Correct PPTP server firewall rules chain.
[tomato/davidwu.git] / release / src / router / nfs-utils / utils / idmapd / queue.h
blob2823fe78532992ca1abcb51c8e38b50a8957b8d7
1 /* $OpenBSD: queue.h,v 1.22 2001/06/23 04:39:35 angelos Exp $ */
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
4 /*
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94
35 #ifndef _SYS_QUEUE_H_
36 #define _SYS_QUEUE_H_
39 * This file defines five types of data structures: singly-linked lists,
40 * lists, simple queues, tail queues, and circular queues.
43 * A singly-linked list is headed by a single forward pointer. The elements
44 * are singly linked for minimum space and pointer manipulation overhead at
45 * the expense of O(n) removal for arbitrary elements. New elements can be
46 * added to the list after an existing element or at the head of the list.
47 * Elements being removed from the head of the list should use the explicit
48 * macro for this purpose for optimum efficiency. A singly-linked list may
49 * only be traversed in the forward direction. Singly-linked lists are ideal
50 * for applications with large datasets and few or no removals or for
51 * implementing a LIFO queue.
53 * A list is headed by a single forward pointer (or an array of forward
54 * pointers for a hash table header). The elements are doubly linked
55 * so that an arbitrary element can be removed without a need to
56 * traverse the list. New elements can be added to the list before
57 * or after an existing element or at the head of the list. A list
58 * may only be traversed in the forward direction.
60 * A simple queue is headed by a pair of pointers, one the head of the
61 * list and the other to the tail of the list. The elements are singly
62 * linked to save space, so elements can only be removed from the
63 * head of the list. New elements can be added to the list before or after
64 * an existing element, at the head of the list, or at the end of the
65 * list. A simple queue may only be traversed in the forward direction.
67 * A tail queue is headed by a pair of pointers, one to the head of the
68 * list and the other to the tail of the list. The elements are doubly
69 * linked so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before or
71 * after an existing element, at the head of the list, or at the end of
72 * the list. A tail queue may be traversed in either direction.
74 * A circle queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or after
78 * an existing element, at the head of the list, or at the end of the list.
79 * A circle queue may be traversed in either direction, but has a more
80 * complex end of list detection.
82 * For details on the use of these macros, see the queue(3) manual page.
86 * Singly-linked List definitions.
88 #define SLIST_HEAD(name, type) \
89 struct name { \
90 struct type *slh_first; /* first element */ \
93 #define SLIST_HEAD_INITIALIZER(head) \
94 { NULL }
96 #define SLIST_ENTRY(type) \
97 struct { \
98 struct type *sle_next; /* next element */ \
102 * Singly-linked List access methods.
104 #define SLIST_FIRST(head) ((head)->slh_first)
105 #define SLIST_END(head) NULL
106 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
107 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
109 #define SLIST_FOREACH(var, head, field) \
110 for((var) = SLIST_FIRST(head); \
111 (var) != SLIST_END(head); \
112 (var) = SLIST_NEXT(var, field))
115 * Singly-linked List functions.
117 #define SLIST_INIT(head) { \
118 SLIST_FIRST(head) = SLIST_END(head); \
121 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
122 (elm)->field.sle_next = (slistelm)->field.sle_next; \
123 (slistelm)->field.sle_next = (elm); \
124 } while (0)
126 #define SLIST_INSERT_HEAD(head, elm, field) do { \
127 (elm)->field.sle_next = (head)->slh_first; \
128 (head)->slh_first = (elm); \
129 } while (0)
131 #define SLIST_REMOVE_HEAD(head, field) do { \
132 (head)->slh_first = (head)->slh_first->field.sle_next; \
133 } while (0)
135 #define SLIST_REMOVE(head, elm, type, field) do { \
136 if ((head)->slh_first == (elm)) { \
137 SLIST_REMOVE_HEAD((head), field); \
139 else { \
140 struct type *curelm = (head)->slh_first; \
141 while( curelm->field.sle_next != (elm) ) \
142 curelm = curelm->field.sle_next; \
143 curelm->field.sle_next = \
144 curelm->field.sle_next->field.sle_next; \
146 } while (0)
149 * List definitions.
151 #define LIST_HEAD(name, type) \
152 struct name { \
153 struct type *lh_first; /* first element */ \
156 #define LIST_HEAD_INITIALIZER(head) \
157 { NULL }
159 #define LIST_ENTRY(type) \
160 struct { \
161 struct type *le_next; /* next element */ \
162 struct type **le_prev; /* address of previous next element */ \
166 * List access methods
168 #define LIST_FIRST(head) ((head)->lh_first)
169 #define LIST_END(head) NULL
170 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
171 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
173 #define LIST_FOREACH(var, head, field) \
174 for((var) = LIST_FIRST(head); \
175 (var)!= LIST_END(head); \
176 (var) = LIST_NEXT(var, field))
179 * List functions.
