f98fa7);
71 c
->h
[7]=U64(0x47b5481dbefa4fa4);
74 c
->num
=0; c
->md_len
=SHA384_DIGEST_LENGTH
;
80 c
->h
[0]=U64(0x6a09e667f3bcc908);
81 c
->h
[1]=U64(0xbb67ae8584caa73b);
82 c
->h
[2]=U64(0x3c6ef372fe94f82b);
83 c
->h
[3]=U64(0xa54ff53a5f1d36f1);
84 c
->h
[4]=U64(0x510e527fade682d1);
85 c
->h
[5]=U64(0x9b05688c2b3e6c1f);
86 c
->h
[6]=U64(0x1f83d9abfb41bd6b);
87 c
->h
[7]=U64(0x5be0cd19137e2179);
90 c
->num
=0; c
->md_len
=SHA512_DIGEST_LENGTH
;
97 void sha512_block_data_order (SHA512_CTX
*ctx
, const void *in
, size_t num
);
99 int SHA512_Final (unsigned char *md
, SHA512_CTX
*c
)
101 unsigned char *p
=(unsigned char *)c
->u
.p
;
104 p
[n
]=0x80; /* There always is a room for one */
106 if (n
> (sizeof(c
->u
)-16))
107 memset (p
+n
,0,sizeof(c
->u
)-n
), n
=0,
108 sha512_block_data_order (c
,p
,1);
110 memset (p
+n
,0,sizeof(c
->u
)-16-n
);
112 c
->u
.d
[SHA_LBLOCK
-2] = c
->Nh
;
113 c
->u
.d
[SHA_LBLOCK
-1] = c
->Nl
;
115 p
[sizeof(c
->u
)-1] = (unsigned char)(c
->Nl
);
116 p
[sizeof(c
->u
)-2] = (unsigned char)(c
->Nl
>>8);
117 p
[sizeof(c
->u
)-3] = (unsigned char)(c
->Nl
>>16);
118 p
[sizeof(c
->u
)-4] = (unsigned char)(c
->Nl
>>24);
119 p
[sizeof(c
->u
)-5] = (unsigned char)(c
->Nl
>>32);
120 p
[sizeof(c
->u
)-6] = (unsigned char)(c
->Nl
>>40);
121 p
[sizeof(c
->u
)-7] = (unsigned char)(c
->Nl
>>48);
122 p
[sizeof(c
->u
)-8] = (unsigned char)(c
->Nl
>>56);
123 p
[sizeof(c
->u
)-9] = (unsigned char)(c
->Nh
);
124 p
[sizeof(c
->u
)-10] = (unsigned char)(c
->Nh
>>8);
125 p
[sizeof(c
->u
)-11] = (unsigned char)(c
->Nh
>>16);
126 p
[sizeof(c
->u
)-12] = (unsigned char)(c
->Nh
>>24);
127 p
[sizeof(c
->u
)-13] = (unsigned char)(c
->Nh
>>32);
128 p
[sizeof(c
->u
)-14] = (unsigned char)(c
->Nh
>>40);
129 p
[sizeof(c
->u
)-15] = (unsigned char)(c
->Nh
>>48);
130 p
[sizeof(c
->u
)-16] = (unsigned char)(c
->Nh
>>56);
133 sha512_block_data_order (c
,p
,1);
139 /* Let compiler decide if it's appropriate to unroll... */
140 case SHA384_DIGEST_LENGTH
:
141 for (n
=0;n
<SHA384_DIGEST_LENGTH
/8;n
++)
143 SHA_LONG64 t
= c
->h
[n
];
145 *(md
++) = (unsigned char)(t
>>56);
146 *(md
++) = (unsigned char)(t
>>48);
147 *(md
++) = (unsigned char)(t
>>40);
148 *(md
++) = (unsigned char)(t
>>32);
149 *(md
++) = (unsigned char)(t
>>24);
150 *(md
++) = (unsigned char)(t
>>16);
151 *(md
++) = (unsigned char)(t
>>8);
152 *(md
++) = (unsigned char)(t
);
155 case SHA512_DIGEST_LENGTH
:
156 for (n
=0;n
<SHA512_DIGEST_LENGTH
/8;n
++)
158 SHA_LONG64 t
= c
->h
[n
];
160 *(md
++) = (unsigned char)(t
>>56);
161 *(md
++) = (unsigned char)(t
>>48);
162 *(md
++) = (unsigned char)(t
>>40);
163 *(md
++) = (unsigned char)(t
>>32);
164 *(md
++) = (unsigned char)(t
>>24);
165 *(md
++) = (unsigned char)(t
>>16);
166 *(md
++) = (unsigned char)(t
>>8);
167 *(md
++) = (unsigned char)(t
);
170 /* ... as well as make sure md_len is not abused. */
177 int SHA384_Final (unsigned char *md
,SHA512_CTX
*c
)
178 { return SHA512_Final (md
,c
); }
180 int SHA512_Update (SHA512_CTX
*c
, const void *_data
, size_t len
)
183 unsigned char *p
=c
->u
.p
;
184 const unsigned char *data
