Correct PPTP server firewall rules chain.
[tomato/davidwu.git] / release / src / router / nettle / ripemd160.c
blob9011b9eeb68f14e70c402b46ce21ed08555bb7dc
1 /* ripemd160.c - RIPE-MD160 */
3 /* nettle, low-level cryptographics library
5 * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
6 * Copyright (C) 2011 Niels Möller
8 * The nettle library is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU Lesser General Public License as published by
10 * the Free Software Foundation; either version 2.1 of the License, or (at your
11 * option) any later version.
13 * The nettle library is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 * License for more details.
18 * You should have received a copy of the GNU Lesser General Public License
19 * along with the nettle library; see the file COPYING.LIB. If not, write to
20 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
21 * MA 02111-1301, USA.
24 #if HAVE_CONFIG_H
25 # include "config.h"
26 #endif
28 #include <string.h>
29 #include <assert.h>
31 #include "ripemd160.h"
33 #include "macros.h"
34 #include "nettle-write.h"
36 /*********************************
37 * RIPEMD-160 is not patented, see (as of 2011-08-28)
38 * http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html
39 * Note that the code uses Little Endian byteorder, which is good for
40 * 386 etc, but we must add some conversion when used on a big endian box.
43 * Pseudo-code for RIPEMD-160
45 * RIPEMD-160 is an iterative hash function that operates on 32-bit words.
46 * The round function takes as input a 5-word chaining variable and a 16-word
47 * message block and maps this to a new chaining variable. All operations are
48 * defined on 32-bit words. Padding is identical to that of MD4.
51 * RIPEMD-160: definitions
54 * nonlinear functions at bit level: exor, mux, -, mux, -
56 * f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15)
57 * f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31)
58 * f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47)
59 * f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63)
60 * f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79)
63 * added constants (hexadecimal)
65 * K(j) = 0x00000000 (0 <= j <= 15)
66 * K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2))
67 * K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3))
68 * K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5))
69 * K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7))
70 * K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2))
71 * K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3))
72 * K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5))
73 * K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7))
74 * K'(j) = 0x00000000 (64 <= j <= 79)
77 * selection of message word
79 * r(j) = j (0 <= j <= 15)
80 * r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
81 * r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
82 * r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
83 * r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
84 * r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
85 * r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
86 * r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
87 * r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
88 * r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
91 * amount for rotate left (rol)
93 * s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8
94 * s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12
95 * s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
96 * s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
97 * s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
98 * s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
99 * s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11
100 * s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
101 * s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
102 * s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
105 * initial value (hexadecimal)
107 * h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476;
108 * h4 = 0xC3D2E1F0;
111 * RIPEMD-160: pseudo-code
113 * It is assumed that the message after padding consists of t 16-word blocks
114 * that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15.
115 * The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left
116 * shift (rotate) over s positions.
119 * for i := 0 to t-1 {
120 * A := h0; B := h1; C := h2; D = h3; E = h4;
121 * A' := h0; B' := h1; C' := h2; D' = h3; E' = h4;
122 * for j := 0 to 79 {
123 * T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E;
124 * A := E; E := D; D := rol_10(C); C := B; B := T;
125 * T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)]
126 [+] K'(j)) [+] E';
127 * A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T;
129 * T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A';
130 * h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T;
134 /* Some examples:
135 * "" 9c1185a5c5e9fc54612808977ee8f548b2258d31
136 * "a" 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
137 * "abc" 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
138 * "message digest" 5d0689ef49d2fae572b881b123a85ffa21595f36
139 * "a...z" f71c27109c692c1b56bbdceb5b9d2865b3708dbc
140 * "abcdbcde...nopq" 12a053384a9c0c88e405a06c27dcf49ada62eb2b
141 * "A...Za...z0...9" b0e20b6e3116640286ed3a87a5713079b21f5189
142 * 8 times "1234567890" 9b752e45573d4b39f4dbd3323cab82bf63326bfb
143 * 1 million times "a" 52783243c1697bdbe16d37f97f68f08325dc1528
146 void
147 ripemd160_init(struct ripemd160_ctx *ctx)
149 static const uint32_t iv[_RIPEMD160_DIGEST_LENGTH] =
151 0x67452301,
152 0xEFCDAB89,
153 0x98BADCFE,
154 0x10325476,
155 0xC3D2E1F0,
157 memcpy(ctx->state, iv, sizeof(ctx->state));
158 ctx->count_low = ctx->count_high = 0;
159 ctx->index = 0;
162 #define COMPRESS(ctx, data) (_nettle_ripemd160_compress((ctx)->state, (data)))
164 /* Update the message digest with the contents
165 * of DATA with length LENGTH.
167 void
168 ripemd160_update(struct ripemd160_ctx *ctx, unsigned length, const uint8_t *data)
170 MD_UPDATE(ctx, length, data, COMPRESS, MD_INCR(ctx));
173 void
174 ripemd160_digest(struct ripemd160_ctx *ctx, unsigned length, uint8_t *digest)
176 uint32_t high, low;
178 assert(length <= RIPEMD160_DIGEST_SIZE);
180 MD_PAD(ctx, 8, COMPRESS);
182 /* There are 2^9 bits in one block */
183 high = (ctx->count_high << 9) | (ctx->count_low >> 23);
184 low = (ctx->count_low << 9) | (ctx->index << 3);
186 /* append the 64 bit count */
187 LE_WRITE_UINT32(ctx->block + 56, low);
188 LE_WRITE_UINT32(ctx->block + 60, high);
189 _nettle_ripemd160_compress(ctx->state, ctx->block);
191 _nettle_write_le32(length, digest, ctx->state);
192 ripemd160_init(ctx);