3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
5 * LibTomMath is a library that provides multiple-precision
6 * integer arithmetic as well as number theoretic functionality.
8 * The library was designed directly after the MPI library by
9 * Michael Fromberger but has been written from scratch with
10 * additional optimizations in place.
12 * The library is free for all purposes without any express
15 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
18 #ifdef BN_MP_DIV_SMALL
20 /* slower bit-bang division... also smaller */
21 int mp_div(mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
)
26 /* is divisor zero ? */
27 if (mp_iszero (b
) == 1) {
31 /* if a < b then q=0, r = a */
32 if (mp_cmp_mag (a
, b
) == MP_LT
) {
45 if ((res
= mp_init_multi(&ta
, &tb
, &tq
, &q
, NULL
) != MP_OKAY
)) {
51 n
= mp_count_bits(a
) - mp_count_bits(b
);
52 if (((res
= mp_abs(a
, &ta
)) != MP_OKAY
) ||
53 ((res
= mp_abs(b
, &tb
)) != MP_OKAY
) ||
54 ((res
= mp_mul_2d(&tb
, n
, &tb
)) != MP_OKAY
) ||
55 ((res
= mp_mul_2d(&tq
, n
, &tq
)) != MP_OKAY
)) {
60 if (mp_cmp(&tb
, &ta
) != MP_GT
) {
61 if (((res
= mp_sub(&ta
, &tb
, &ta
)) != MP_OKAY
) ||
62 ((res
= mp_add(&q
, &tq
, &q
)) != MP_OKAY
)) {
66 if (((res
= mp_div_2d(&tb
, 1, &tb
, NULL
)) != MP_OKAY
) ||
67 ((res
= mp_div_2d(&tq
, 1, &tq
, NULL
)) != MP_OKAY
)) {
72 /* now q == quotient and ta == remainder */
74 n2
= (a
->sign
== b
->sign
? MP_ZPOS
: MP_NEG
);
77 c
->sign
= (mp_iszero(c
) == MP_YES
) ? MP_ZPOS
: n2
;
81 d
->sign
= (mp_iszero(d
) == MP_YES
) ? MP_ZPOS
: n
;
84 mp_clear_multi(&ta
, &tb
, &tq
, &q
, NULL
);
90 /* integer signed division.
91 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
92 * HAC pp.598 Algorithm 14.20
94 * Note that the description in HAC is horribly
95 * incomplete. For example, it doesn't consider
96 * the case where digits are removed from 'x' in
97 * the inner loop. It also doesn't consider the
98 * case that y has fewer than three digits, etc..
100 * The overall algorithm is as described as
101 * 14.20 from HAC but fixed to treat these cases.
103 int mp_div (mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
)
105 mp_int q
, x
, y
, t1
, t2
;
106 int res
, n
, t
, i
, norm
, neg
;
108 /* is divisor zero ? */
109 if (mp_iszero (b
) == 1) {
113 /* if a < b then q=0, r = a */
114 if (mp_cmp_mag (a
, b
) == MP_LT
) {
116 res
= mp_copy (a
, d
);
126 if ((res
= mp_init_size (&q
, a
->used
+ 2)) != MP_OKAY
) {
129 q
.used
= a
->used
+ 2;
131 if ((res
= mp_init (&t1
)) != MP_OKAY
) {
135 if ((res
= mp_init (&t2
)) != MP_OKAY
) {
139 if ((res
= mp_init_copy (&x
, a
)) != MP_OKAY
) {
143 if ((res
= mp_init_copy (&y
, b
)) != MP_OKAY
) {
148 neg
= (a
->sign
== b
->sign
) ? MP_ZPOS
: MP_NEG
;
149 x
.sign
= y
.sign
= MP_ZPOS
;
151 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
152 norm
= mp_count_bits(&y
) % DIGIT_BIT
;
153 if (norm
< (int)(DIGIT_BIT
-1)) {
154 norm
= (DIGIT_BIT
-1) - norm
;
155 if ((res
= mp_mul_2d (&x
, norm
, &x
)) != MP_OKAY
) {
158 if ((res
= mp_mul_2d (&y
, norm
, &y
)) != MP_OKAY
) {
165 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
169 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
170 if ((res
= mp_lshd (&y
, n
- t
)) != MP_OKAY
) { /* y = y*b**{n-t} */
174 while (mp_cmp (&x
, &y
) != MP_LT
) {
176 if ((res
= mp_sub (&x
, &y
, &x
)) != MP_OKAY
) {
181 /* reset y by shifting it back down */
184 /* step 3. for i from n down to (t + 1) */
185 for (i
= n
; i
>= (t
+ 1); i
--) {
190 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
191 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
192 if (x
.dp
[i
] == y
.dp
[t
]) {
193 q
.dp
[i
- t
- 1] = ((((mp_digit
)1) << DIGIT_BIT
) - 1);
196 tmp
= ((mp_word
) x
.dp
[i
]) << ((mp_word
) DIGIT_BIT
);
197 tmp
|= ((mp_word
) x
.dp
[i
- 1]);
198 tmp
/= ((mp_word
) y
.dp
[t
]);
199 if (tmp
> (mp_word
) MP_MASK
)
201 q
.dp
[i
- t
- 1] = (mp_digit
) (tmp
& (mp_word
) (MP_MASK
));
204 /* while (q{i-t-1} * (yt * b + y{t-1})) >
205 xi * b**2 + xi-1 * b + xi-2
209 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] + 1) & MP_MASK
;
211 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1) & MP_MASK
;
215 t1
.dp
[0] = (t
- 1 < 0) ? 0 : y
.dp
[t
- 1];
218 if ((res
= mp_mul_d (&t1
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
222 /* find right hand */
223 t2
.dp
[0] = (i
- 2 < 0) ? 0 : x
.dp
[i
- 2];
224 t2
.dp
[1] = (i
- 1 < 0) ? 0 : x
.dp
[i
- 1];
227 } while (mp_cmp_mag(&t1
, &t2
) == MP_GT
);
229 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
230 if ((res
= mp_mul_d (&y
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
234 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
238 if ((res
= mp_sub (&x
, &t1
, &x
)) != MP_OKAY
) {
242 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
243 if (x
.sign
== MP_NEG
) {
244 if ((res
= mp_copy (&y
, &t1
)) != MP_OKAY
) {
247 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
250 if ((res
= mp_add (&x
, &t1
, &x
)) != MP_OKAY
) {
254 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1UL) & MP_MASK
;
258 /* now q is the quotient and x is the remainder
259 * [which we have to normalize]
262 /* get sign before writing to c */
263 x
.sign
= x
.used
== 0 ? MP_ZPOS
: a
->sign
;
272 if ((res
= mp_div_2d (&x
, norm
, &x
, NULL
)) != MP_OKAY
) {
282 LBL_T2
:mp_clear (&t2
);
283 LBL_T1
:mp_clear (&t1
);
292 /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
293 /* $Revision: 1.3 $ */
294 /* $Date: 2006/03/31 14:18:44 $ */