1 /* tree.h -- AVL trees (in the spirit of BSD's 'queue.h') -*- C -*- */
3 /* Copyright (c) 2005 Ian Piumarta
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the 'Software'), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, and/or sell copies of the
11 * Software, and to permit persons to whom the Software is furnished to do so,
12 * provided that the above copyright notice(s) and this permission notice appear
13 * in all copies of the Software and that both the above copyright notice(s) and
14 * this permission notice appear in supporting documentation.
16 * THE SOFTWARE IS PROVIDED 'AS IS'. USE ENTIRELY AT YOUR OWN RISK.
19 /* This file defines an AVL balanced binary tree [Georgii M. Adelson-Velskii and
20 * Evgenii M. Landis, 'An algorithm for the organization of information',
21 * Doklady Akademii Nauk SSSR, 146:263-266, 1962 (Russian). Also in Myron
22 * J. Ricci (trans.), Soviet Math, 3:1259-1263, 1962 (English)].
24 * An AVL tree is headed by pointers to the root node and to a function defining
25 * the ordering relation between nodes. Each node contains an arbitrary payload
26 * plus three fields per tree entry: the depth of the subtree for which it forms
27 * the root and two pointers to child nodes (singly-linked for minimum space, at
28 * the expense of direct access to the parent node given a pointer to one of the
29 * children). The tree is rebalanced after every insertion or removal. The
30 * tree may be traversed in two directions: forward (in-order left-to-right) and
31 * reverse (in-order, right-to-left).
33 * Because of the recursive nature of many of the operations on trees it is
34 * necessary to define a number of helper functions for each type of tree node.
35 * The macro TREE_DEFINE(node_tag, entry_name) defines these functions with
36 * unique names according to the node_tag. This macro should be invoked,
37 * thereby defining the necessary functions, once per node tag in the program.
39 * For details on the use of these macros, see the tree(3) manual page.
42 /* http://piumarta.com/software/tree/
43 * tree.h is an implementation of AVL (Adelson-Velskii and Landis) balanced trees in the spirit of the BSD queue and list implementations.
44 * tree is distributed under the MIT license. It will not infect your project with a contagious disease if you decide to use it.
51 #define TREE_DELTA_MAX 1
53 #define TREE_ENTRY(type) \
55 struct type *avl_left; \
56 struct type *avl_right; \
60 #define TREE_HEAD(name, type) \
62 struct type *th_root; \
63 int (*th_cmp)(struct type *lhs, struct type *rhs); \
66 #define TREE_INITIALIZER(cmp) { 0, cmp }
68 #define TREE_DELTA(self, field) \
69 (( (((self)->field.avl_left) ? (self)->field.avl_left->field.avl_height : 0)) \
70 - (((self)->field.avl_right) ? (self)->field.avl_right->field.avl_height : 0))
72 /* Recursion prevents the following from being defined as macros. */
74 #define TREE_DEFINE(node, field) \
76 struct node *TREE_BALANCE_##node##_##field(struct node *); \
78 struct node *TREE_ROTL_##node##_##field(struct node *self) \
80 struct node *r= self->field.avl_right; \
81 self->field.avl_right= r->field.avl_left; \
82 r->field.avl_left= TREE_BALANCE_##node##_##field(self); \
83 return TREE_BALANCE_##node##_##field(r); \
86 struct node *TREE_ROTR_##node##_##field(struct node *self) \
88 struct node *l= self->field.avl_left; \
89 self->field.avl_left= l->field.avl_right; \
90 l->field.avl_right= TREE_BALANCE_##node##_##field(self); \
91 return TREE_BALANCE_##node##_##field(l); \
94 struct node *TREE_BALANCE_##node##_##field(struct node *self) \
96 int delta= TREE_DELTA(self, field); \
98 if (delta < -TREE_DELTA_MAX) \
100 if (TREE_DELTA(self->field.avl_right, field) > 0) \
101 self->field.avl_right= TREE_ROTR_##node##_##field(self->field.avl_right); \
