Correct PPTP server firewall rules chain.
[tomato/davidwu.git] / release / src / router / nettle / bignum-random-prime.c
blob0d906d9623d2354bfa9f13b16b41ac16df6b5f44
1 /* bignum-random-prime.c
3 * Generation of random provable primes.
4 */
6 /* nettle, low-level cryptographics library
8 * Copyright (C) 2010 Niels Möller
9 *
10 * The nettle library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published by
12 * the Free Software Foundation; either version 2.1 of the License, or (at your
13 * option) any later version.
15 * The nettle library is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
18 * License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with the nettle library; see the file COPYING.LIB. If not, write to
22 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
23 * MA 02111-1301, USA.
26 #if HAVE_CONFIG_H
27 # include "config.h"
28 #endif
30 #ifndef RANDOM_PRIME_VERBOSE
31 #define RANDOM_PRIME_VERBOSE 0
32 #endif
34 #include <assert.h>
35 #include <stdlib.h>
37 #if RANDOM_PRIME_VERBOSE
38 #include <stdio.h>
39 #define VERBOSE(x) (fputs((x), stderr))
40 #else
41 #define VERBOSE(x)
42 #endif
44 #include "bignum.h"
46 #include "macros.h"
48 /* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
49 of up to 20 bits. */
51 #define NPRIMES 171
52 #define TRIAL_DIV_BITS 20
53 #define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)
55 /* A 20-bit number x is divisible by p iff
57 ((x * inverse) & TRIAL_DIV_MASK) <= limit
59 struct trial_div_info {
60 uint32_t inverse; /* p^{-1} (mod 2^20) */
61 uint32_t limit; /* floor( (2^20 - 1) / p) */
64 static const uint16_t
65 primes[NPRIMES] = {
66 3,5,7,11,13,17,19,23,
67 29,31,37,41,43,47,53,59,
68 61,67,71,73,79,83,89,97,
69 101,103,107,109,113,127,131,137,
70 139,149,151,157,163,167,173,179,
71 181,191,193,197,199,211,223,227,
72 229,233,239,241,251,257,263,269,
73 271,277,281,283,293,307,311,313,
74 317,331,337,347,349,353,359,367,
75 373,379,383,389,397,401,409,419,
76 421,431,433,439,443,449,457,461,
77 463,467,479,487,491,499,503,509,
78 521,523,541,547,557,563,569,571,
79 577,587,593,599,601,607,613,617,
80 619,631,641,643,647,653,659,661,
81 673,677,683,691,701,709,719,727,
82 733,739,743,751,757,761,769,773,
83 787,797,809,811,821,823,827,829,
84 839,853,857,859,863,877,881,883,
85 887,907,911,919,929,937,941,947,
86 953,967,971,977,983,991,997,1009,
87 1013,1019,1021,
90 static const uint32_t
91 prime_square[NPRIMES+1] = {
92 9,25,49,121,169,289,361,529,
93 841,961,1369,1681,1849,2209,2809,3481,
94 3721,4489,5041,5329,6241,6889,7921,9409,
95 10201,10609,11449,11881,12769,16129,17161,18769,
96 19321,22201,22801,24649,26569,27889,29929,32041,
97 32761,36481,37249,38809,39601,44521,49729,51529,
98 52441,54289,57121,58081,63001,66049,69169,72361,
99 73441,76729,78961,80089,85849,94249,96721,97969,
100 100489,109561,113569,120409,121801,124609,128881,134689,
101 139129,143641,146689,151321,157609,160801,167281,175561,
102 177241,185761,187489,192721,196249,201601,208849,212521,
103 214369,218089,229441,237169,241081,249001,253009,259081,
104 271441,273529,292681,299209,310249,316969,323761,326041,
105 332929,344569,351649,358801,361201,368449,375769,380689,
106 383161,398161,410881,413449,418609,426409,434281,436921,
107 452929,458329,466489,477481,491401,502681,516961,528529,
108 537289,546121,552049,564001,573049,579121,591361,597529,
109 619369,635209,654481,657721,674041,677329,683929,687241,
110 703921,727609,734449,737881,744769,769129,776161,779689,
111 786769,822649,829921,844561,863041,877969,885481,896809,
112 908209,935089,942841,954529,966289,982081,994009,1018081,
113 1026169,1038361,1042441,1L<<20
116 static const struct trial_div_info
117 trial_div_table[NPRIMES] = {
118 {699051,349525},{838861,209715},{748983,149796},{953251,95325},
119 {806597,80659},{61681,61680},{772635,55188},{866215,45590},
120 {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
121 {48771,24385},{870095,22310},{217629,19784},{710899,17772},
122 {825109,17189},{281707,15650},{502135,14768},{258553,14364},
123 {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
124 {176493,10381},{203607,10180},{568387,9799},{788837,9619},
125 {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