=(const unsigned char *)_data
;
186 if (len
==0) return 1;
188 l
= (c
->Nl
+(((SHA_LONG64
)len
)<<3))&U64(0xffffffffffffffff);
189 if (l
< c
->Nl
) c
->Nh
++;
190 if (sizeof(len
)>=8) c
->Nh
+=(((SHA_LONG64
)len
)>>61);
195 size_t n
= sizeof(c
->u
) - c
->num
;
199 memcpy (p
+c
->num
,data
,len
), c
->num
+= (unsigned int)len
;
203 memcpy (p
+c
->num
,data
,n
), c
->num
= 0;
205 sha512_block_data_order (c
,p
,1);
209 if (len
>= sizeof(c
->u
))
211 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
212 if ((size_t)data
%sizeof(c
->u
.d
[0]) != 0)
213 while (len
>= sizeof(c
->u
))
214 memcpy (p
,data
,sizeof(c
->u
)),
215 sha512_block_data_order (c
,p
,1),
217 data
+= sizeof(c
->u
);
220 sha512_block_data_order (c
,data
,len
/sizeof(c
->u
)),
226 if (len
!= 0) memcpy (p
,data
,len
), c
->num
= (int)len
;
231 int SHA384_Update (SHA512_CTX
*c
, const void *data
, size_t len
)
232 { return SHA512_Update (c
,data
,len
); }
234 void SHA512_Transform (SHA512_CTX
*c
, const unsigned char *data
)
235 { sha512_block_data_order (c
,data
,1); }
237 unsigned char *SHA384(const unsigned char *d
, size_t n
, unsigned char *md
)
240 static unsigned char m
[SHA384_DIGEST_LENGTH
];
242 if (md
== NULL
) md
=m
;
244 SHA512_Update(&c
,d
,n
);
246 OPENSSL_cleanse(&c
,sizeof(c
));
250 unsigned char *SHA512(const unsigned char *d
, size_t n
, unsigned char *md
)
253 static unsigned char m
[SHA512_DIGEST_LENGTH
];
255 if (md
== NULL
) md
=m
;
257 SHA512_Update(&c
,d
,n
);
259 OPENSSL_cleanse(&c
,sizeof(c
));
264 static const SHA_LONG64 K512
[80] = {
265 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
266 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
267 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
268 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
269 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
270 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
271 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
272 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
273 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
274 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
275 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
276 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
277 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
278 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
279 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
280 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
281 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
282 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
283 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
284 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
285 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
286 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
287 U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
288 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
289 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
290 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