181 #define LIST_INIT(head) do { \
182 LIST_FIRST(head) = LIST_END(head); \
183 } while (0)
185 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
186 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
187 (listelm)->field.le_next->field.le_prev = \
188 &(elm)->field.le_next; \
189 (listelm)->field.le_next = (elm); \
190 (elm)->field.le_prev = &(listelm)->field.le_next; \
191 } while (0)
193 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
194 (elm)->field.le_prev = (listelm)->field.le_prev; \
195 (elm)->field.le_next = (listelm); \
196 *(listelm)->field.le_prev = (elm); \
197 (listelm)->field.le_prev = &(elm)->field.le_next; \
198 } while (0)
200 #define LIST_INSERT_HEAD(head, elm, field) do { \
201 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
202 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
203 (head)->lh_first = (elm); \
204 (elm)->field.le_prev = &(head)->lh_first; \
205 } while (0)
207 #define LIST_REMOVE(elm, field) do { \
208 if ((elm)->field.le_next != NULL) \
209 (elm)->field.le_next->field.le_prev = \
210 (elm)->field.le_prev; \
211 *(elm)->field.le_prev = (elm)->field.le_next; \
212 } while (0)
214 #define LIST_REPLACE(elm, elm2, field) do { \
215 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
216 (elm2)->field.le_next->field.le_prev = \
217 &(elm2)->field.le_next; \
218 (elm2)->field.le_prev = (elm)->field.le_prev; \
219 *(elm2)->field.le_prev = (elm2); \
220 } while (0)
223 * Simple queue definitions.
225 #define SIMPLEQ_HEAD(name, type) \
226 struct name { \
227 struct type *sqh_first; /* first element */ \
228 struct type **sqh_last; /* addr of last next element */ \
231 #define SIMPLEQ_HEAD_INITIALIZER(head) \
232 { NULL, &(head).sqh_first }
234 #define SIMPLEQ_ENTRY(type) \
235 struct { \
236 struct type *sqe_next; /* next element */ \
240 * Simple queue access methods.
242 #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
243 #define SIMPLEQ_END(head) NULL
244 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
245 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
247 #define SIMPLEQ_FOREACH(var, head, field) \
248 for((var) = SIMPLEQ_FIRST(head); \
249 (var) != SIMPLEQ_END(head); \
250 (var) = SIMPLEQ_NEXT(var, field))
253 * Simple queue functions.
255 #define SIMPLEQ_INIT(head) do { \
256 (head)->sqh_first = NULL; \
257 (head)->sqh_last = &(head)->sqh_first; \
258 } while (0)
260 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
261 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
262 (head)->sqh_last = &(elm)->field.sqe_next; \
263 (head)->sqh_first = (elm); \
264 } while (0)
266 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
267 (elm)->field.sqe_next = NULL; \
268 *(head)->sqh_last = (elm); \
269 (head)->sqh_last = &(elm)->field.sqe_next; \
270 } while (0)
272 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
273 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
274 (head)->sqh_last = &(elm)->field.sqe_next; \
275 (listelm)->field.sqe_next = (elm); \
276 } while (0)
278 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
279 if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
280 (head)->sqh_last = &(head)->sqh_first; \
281 } while (0)
284 * Tail queue definitions.
286 #define TAILQ_HEAD(name, type) \
287 struct name { \
288 struct type *tqh_first; /* first element */ \
289 struct type **tqh_last; /* addr of last next element */ \
292 #define TAILQ_HEAD_INITIALIZER(head) \
293 { NULL, &(head).tqh_first }
295 #define TAILQ_ENTRY(type) \
296 struct { \
297 struct type *tqe_next; /* next element */ \
298 struct type **tqe_prev; /* address of previous next element */ \
302 * tail queue access methods
304 #define TAILQ_FIRST(head) ((head)->tqh_first)
305 #define TAILQ_END(head) NULL
306 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
307 #define TAILQ_LAST(head, headname) \
308 (*(((struct headname *)((head)->tqh_last))->tqh_last))
309 /* XXX */
310 #define TAILQ_PREV(elm, headname, field) \
311 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
312 #define TAILQ_EMPTY(head) \
313 (TAILQ_FIRST(head) == TAILQ_END(head))
315 #define TAILQ_FOREACH(var, head, field) \
316 for((var) = TAILQ_FIRST(head); \
317 (var) != TAILQ_END(head); \
318 (var) = TAILQ_NEXT(var, field))
320 #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
321 for((var) = TAILQ_LAST(head, headname); \
322 (var) != TAILQ_END(head); \
323 (var) = TAILQ_PREV(var, headname, field))
326 * Tail queue functions.
