Merge branch 'fix-changelogs' into 'main'
[tor.git] / src / lib / memarea / memarea.c
blob7e984938a2475651049b9ac655e5d7ece5bb76bc
1 /* Copyright (c) 2008-2021, The Tor Project, Inc. */
2 /* See LICENSE for licensing information */
4 /**
5 * \file memarea.c
7 * \brief Implementation for memarea_t, an allocator for allocating lots of
8 * small objects that will be freed all at once.
9 */
11 #include "orconfig.h"
12 #include "lib/memarea/memarea.h"
14 #include <stdlib.h>
15 #include <string.h>
17 #include "lib/arch/bytes.h"
18 #include "lib/cc/torint.h"
19 #include "lib/smartlist_core/smartlist_core.h"
20 #include "lib/smartlist_core/smartlist_foreach.h"
21 #include "lib/log/log.h"
22 #include "lib/log/util_bug.h"
23 #include "lib/malloc/malloc.h"
25 #ifndef DISABLE_MEMORY_SENTINELS
27 /** If true, we try to detect any attempts to write beyond the length of a
28 * memarea. */
29 #define USE_SENTINELS
31 /** All returned pointers should be aligned to the nearest multiple of this
32 * value. */
33 #define MEMAREA_ALIGN SIZEOF_VOID_P
35 /** A value which, when masked out of a pointer, produces a maximally aligned
36 * pointer. */
37 #if MEMAREA_ALIGN == 4
38 #define MEMAREA_ALIGN_MASK ((uintptr_t)3)
39 #elif MEMAREA_ALIGN == 8
40 #define MEMAREA_ALIGN_MASK ((uintptr_t)7)
41 #else
42 #error "void* is neither 4 nor 8 bytes long."
43 #endif /* MEMAREA_ALIGN == 4 || ... */
45 #if defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER)
46 #define USE_ALIGNED_ATTRIBUTE
47 /** Name for the 'memory' member of a memory chunk. */
48 #define U_MEM mem
49 #else
50 #define U_MEM u.mem
51 #endif /* defined(__GNUC__) && defined(FLEXIBLE_ARRAY_MEMBER) */
53 #ifdef USE_SENTINELS
54 /** Magic value that we stick at the end of a memarea so we can make sure
55 * there are no run-off-the-end bugs. */
56 #define SENTINEL_VAL 0x90806622u
57 /** How many bytes per area do we devote to the sentinel? */
58 #define SENTINEL_LEN sizeof(uint32_t)
59 /** Given a mem_area_chunk_t with SENTINEL_LEN extra bytes allocated at the
60 * end, set those bytes. */
61 #define SET_SENTINEL(chunk) \
62 STMT_BEGIN \
63 set_uint32( &(chunk)->U_MEM[chunk->mem_size], SENTINEL_VAL ); \
64 STMT_END
65 /** Assert that the sentinel on a memarea is set correctly. */
66 #define CHECK_SENTINEL(chunk) \
67 STMT_BEGIN \
68 uint32_t sent_val = get_uint32(&(chunk)->U_MEM[chunk->mem_size]); \
69 tor_assert(sent_val == SENTINEL_VAL); \
70 STMT_END
71 #else /* !defined(USE_SENTINELS) */
72 #define SENTINEL_LEN 0
73 #define SET_SENTINEL(chunk) STMT_NIL
74 #define CHECK_SENTINEL(chunk) STMT_NIL
75 #endif /* defined(USE_SENTINELS) */
77 /** Increment <b>ptr</b> until it is aligned to MEMAREA_ALIGN. */
78 static inline void *
79 realign_pointer(void *ptr)
81 uintptr_t x = (uintptr_t)ptr;
82 x = (x+MEMAREA_ALIGN_MASK) & ~MEMAREA_ALIGN_MASK;
83 /* Reinstate this if bug 930 ever reappears
84 tor_assert(((void*)x) >= ptr);
86 return (void*)x;
89 /** Implements part of a memarea. New memory is carved off from chunk->mem in
90 * increasing order until a request is too big, at which point a new chunk is
91 * allocated. */
92 typedef struct memarea_chunk_t {
93 /** Next chunk in this area. Only kept around so we can free it. */
94 struct memarea_chunk_t *next_chunk;
95 size_t mem_size; /**< How much RAM is available in mem, total? */
96 char *next_mem; /**< Next position in mem to allocate data at. If it's
97 * equal to mem+mem_size, this chunk is full. */
98 #ifdef USE_ALIGNED_ATTRIBUTE
99 /** Actual content of the memory chunk. */
100 char mem[FLEXIBLE_ARRAY_MEMBER] __attribute__((aligned(MEMAREA_ALIGN)));
101 #else
102 union {
103 char mem[1]; /**< Memory space in this chunk. */
104 void *void_for_alignment_; /**< Dummy; used to make sure mem is aligned. */
105 } u; /**< Union used to enforce alignment when we don't have support for
106 * doing it right. */
107 #endif /* defined(USE_ALIGNED_ATTRIBUTE) */
108 } memarea_chunk_t;