291 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
292 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
293 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
294 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
295 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
296 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
297 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
298 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
299 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
300 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
301 U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
302 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
303 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
304 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
307 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
308 # if defined(__x86_64) || defined(__x86_64__)
309 # define ROTR(a,n) ({ SHA_LONG64 ret; \
314 # if !defined(B_ENDIAN)
315 # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
320 # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
321 # if defined(I386_ONLY)
322 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
323 unsigned int hi=p[0],lo=p[1]; \
324 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
325 "roll $16,%%eax; roll $16,%%edx; "\
326 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
327 : "=a"(lo),"=d"(hi) \
328 : "0"(lo),"1"(hi) : "cc"); \
329 ((SHA_LONG64)hi)<<32|lo; })
331 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
332 unsigned int hi=p[0],lo=p[1]; \
333 asm ("bswapl %0; bswapl %1;" \
334 : "=r"(lo),"=r"(hi) \
335 : "0"(lo),"1"(hi)); \
336 ((SHA_LONG64)hi)<<32|lo; })
338 # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
339 # define ROTR(a,n) ({ SHA_LONG64 ret; \
340 asm ("rotrdi %0,%1,%2" \
342 : "r"(a),"K"(n)); ret; })
344 # elif defined(_MSC_VER)
345 # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
346 # pragma intrinsic(_rotr64)
347 # define ROTR(a,n) _rotr64((a),n)
349 # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
350 # if defined(I386_ONLY)
351 static SHA_LONG64 __fastcall
__pull64be(const void *x
)
352 { _asm mov edx
, [ecx
+ 0]
353 _asm mov eax
, [ecx
+ 4]
362 static SHA_LONG64 __fastcall
__pull64be(const void *x
)
363 { _asm mov edx
, [ecx
+ 0]
364 _asm mov eax
, [ecx
+ 4]
369 # define PULL64(x) __pull64be(&(x))
371 # pragma inline_depth(0)
378 #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
379 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
383 #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
386 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
387 #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
388 #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
389 #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
391 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
392 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
395 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
397 * This code should give better results on 32-bit CPU with less than
