1 \documentclass[landscape,
11pt
]{article
}
2 \usepackage{amsmath, amssymb
}
6 \begin{tabular
}{llllll
}
7 $c = a + b$ &
{\tt mp
\_add(\&a, \&b, \&c)
} & $b =
2a$ &
{\tt mp
\_mul\_2(\&a, \&b)
} & \\
8 $c = a - b$ &
{\tt mp
\_sub(\&a, \&b, \&c)
} & $b = a/
2$ &
{\tt mp
\_div\_2(\&a, \&b)
} & \\
9 $c = ab $ &
{\tt mp
\_mul(\&a, \&b, \&c)
} & $c =
2^ba$ &
{\tt mp
\_mul\_2d(\&a, b, \&c)
} \\
10 $b = a^
2 $ &
{\tt mp
\_sqr(\&a, \&b)
} & $c = a/
2^b, d = a
\mod 2^b$ &
{\tt mp
\_div\_2d(\&a, b, \&c, \&d)
} \\
11 $c =
\lfloor a/b
\rfloor, d = a
\mod b$ &
{\tt mp
\_div(\&a, \&b, \&c, \&d)
} & $c = a
\mod 2^b $ &
{\tt mp
\_mod\_2d(\&a, b, \&c)
} \\
13 $a = b $ &
{\tt mp
\_set\_int(\&a, b)
} & $c = a
\vee b$ &
{\tt mp
\_or(\&a, \&b, \&c)
} \\
14 $b = a $ &
{\tt mp
\_copy(\&a, \&b)
} & $c = a
\wedge b$ &
{\tt mp
\_and(\&a, \&b, \&c)
} \\
15 && $c = a
\oplus b$ &
{\tt mp
\_xor(\&a, \&b, \&c)
} \\
17 $b = -a $ &
{\tt mp
\_neg(\&a, \&b)
} & $d = a + b
\mod c$ &
{\tt mp
\_addmod(\&a, \&b, \&c, \&d)
} \\
18 $b = |a| $ &
{\tt mp
\_abs(\&a, \&b)
} & $d = a - b
\mod c$ &
{\tt mp
\_submod(\&a, \&b, \&c, \&d)
} \\
19 && $d = ab
\mod c$ &
{\tt mp
\_mulmod(\&a, \&b, \&c, \&d)
} \\
20 Compare $a$ and $b$ &
{\tt mp
\_cmp(\&a, \&b)
} & $c = a^
2 \mod b$ &
{\tt mp
\_sqrmod(\&a, \&b, \&c)
} \\
21 Is Zero? &
{\tt mp
\_iszero(\&a)
} & $c = a^
{-
1} \mod b$ &
{\tt mp
\_invmod(\&a, \&b, \&c)
} \\
22 Is Even? &
{\tt mp
\_iseven(\&a)
} & $d = a^b
\mod c$ &
{\tt mp
\_exptmod(\&a, \&b, \&c, \&d)
} \\
23 Is Odd ? &
{\tt mp
\_isodd(\&a)
} \\
25 $
\vert \vert a
\vert \vert$ &
{\tt mp
\_unsigned\_bin\_size(\&a)
} & $res$ =
1 if $a$ prime to $t$ rounds? &
{\tt mp
\_prime\_is\_prime(\&a, t, \&res)
} \\
26 $buf
\leftarrow a$ &
{\tt mp
\_to\_unsigned\_bin(\&a, buf)
} & Next prime after $a$ to $t$ rounds. &
{\tt mp
\_prime\_next\_prime(\&a, t, bbs
\_style)
} \\
27 $a
\leftarrow buf
[0..len-
1]$ &
{\tt mp
\_read\_unsigned\_bin(\&a, buf, len)
} \\
29 $b =
\sqrt{a
}$ &
{\tt mp
\_sqrt(\&a, \&b)
} & $c =
\mbox{gcd
}(a, b)$ &
{\tt mp
\_gcd(\&a, \&b, \&c)
} \\
30 $c = a^
{1/b
}$ &
{\tt mp
\_n\_root(\&a, b, \&c)
} & $c =
\mbox{lcm
}(a, b)$ &
{\tt mp
\_lcm(\&a, \&b, \&c)
} \\
32 Greater Than & MP
\_GT & Equal To & MP
\_EQ \\
33 Less Than & MP
\_LT & Bits per digit & DIGIT
\_BIT \\