102 return TREE_ROTL_##node##_##field(self); \
104 else if (delta > TREE_DELTA_MAX) \
106 if (TREE_DELTA(self->field.avl_left, field) < 0) \
107 self->field.avl_left= TREE_ROTL_##node##_##field(self->field.avl_left); \
108 return TREE_ROTR_##node##_##field(self); \
110 self->field.avl_height= 0; \
111 if (self->field.avl_left && (self->field.avl_left->field.avl_height > self->field.avl_height)) \
112 self->field.avl_height= self->field.avl_left->field.avl_height; \
113 if (self->field.avl_right && (self->field.avl_right->field.avl_height > self->field.avl_height)) \
114 self->field.avl_height= self->field.avl_right->field.avl_height; \
115 self->field.avl_height += 1; \
119 struct node *TREE_INSERT_##node##_##field \
120 (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
124 if (compare(elm, self) < 0) \
125 self->field.avl_left= TREE_INSERT_##node##_##field(self->field.avl_left, elm, compare); \
127 self->field.avl_right= TREE_INSERT_##node##_##field(self->field.avl_right, elm, compare); \
128 return TREE_BALANCE_##node##_##field(self); \
131 struct node *TREE_FIND_##node##_##field \
132 (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
136 if (compare(elm, self) == 0) \
138 if (compare(elm, self) < 0) \
139 return TREE_FIND_##node##_##field(self->field.avl_left, elm, compare); \
141 return TREE_FIND_##node##_##field(self->field.avl_right, elm, compare); \
144 struct node *TREE_MOVE_RIGHT(struct node *self, struct node *rhs) \
148 self->field.avl_right= TREE_MOVE_RIGHT(self->field.avl_right, rhs); \
149 return TREE_BALANCE_##node##_##field(self); \
152 struct node *TREE_REMOVE_##node##_##field \
153 (struct node *self, struct node *elm, int (*compare)(struct node *lhs, struct node *rhs)) \
155 if (!self) return 0; \
157 if (compare(elm, self) == 0) \
159 struct node *tmp= TREE_MOVE_RIGHT(self->field.avl_left, self->field.avl_right); \
160 self->field.avl_left= 0; \
161 self->field.avl_right= 0; \
164 if (compare(elm, self) < 0) \
165 self->field.avl_left= TREE_REMOVE_##node##_##field(self->field.avl_left, elm, compare); \
167 self->field.avl_right= TREE_REMOVE_##node##_##field(self->field.avl_right, elm, compare); \
168 return TREE_BALANCE_##node##_##field(self); \
171 void TREE_FORWARD_APPLY_ALL_##node##_##field \
172 (struct node *self, void (*function)(struct node *node, void *data), void *data) \
176 TREE_FORWARD_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \
177 struct node *right = self->field.avl_right; /* Preserve before removing */ \
178 function(self, data); \
179 TREE_FORWARD_APPLY_ALL_##node##_##field(right, function, data); \
183 void TREE_REVERSE_APPLY_ALL_##node##_##field \
184 (struct node *self, void (*function)(struct node *node, void *data), void *data) \
188 TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_right, function, data); \
189 function(self, data); \
190 TREE_REVERSE_APPLY_ALL_##node##_##field(self->field.avl_left, function, data); \
194 #define TREE_INSERT(head, node, field, elm) \
195 ((head)->th_root= TREE_INSERT_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
197 #define TREE_FIND(head, node, field, elm) \
198 (TREE_FIND_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
200 #define TREE_REMOVE(head, node, field, elm) \
201 ((head)->th_root= TREE_REMOVE_##node##_##field((head)->th_root, (elm), (head)->th_cmp))
203 #define TREE_DEPTH(head, field) \
204 ((head)->th_root->field.avl_height)
206 #define TREE_FORWARD_APPLY(head, node, field, function, data) \
207 TREE_FORWARD_APPLY_ALL_##node##_##field((head)->th_root, function, data)
209 #define TREE_REVERSE_APPLY(head, node, field, function, data) \
210 TREE_REVERSE_APPLY_ALL_##node##_##field((head)->th_root, function, data)
212 #define TREE_INIT(head, cmp) do { \
213 (head)->th_root= 0; \
214 (head)->th_cmp= (cmp); \
218 #endif /* __tree_h */