126 {550691,7543},{182973,7037},{229159,6944},{427445,6678},
127 {701195,6432},{370455,6278},{90917,6061},{175739,5857},
128 {585117,5793},{225087,5489},{298817,5433},{228877,5322},
129 {442615,5269},{546651,4969},{244511,4702},{83147,4619},
130 {769261,4578},{841561,4500},{732687,4387},{978961,4350},
131 {133683,4177},{65281,4080},{629943,3986},{374213,3898},
132 {708079,3869},{280125,3785},{641833,3731},{618771,3705},
133 {930477,3578},{778747,3415},{623751,3371},{40201,3350},
134 {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
135 {285429,3004},{549537,2970},{166487,2920},{294287,2857},
136 {919261,2811},{636339,2766},{900735,2737},{118605,2695},
137 {10565,2641},{188273,2614},{115369,2563},{735755,2502},
138 {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
139 {629619,2366},{462401,2335},{649337,2294},{316165,2274},
140 {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
141 {990915,2135},{556859,2101},{462791,2084},{844629,2060},
142 {404537,2012},{457123,2004},{577589,1938},{638347,1916},
143 {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
144 {69057,1817},{210787,1786},{558769,1768},{395623,1750},
145 {992745,1744},{317855,1727},{384877,1710},{372185,1699},
146 {105027,1693},{423751,1661},{408961,1635},{908331,1630},
147 {74551,1620},{36933,1605},{617371,1591},{506045,1586},
148 {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
149 {166037,1495},{928781,1478},{508975,1458},{4327,1442},
150 {779637,1430},{742091,1418},{258263,1411},{879631,1396},
151 {72029,1385},{728905,1377},{589057,1363},{348621,1356},
152 {671515,1332},{710453,1315},{84249,1296},{959363,1292},
153 {685853,1277},{467591,1274},{646643,1267},{683029,1264},
154 {439927,1249},{254461,1229},{660713,1223},{554195,1220},
155 {202911,1215},{753253,1195},{941457,1190},{776635,1187},
156 {509511,1182},{986147,1156},{768879,1151},{699431,1140},
157 {696417,1128},{86169,1119},{808997,1114},{25467,1107},
158 {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
159 {434151,1066},{96287,1058},{950765,1051},{298257,1039},
160 {675933,1035},{167731,1029},{815445,1027},
163 /* Element j gives the index of the first prime of size 3+j bits */
164 static uint8_t
165 prime_by_size[9] = {
166 1,3,5,10,17,30,53,96,171
169 /* Combined Miller-Rabin test to the base a, and checking the
170 conditions from Pocklington's theorem. */
171 static int
172 miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
174 mpz_t r;
175 mpz_t y;
176 int is_prime = 0;
178 /* Avoid the mp_bitcnt_t type for compatibility with older GMP
179 versions. */
180 unsigned k;
181 unsigned j;
183 VERBOSE(".");
185 if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
186 return 0;
188 mpz_init(r);
189 mpz_init(y);
191 k = mpz_scan1(nm1, 0);
192 assert(k > 0);
194 mpz_fdiv_q_2exp (r, nm1, k);
196 mpz_powm(y, a, r, n);
198 if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
199 goto passed_miller_rabin;
201 for (j = 1; j < k; j++)
203 mpz_powm_ui (y, y, 2, n);
205 if (mpz_cmp_ui (y, 1) == 0)
206 break;
208 if (mpz_cmp (y, nm1) == 0)
210 passed_miller_rabin:
211 /* We know that a^{n-1} = 1 (mod n)
213 Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */
214 VERBOSE("x");
216 mpz_powm(y, a, nm1dq, n);
217 mpz_sub_ui(y, y, 1);
218 mpz_gcd(y, y, n);
219 is_prime = mpz_cmp_ui (y, 1) == 0;
220 VERBOSE(is_prime ? "\n" : "");
221 break;
226 mpz_clear(r);
227 mpz_clear(y);
229 return is_prime;
232 /* The algorithm is based on the following special case of
233 Pocklington's theorem:
235 Assume that n = 1 + f q, where q is a prime, q > sqrt(n) - 1. If we
236 can find an a such that
238 a^{n-1} = 1 (mod n)
239 gcd(a^f - 1, n) = 1
241 then n is prime.
243 Proof: Assume that n is composite, with smallest prime factor p <=
244 sqrt(n). Since q is prime, and q > sqrt(n) - 1 >= p - 1, q and p-1
245 are coprime, so that we can define u = q^{-1} (mod (p-1)). The
246 assumption a^{n-1} = 1 (mod n) implies that also a^{n-1} = 1 (mod
247 p). Since p is prime, we have a^{(p-1)} = 1 (mod p). Now, r =
248 (n-1)/q = (n-1) u (mod (p-1)), and it follows that a^r = a^{(n-1)
249 u} = 1 (mod p). Then p is a common factor of a^r - 1 and n. This
250 contradicts gcd(a^r - 1, n) = 1, and concludes the proof.