110 /** How many bytes are needed for overhead before we get to the memory part
111 * of a chunk? */
112 #define CHUNK_HEADER_SIZE offsetof(memarea_chunk_t, U_MEM)
114 /** What's the smallest that we'll allocate a chunk? */
115 #define CHUNK_SIZE 4096
117 /** A memarea_t is an allocation region for a set of small memory requests
118 * that will all be freed at once. */
119 struct memarea_t {
120 memarea_chunk_t *first; /**< Top of the chunk stack: never NULL. */
123 /** Helper: allocate a new memarea chunk of around <b>chunk_size</b> bytes. */
124 static memarea_chunk_t *
125 alloc_chunk(size_t sz)
127 tor_assert(sz < SIZE_T_CEILING);
129 size_t chunk_size = sz < CHUNK_SIZE ? CHUNK_SIZE : sz;
130 memarea_chunk_t *res;
131 chunk_size += SENTINEL_LEN;
132 res = tor_malloc(chunk_size);
133 res->next_chunk = NULL;
134 res->mem_size = chunk_size - CHUNK_HEADER_SIZE - SENTINEL_LEN;
135 res->next_mem = res->U_MEM;
136 tor_assert(res->next_mem+res->mem_size+SENTINEL_LEN ==
137 ((char*)res)+chunk_size);
138 tor_assert(realign_pointer(res->next_mem) == res->next_mem);
139 SET_SENTINEL(res);
140 return res;
143 /** Release <b>chunk</b> from a memarea. */
144 static void
145 memarea_chunk_free_unchecked(memarea_chunk_t *chunk)
147 CHECK_SENTINEL(chunk);
148 tor_free(chunk);
151 /** Allocate and return new memarea. */
152 memarea_t *
153 memarea_new(void)
155 memarea_t *head = tor_malloc(sizeof(memarea_t));
156 head->first = alloc_chunk(CHUNK_SIZE);
157 return head;
160 /** Free <b>area</b>, invalidating all pointers returned from memarea_alloc()
161 * and friends for this area */
162 void
163 memarea_drop_all_(memarea_t *area)
165 memarea_chunk_t *chunk, *next;
166 for (chunk = area->first; chunk; chunk = next) {
167 next = chunk->next_chunk;
168 memarea_chunk_free_unchecked(chunk);
170 area->first = NULL; /*fail fast on */
171 tor_free(area);
174 /** Forget about having allocated anything in <b>area</b>, and free some of
175 * the backing storage associated with it, as appropriate. Invalidates all
176 * pointers returned from memarea_alloc() for this area. */
177 void
178 memarea_clear(memarea_t *area)
180 memarea_chunk_t *chunk, *next;
181 if (area->first->next_chunk) {
182 for (chunk = area->first->next_chunk; chunk; chunk = next) {
183 next = chunk->next_chunk;
184 memarea_chunk_free_unchecked(chunk);
186 area->first->next_chunk = NULL;
188 area->first->next_mem = area->first->U_MEM;
191 /** Return true iff <b>p</b> is in a range that has been returned by an
192 * allocation from <b>area</b>. */
194 memarea_owns_ptr(const memarea_t *area, const void *p)
196 memarea_chunk_t *chunk;
197 const char *ptr = p;
198 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
199 if (ptr >= chunk->U_MEM && ptr < chunk->next_mem)
200 return 1;
202 return 0;
205 /** Return a pointer to a chunk of memory in <b>area</b> of at least <b>sz</b>
206 * bytes. <b>sz</b> should be significantly smaller than the area's chunk
207 * size, though we can deal if it isn't. */
208 void *
209 memarea_alloc(memarea_t *area, size_t sz)
211 memarea_chunk_t *chunk = area->first;
212 char *result;
213 tor_assert(chunk);
214 CHECK_SENTINEL(chunk);
215 tor_assert(sz < SIZE_T_CEILING);
216 if (sz == 0)
217 sz = 1;
218 tor_assert(chunk->next_mem <= chunk->U_MEM + chunk->mem_size);
219 const size_t space_remaining =
220 (chunk->U_MEM + chunk->mem_size) - chunk->next_mem;
221 if (sz > space_remaining) {
222 if (sz+CHUNK_HEADER_SIZE >= CHUNK_SIZE) {
223 /* This allocation is too big. Stick it in a special chunk, and put
224 * that chunk second in the list. */
225 memarea_chunk_t *new_chunk = alloc_chunk(sz+CHUNK_HEADER_SIZE);
226 new_chunk->next_chunk = chunk->next_chunk;
227 chunk->next_chunk = new_chunk;
228 chunk = new_chunk;
229 } else {
230 memarea_chunk_t *new_chunk = alloc_chunk(CHUNK_SIZE);
231 new_chunk->next_chunk = chunk;
232 area->first = chunk = new_chunk;
234 tor_assert(chunk->mem_size >= sz);
236 result = chunk->next_mem;