328 #define TAILQ_INIT(head) do { \
329 (head)->tqh_first = NULL; \
330 (head)->tqh_last = &(head)->tqh_first; \
331 } while (0)
333 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
334 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
335 (head)->tqh_first->field.tqe_prev = \
336 &(elm)->field.tqe_next; \
337 else \
338 (head)->tqh_last = &(elm)->field.tqe_next; \
339 (head)->tqh_first = (elm); \
340 (elm)->field.tqe_prev = &(head)->tqh_first; \
341 } while (0)
343 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
344 (elm)->field.tqe_next = NULL; \
345 (elm)->field.tqe_prev = (head)->tqh_last; \
346 *(head)->tqh_last = (elm); \
347 (head)->tqh_last = &(elm)->field.tqe_next; \
348 } while (0)
350 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
351 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
352 (elm)->field.tqe_next->field.tqe_prev = \
353 &(elm)->field.tqe_next; \
354 else \
355 (head)->tqh_last = &(elm)->field.tqe_next; \
356 (listelm)->field.tqe_next = (elm); \
357 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
358 } while (0)
360 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
361 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
362 (elm)->field.tqe_next = (listelm); \
363 *(listelm)->field.tqe_prev = (elm); \
364 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
365 } while (0)
367 #define TAILQ_REMOVE(head, elm, field) do { \
368 if (((elm)->field.tqe_next) != NULL) \
369 (elm)->field.tqe_next->field.tqe_prev = \
370 (elm)->field.tqe_prev; \
371 else \
372 (head)->tqh_last = (elm)->field.tqe_prev; \
373 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
374 } while (0)
376 #define TAILQ_REPLACE(head, elm, elm2, field) do { \
377 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
378 (elm2)->field.tqe_next->field.tqe_prev = \
379 &(elm2)->field.tqe_next; \
380 else \
381 (head)->tqh_last = &(elm2)->field.tqe_next; \
382 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
383 *(elm2)->field.tqe_prev = (elm2); \
384 } while (0)
387 * Circular queue definitions.
389 #define CIRCLEQ_HEAD(name, type) \
390 struct name { \
391 struct type *cqh_first; /* first element */ \
392 struct type *cqh_last; /* last element */ \
395 #define CIRCLEQ_HEAD_INITIALIZER(head) \
396 { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
398 #define CIRCLEQ_ENTRY(type) \
399 struct { \
400 struct type *cqe_next; /* next element */ \
401 struct type *cqe_prev; /* previous element */ \
405 * Circular queue access methods
407 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
408 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
409 #define CIRCLEQ_END(head) ((void *)(head))
410 #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
411 #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
412 #define CIRCLEQ_EMPTY(head) \
413 (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
415 #define CIRCLEQ_FOREACH(var, head, field) \
416 for((var) = CIRCLEQ_FIRST(head); \
417 (var) != CIRCLEQ_END(head); \
418 (var) = CIRCLEQ_NEXT(var, field))
420 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
421 for((var) = CIRCLEQ_LAST(head); \
422 (var) != CIRCLEQ_END(head); \
423 (var) = CIRCLEQ_PREV(var, field))
426 * Circular queue functions.
428 #define CIRCLEQ_INIT(head) do { \
429 (head)->cqh_first = CIRCLEQ_END(head); \
430 (head)->cqh_last = CIRCLEQ_END(head); \
431 } while (0)
433 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
434 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
435 (elm)->field.cqe_prev = (listelm); \
436 if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
437 (head)->cqh_last = (elm); \
438 else \
439 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
440 (listelm)->field.cqe_next = (elm); \
441 } while (0)
443 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
444 (elm)->field.cqe_next = (listelm); \
445 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
446 if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
447 (head)->cqh_first = (elm); \
448 else \
449 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
450 (listelm)->field.cqe_prev = (elm); \
451 } while (0)
453 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
454 (elm)->field.cqe_next = (head)->cqh_first; \
455 (elm)->field.cqe_prev = CIRCLEQ_END(head); \
456 if ((head)->cqh_last == CIRCLEQ_END(head)) \
457 (head)->cqh_last = (elm); \
458 else \
459 (head)->cqh_first->field.cqe_prev = (elm); \
460 (head)->cqh_first = (elm); \
461 } while (0)
463 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
464 (elm)->field.cqe_next = CIRCLEQ_END(head); \
465 (elm)->field.cqe_prev = (head)->cqh_last; \
466 if ((head)->cqh_first == CIRCLEQ_END(head)) \
467 (head)->cqh_first = (elm); \
468 else \
469 (head)->cqh_last->field.cqe_next = (elm); \
470 (head)->cqh_last = (elm); \
471 } while (0)
473 #define CIRCLEQ_REMOVE(head, elm, field) do { \
474 if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
475 (head)->cqh_last = (elm)->field.cqe_prev; \
476 else \
477 (elm)->field.cqe_next->field.cqe_prev = \
478 (elm)->field.cqe_prev; \
479 if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
480 (head)->cqh_first = (elm)->field.cqe_next; \
481 else \
482 (elm)->field.cqe_prev->field.cqe_next = \
483 (elm)->field.cqe_next; \
484 } while (0)
486 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
487 if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
488 CIRCLEQ_END(head)) \
489 (head).cqh_last = (elm2); \
490 else \
491 (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
492 if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
493 CIRCLEQ_END(head)) \
494 (head).cqh_first = (elm2); \
495 else \
496 (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
497 } while (0)
499 #endif /* !_SYS_QUEUE_H_ */