398 * ~24 registers, both size and performance wise...
400 static void sha512_block_data_order (SHA512_CTX
*ctx
, const void *in
, size_t num
)
402 const SHA_LONG64
*W
=in
;
404 SHA_LONG64 X
[9+80],*F
;
410 A
= ctx
->h
[0]; F
[1] = ctx
->h
[1];
411 F
[2] = ctx
->h
[2]; F
[3] = ctx
->h
[3];
412 E
= ctx
->h
[4]; F
[5] = ctx
->h
[5];
413 F
[6] = ctx
->h
[6]; F
[7] = ctx
->h
[7];
415 for (i
=0;i
<16;i
++,F
--)
425 T
+= F
[7] + Sigma1(E
) + Ch(E
,F
[5],F
[6]) + K512
[i
];
427 A
= T
+ Sigma0(A
) + Maj(A
,F
[1],F
[2]);
432 T
= sigma0(F
[8+16-1]);
433 T
+= sigma1(F
[8+16-14]);
434 T
+= F
[8+16] + F
[8+16-9];
439 T
+= F
[7] + Sigma1(E
) + Ch(E
,F
[5],F
[6]) + K512
[i
];
441 A
= T
+ Sigma0(A
) + Maj(A
,F
[1],F
[2]);
444 ctx
->h
[0] += A
; ctx
->h
[1] += F
[1];
445 ctx
->h
[2] += F
[2]; ctx
->h
[3] += F
[3];
446 ctx
->h
[4] += E
; ctx
->h
[5] += F
[5];
447 ctx
->h
[6] += F
[6]; ctx
->h
[7] += F
[7];
453 #elif defined(OPENSSL_SMALL_FOOTPRINT)
455 static void sha512_block_data_order (SHA512_CTX
*ctx
, const void *in
, size_t num
)
457 const SHA_LONG64
*W
=in
;
458 SHA_LONG64 a
,b
,c
,d
,e
,f
,g
,h
,s0
,s1
,T1
,T2
;
464 a
= ctx
->h
[0]; b
= ctx
->h
[1]; c
= ctx
->h
[2]; d
= ctx
->h
[3];
465 e
= ctx
->h
[4]; f
= ctx
->h
[5]; g
= ctx
->h
[6]; h
= ctx
->h
[7];
472 T1
= X
[i
] = PULL64(W
[i
]);
474 T1
+= h
+ Sigma1(e
) + Ch(e
,f
,g
) + K512
[i
];
475 T2
= Sigma0(a
) + Maj(a
,b
,c
);
476 h
= g
; g
= f
; f
= e
; e
= d
+ T1
;
477 d
= c
; c
= b
; b
= a
; a
= T1
+ T2
;
482 s0
= X
[(i
+1)&0x0f]; s0
= sigma0(s0
);
483 s1
= X
[(i
+14)&0x0f]; s1
= sigma1(s1
);
485 T1
= X
[i
&0xf] += s0
+ s1
+ X
[(i
+9)&0xf];
486 T1
+= h
+ Sigma1(e
) + Ch(e
,f
,g
) + K512
[i
];
487 T2
= Sigma0(a
) + Maj(a
,b
,c
);
488 h
= g
; g
= f
; f
= e
; e
= d
+ T1
;
489 d
= c
; c
= b
; b
= a
; a
= T1
+ T2
;
492 ctx
->h
[0] += a
; ctx
->h
[1] += b
; ctx
->h
[2] += c
; ctx
->h
[3] += d
;
493 ctx
->h
[4] += e
; ctx
->h
[5] += f
; ctx
->h
[6] += g
; ctx
->h
[7] += h
;
501 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
502 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
503 h = Sigma0(a) + Maj(a,b,c); \
504 d += T1; h += T1; } while (0)
506 #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
507 s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
508 s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
509 T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
510 ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)
512 static void sha512_block_data_order (SHA512_CTX
*ctx
, const void *in
, size_t num
)
514 const SHA_LONG64
*W
=in
;
515 SHA_LONG64 a
,b
,c
,d
,e
,f
,g
,h
,s0
,s1
,T1
;
521 a
= ctx
->h
[0]; b
= ctx
->h
[1]; c
= ctx
->h
[2]; d
= ctx
->h
[3];
522 e
= ctx
->h
[4]; f
= ctx
->h
[5]; g
= ctx
->h
[6]; h
= ctx
->h
[7];
525 T1
= X
[0] = W
[0]; ROUND_00_15(0,a
,b
,c
,d
,e
,f
,g
,h
);
526 T1
= X
[1] = W
[1]; ROUND_00_15(1,h
,a
,b
,c
,d
,e
,f
,g
);
527 T1
= X
[2] = W
[2]; ROUND_00_15(2,g
,h
,a
,b
,c
,d
,e
,f
);
528 T1
= X
[3] = W
[3]; ROUND_00_15(3,f
,g
,h
,a
,b
,c
,d
,e
);
529 T1
= X
[4] = W
[4]; ROUND_00_15(4,e
,f
,g
,h
,a
,b
,c
,d
);
530 T1
= X
[5] = W