237 chunk->next_mem = chunk->next_mem + sz;
238 /* Reinstate these if bug 930 ever comes back
239 tor_assert(chunk->next_mem >= chunk->U_MEM);
240 tor_assert(chunk->next_mem <= chunk->U_MEM+chunk->mem_size);
242 chunk->next_mem = realign_pointer(chunk->next_mem);
243 return result;
246 /** As memarea_alloc(), but clears the memory it returns. */
247 void *
248 memarea_alloc_zero(memarea_t *area, size_t sz)
250 void *result = memarea_alloc(area, sz);
251 memset(result, 0, sz);
252 return result;
255 /** As memdup, but returns the memory from <b>area</b>. */
256 void *
257 memarea_memdup(memarea_t *area, const void *s, size_t n)
259 char *result = memarea_alloc(area, n);
260 memcpy(result, s, n);
261 return result;
264 /** As strdup, but returns the memory from <b>area</b>. */
265 char *
266 memarea_strdup(memarea_t *area, const char *s)
268 return memarea_memdup(area, s, strlen(s)+1);
271 /** As strndup, but returns the memory from <b>area</b>. */
272 char *
273 memarea_strndup(memarea_t *area, const char *s, size_t n)
275 size_t ln = 0;
276 char *result;
277 tor_assert(n < SIZE_T_CEILING);
278 for (ln = 0; ln < n && s[ln]; ++ln)
280 result = memarea_alloc(area, ln+1);
281 memcpy(result, s, ln);
282 result[ln]='\0';
283 return result;
286 /** Set <b>allocated_out</b> to the number of bytes allocated in <b>area</b>,
287 * and <b>used_out</b> to the number of bytes currently used. */
288 void
289 memarea_get_stats(memarea_t *area, size_t *allocated_out, size_t *used_out)
291 size_t a = 0, u = 0;
292 memarea_chunk_t *chunk;
293 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
294 CHECK_SENTINEL(chunk);
295 a += CHUNK_HEADER_SIZE + chunk->mem_size;
296 tor_assert(chunk->next_mem >= chunk->U_MEM);
297 u += CHUNK_HEADER_SIZE + (chunk->next_mem - chunk->U_MEM);
299 *allocated_out = a;
300 *used_out = u;
303 /** Assert that <b>area</b> is okay. */
304 void
305 memarea_assert_ok(memarea_t *area)
307 memarea_chunk_t *chunk;
308 tor_assert(area->first);
310 for (chunk = area->first; chunk; chunk = chunk->next_chunk) {
311 CHECK_SENTINEL(chunk);
312 tor_assert(chunk->next_mem >= chunk->U_MEM);
313 tor_assert(chunk->next_mem <=
314 (char*) realign_pointer(chunk->U_MEM+chunk->mem_size));
318 #else /* defined(DISABLE_MEMORY_SENTINELS) */
320 struct memarea_t {
321 smartlist_t *pieces;
324 memarea_t *
325 memarea_new(void)
327 memarea_t *ma = tor_malloc_zero(sizeof(memarea_t));
328 ma->pieces = smartlist_new();
329 return ma;
331 void
332 memarea_drop_all_(memarea_t *area)
334 memarea_clear(area);
335 smartlist_free(area->pieces);
336 tor_free(area);
338 void
339 memarea_clear(memarea_t *area)
341 SMARTLIST_FOREACH(area->pieces, void *, p, tor_free_(p));
342 smartlist_clear(area->pieces);
345 memarea_owns_ptr(const memarea_t *area, const void *ptr)
347 SMARTLIST_FOREACH(area->pieces, const void *, p, if (ptr == p) return 1;);
348 return 0;
351 void *
352 memarea_alloc(memarea_t *area, size_t sz)
354 void *result = tor_malloc(sz);
355 smartlist_add(area->pieces, result);
356 return result;
359 void *
360 memarea_alloc_zero(memarea_t *area, size_t sz)
362 void *result = tor_malloc_zero(sz);
363 smartlist_add(area->pieces, result);
364 return result;
366 void *
367 memarea_memdup(memarea_t *area, const void *s, size_t n)
369 void *r = memarea_alloc(area, n);
370 memcpy(r, s, n);
371 return r;
373 char *
374 memarea_strdup(memarea_t *area, const char *s)
376 size_t n = strlen(s);
377 char *r = memarea_alloc(area, n+1);
378 memcpy(r, s, n);
379 r[n] = 0;
380 return r;
382 char *
383 memarea_strndup(memarea_t *area, const char *s, size_t n)
385 size_t ln = strnlen(s, n);
386 char *r = memarea_alloc(area, ln+1);
387 memcpy(r, s, ln);
388 r[ln] = 0;
389 return r;
391 void
392 memarea_get_stats(memarea_t *area,
393 size_t *allocated_out, size_t *used_out)
395 (void)area;
396 *allocated_out = *used_out = 128;
398 void
399 memarea_assert_ok(memarea_t *area)
401 (void)area;
404 #endif /* !defined(DISABLE_MEMORY_SENTINELS) */