Correct PPTP server firewall rules chain.
[tomato/davidwu.git] / release / src / router / nettle / rsa-sign.c
blob56adda370f275d82d3e58cf4679c1552fc09df61
1 /* rsa-sign.c
3 * Creating RSA signatures.
4 */
6 /* nettle, low-level cryptographics library
8 * Copyright (C) 2001, 2003 Niels Möller
9 *
10 * The nettle library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published by
12 * the Free Software Foundation; either version 2.1 of the License, or (at your
13 * option) any later version.
15 * The nettle library is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
18 * License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with the nettle library; see the file COPYING.LIB. If not, write to
22 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
23 * MA 02111-1301, USA.
26 #if HAVE_CONFIG_H
27 # include "config.h"
28 #endif
30 #include "rsa.h"
32 #include "bignum.h"
34 void
35 rsa_private_key_init(struct rsa_private_key *key)
37 mpz_init(key->d);
38 mpz_init(key->p);
39 mpz_init(key->q);
40 mpz_init(key->a);
41 mpz_init(key->b);
42 mpz_init(key->c);
44 /* Not really necessary, but it seems cleaner to initialize all the
45 * storage. */
46 key->size = 0;
49 void
50 rsa_private_key_clear(struct rsa_private_key *key)
52 mpz_clear(key->d);
53 mpz_clear(key->p);
54 mpz_clear(key->q);
55 mpz_clear(key->a);
56 mpz_clear(key->b);
57 mpz_clear(key->c);
60 int
61 rsa_private_key_prepare(struct rsa_private_key *key)
63 mpz_t n;
65 /* The size of the product is the sum of the sizes of the factors,
66 * or sometimes one less. It's possible but tricky to compute the
67 * size without computing the full product. */
69 mpz_init(n);
70 mpz_mul(n, key->p, key->q);
72 key->size = _rsa_check_size(n);
74 mpz_clear(n);
76 return (key->size > 0);
79 /* Computing an rsa root. */
80 void
81 rsa_compute_root(const struct rsa_private_key *key,
82 mpz_t x, const mpz_t m)
84 mpz_t xp; /* modulo p */
85 mpz_t xq; /* modulo q */
87 mpz_init(xp); mpz_init(xq);
89 /* Compute xq = m^d % q = (m%q)^b % q */
90 mpz_fdiv_r(xq, m, key->q);
91 mpz_powm(xq, xq, key->b, key->q);
93 /* Compute xp = m^d % p = (m%p)^a % p */
94 mpz_fdiv_r(xp, m, key->p);
95 mpz_powm(xp, xp, key->a, key->p);
97 /* Set xp' = (xp - xq) c % p. */
98 mpz_sub(xp, xp, xq);
99 mpz_mul(xp, xp, key->c);
100 mpz_fdiv_r(xp, xp, key->p);
102 /* Finally, compute x = xq + q xp'
104 * To prove that this works, note that
106 * xp = x + i p,
107 * xq = x + j q,
108 * c q = 1 + k p
110 * for some integers i, j and k. Now, for some integer l,
112 * xp' = (xp - xq) c + l p
113 * = (x + i p - (x + j q)) c + l p
114 * = (i p - j q) c + l p
115 * = (i c + l) p - j (c q)
116 * = (i c + l) p - j (1 + kp)
117 * = (i c + l - j k) p - j
119 * which shows that xp' = -j (mod p). We get
121 * xq + q xp' = x + j q + (i c + l - j k) p q - j q
122 * = x + (i c + l - j k) p q
124 * so that
126 * xq + q xp' = x (mod pq)
128 * We also get 0 <= xq + q xp' < p q, because
130 * 0 <= xq < q and 0 <= xp' < p.
132 mpz_mul(x, key->q, xp);
133 mpz_add(x, x, xq);
135 mpz_clear(xp); mpz_clear(xq);