[5]; ROUND_00_15(5,d
,e
,f
,g
,h
,a
,b
,c
);
531 T1
= X
[6] = W
[6]; ROUND_00_15(6,c
,d
,e
,f
,g
,h
,a
,b
);
532 T1
= X
[7] = W
[7]; ROUND_00_15(7,b
,c
,d
,e
,f
,g
,h
,a
);
533 T1
= X
[8] = W
[8]; ROUND_00_15(8,a
,b
,c
,d
,e
,f
,g
,h
);
534 T1
= X
[9] = W
[9]; ROUND_00_15(9,h
,a
,b
,c
,d
,e
,f
,g
);
535 T1
= X
[10] = W
[10]; ROUND_00_15(10,g
,h
,a
,b
,c
,d
,e
,f
);
536 T1
= X
[11] = W
[11]; ROUND_00_15(11,f
,g
,h
,a
,b
,c
,d
,e
);
537 T1
= X
[12] = W
[12]; ROUND_00_15(12,e
,f
,g
,h
,a
,b
,c
,d
);
538 T1
= X
[13] = W
[13]; ROUND_00_15(13,d
,e
,f
,g
,h
,a
,b
,c
);
539 T1
= X
[14] = W
[14]; ROUND_00_15(14,c
,d
,e
,f
,g
,h
,a
,b
);
540 T1
= X
[15] = W
[15]; ROUND_00_15(15,b
,c
,d
,e
,f
,g
,h
,a
);
542 T1
= X
[0] = PULL64(W
[0]); ROUND_00_15(0,a
,b
,c
,d
,e
,f
,g
,h
);
543 T1
= X
[1] = PULL64(W
[1]); ROUND_00_15(1,h
,a
,b
,c
,d
,e
,f
,g
);
544 T1
= X
[2] = PULL64(W
[2]); ROUND_00_15(2,g
,h
,a
,b
,c
,d
,e
,f
);
545 T1
= X
[3] = PULL64(W
[3]); ROUND_00_15(3,f
,g
,h
,a
,b
,c
,d
,e
);
546 T1
= X
[4] = PULL64(W
[4]); ROUND_00_15(4,e
,f
,g
,h
,a
,b
,c
,d
);
547 T1
= X
[5] = PULL64(W
[5]); ROUND_00_15(5,d
,e
,f
,g
,h
,a
,b
,c
);
548 T1
= X
[6] = PULL64(W
[6]); ROUND_00_15(6,c
,d
,e
,f
,g
,h
,a
,b
);
549 T1
= X
[7] = PULL64(W
[7]); ROUND_00_15(7,b
,c
,d
,e
,f
,g
,h
,a
);
550 T1
= X
[8] = PULL64(W
[8]); ROUND_00_15(8,a
,b
,c
,d
,e
,f
,g
,h
);
551 T1
= X
[9] = PULL64(W
[9]); ROUND_00_15(9,h
,a
,b
,c
,d
,e
,f
,g
);
552 T1
= X
[10] = PULL64(W
[10]); ROUND_00_15(10,g
,h
,a
,b
,c
,d
,e
,f
);
553 T1
= X
[11] = PULL64(W
[11]); ROUND_00_15(11,f
,g
,h
,a
,b
,c
,d
,e
);
554 T1
= X
[12] = PULL64(W
[12]); ROUND_00_15(12,e
,f
,g
,h
,a
,b
,c
,d
);
555 T1
= X
[13] = PULL64(W
[13]); ROUND_00_15(13,d
,e
,f
,g
,h
,a
,b
,c
);
556 T1
= X
[14] = PULL64(W
[14]); ROUND_00_15(14,c
,d
,e
,f
,g
,h
,a
,b
);
557 T1
= X
[15] = PULL64(W
[15]); ROUND_00_15(15,b
,c
,d
,e
,f
,g
,h
,a
);
560 for (i
=16;i
<80;i
+=16)
562 ROUND_16_80(i
, 0,a
,b
,c
,d
,e
,f
,g
,h
,X
);
563 ROUND_16_80(i
, 1,h
,a
,b
,c
,d
,e
,f
,g
,X
);
564 ROUND_16_80(i
, 2,g
,h
,a
,b
,c
,d
,e
,f
,X
);
565 ROUND_16_80(i
, 3,f
,g
,h
,a
,b
,c
,d
,e
,X
);
566 ROUND_16_80(i
, 4,e
,f
,g
,h
,a
,b
,c
,d
,X
);
567 ROUND_16_80(i
, 5,d
,e
,f
,g
,h
,a
,b
,c
,X
);
568 ROUND_16_80(i
, 6,c
,d
,e
,f
,g
,h
,a
,b
,X
);
569 ROUND_16_80(i
, 7,b
,c
,d
,e
,f
,g
,h
,a
,X
);
570 ROUND_16_80(i
, 8,a
,b
,c
,d
,e
,f
,g
,h
,X
);
571 ROUND_16_80(i
, 9,h
,a
,b
,c
,d
,e
,f
,g
,X
);
572 ROUND_16_80(i
,10,g
,h
,a
,b
,c
,d
,e
,f
,X
);
573 ROUND_16_80(i
,11,f
,g
,h
,a
,b
,c
,d
,e
,X
);
574 ROUND_16_80(i
,12,e
,f
,g
,h
,a
,b
,c
,d
,X
);
575 ROUND_16_80(i
,13,d
,e
,f
,g
,h
,a
,b
,c
,X
);
576 ROUND_16_80(i
,14,c
,d
,e
,f
,g
,h
,a
,b
,X
);
577 ROUND_16_80(i
,15,b
,c
,d
,e
,f
,g
,h
,a
,X
);
580 ctx
->h
[0] += a
; ctx
->h
[1] += b
; ctx
->h
[2] += c
; ctx
->h
[3] += d
;
581 ctx
->h
[4] += e
; ctx
->h
[5] += f
; ctx
->h
[6] += g
; ctx
->h
[7] += h
;
589 #endif /* SHA512_ASM */
591 #else /* !OPENSSL_NO_SHA512 */
593 #if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
594 static void *dummy
=&dummy
;
597 #endif /* !OPENSSL_NO_SHA512 */