252 If n is specified as k bits, we need q of size ceil(k/2) + 1 bits
253 (or more) to make the theorem apply.
256 /* Generate a prime number p of size bits with 2 p0q dividing (p-1).
257 p0 must be of size >= ceil(bits/2) + 1. The extra factor q can be
258 omitted. If top_bits_set is one, the top most two bits are one,
259 suitable for RSA primes. */
260 void
261 _nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
262 unsigned bits, int top_bits_set,
263 void *ctx, nettle_random_func *random,
264 const mpz_t p0,
265 const mpz_t q,
266 const mpz_t p0q)
268 mpz_t r_min, r_range, pm1,a;
270 assert (2*mpz_sizeinbase (p0, 2) > bits + 1);
272 mpz_init (r_min);
273 mpz_init (r_range);
274 mpz_init (pm1);
275 mpz_init (a);
277 if (top_bits_set)
279 /* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
280 - 2 possible values. */
281 mpz_set_ui (r_min, 1);
282 mpz_mul_2exp (r_min, r_min, bits-3);
283 mpz_fdiv_q (r_min, r_min, p0q);
284 mpz_sub_ui (r_range, r_min, 2);
285 mpz_mul_ui (r_min, r_min, 3);
286 mpz_add_ui (r_min, r_min, 3);
288 else
290 /* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
291 mpz_set_ui (r_range, 1);
292 mpz_mul_2exp (r_range, r_range, bits-2);
293 mpz_fdiv_q (r_range, r_range, p0q);
294 mpz_add_ui (r_min, r_range, 1);
296 for (;;)
298 uint8_t buf[1];
300 nettle_mpz_random (r, ctx, random, r_range);
301 mpz_add (r, r, r_min);
303 /* Set p = 2*r*p0q + 1 */
304 mpz_mul_2exp(r, r, 1);
305 mpz_mul (pm1, r, p0q);
306 mpz_add_ui (p, pm1, 1);
308 assert(mpz_sizeinbase(p, 2) == bits);
310 /* Should use GMP trial division interface when that
311 materializes, we don't need any testing beyond trial
312 division. */
313 if (!mpz_probab_prime_p (p, 1))
314 continue;
316 random(ctx, sizeof(buf), buf);
318 mpz_set_ui (a, buf[0] + 2);
320 if (q)
322 mpz_t e;
323 int is_prime;
325 mpz_init (e);
327 mpz_mul (e, r, q);
328 is_prime = miller_rabin_pocklington(p, pm1, e, a);
329 mpz_clear (e);
331 if (is_prime)
332 break;
334 else if (miller_rabin_pocklington(p, pm1, r, a))
335 break;
337 mpz_clear (r_min);
338 mpz_clear (r_range);
339 mpz_clear (pm1);
340 mpz_clear (a);
343 /* Generate random prime of a given size. Maurer's algorithm (Alg.
344 6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
345 the variant in fips186-3). */
346 void
347 nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
348 void *random_ctx, nettle_random_func *random,
349 void *progress_ctx, nettle_progress_func *progress)
351 assert (bits >= 3);
352 if (bits <= 10)
354 unsigned first;
355 unsigned choices;
356 uint8_t buf;
358 assert (!top_bits_set);
360 random (random_ctx, sizeof(buf), &buf);
362 first = prime_by_size[bits-3];
363 choices = prime_by_size[bits-2] - first;
365 mpz_set_ui (p, primes[first + buf % choices]);
367 else if (bits <= 20)
369 unsigned long highbit;
370 uint8_t buf[3];
371 unsigned long x;
372 unsigned j;
374 assert (!top_bits_set);
376 highbit = 1L << (bits - 1);
378 again:
379 random (random_ctx, sizeof(buf), buf);
380 x = READ_UINT24(buf);
381 x &= (highbit - 1);
382 x |= highbit | 1;
384 for (j = 0; prime_square[j] <= x; j++)
386 unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
387 if (q <= trial_div_table[j].limit)
388 goto again;
390 mpz_set_ui (p, x);
392 else
394 mpz_t q, r;
396 mpz_init (q);
397 mpz_init (r);
399 /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
400 in Handbook of Applied Cryptography (which seems to be
401 incorrect for odd k). */
402 nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
403 progress_ctx, progress);
405 _nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
406 random_ctx, random,
407 q, NULL, q);
409 if (progress)
410 progress (progress_ctx, 'x');
412 mpz_clear (q);
413 mpz_clear (r);