split up constants.h some
[trinity.git] / include / perf_event.h
blob98d2ab5cdb90a5baafb9aa07ffd0dc3fe86e7d57
1 #pragma once
3 /*
4 * Performance events:
6 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
8 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
10 * Data type definitions, declarations, prototypes.
12 * Started by: Thomas Gleixner and Ingo Molnar
14 * For licencing details see kernel-base/COPYING
16 #include <linux/types.h>
17 #include <linux/ioctl.h>
18 #include <asm/byteorder.h>
21 * User-space ABI bits:
25 * attr.type
27 enum perf_type_id {
28 PERF_TYPE_HARDWARE = 0,
29 PERF_TYPE_SOFTWARE = 1,
30 PERF_TYPE_TRACEPOINT = 2,
31 PERF_TYPE_HW_CACHE = 3,
32 PERF_TYPE_RAW = 4,
33 PERF_TYPE_BREAKPOINT = 5,
35 PERF_TYPE_MAX, /* non-ABI */
39 * Generalized performance event event_id types, used by the
40 * attr.event_id parameter of the sys_perf_event_open()
41 * syscall:
43 enum perf_hw_id {
45 * Common hardware events, generalized by the kernel:
47 PERF_COUNT_HW_CPU_CYCLES = 0,
48 PERF_COUNT_HW_INSTRUCTIONS = 1,
49 PERF_COUNT_HW_CACHE_REFERENCES = 2,
50 PERF_COUNT_HW_CACHE_MISSES = 3,
51 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
52 PERF_COUNT_HW_BRANCH_MISSES = 5,
53 PERF_COUNT_HW_BUS_CYCLES = 6,
54 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
55 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
56 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58 PERF_COUNT_HW_MAX, /* non-ABI */
62 * Generalized hardware cache events:
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
68 enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
75 PERF_COUNT_HW_CACHE_NODE = 6,
77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80 enum perf_hw_cache_op_id {
81 PERF_COUNT_HW_CACHE_OP_READ = 0,
82 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88 enum perf_hw_cache_op_result_id {
89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
96 * Special "software" events provided by the kernel, even if the hardware
97 * does not support performance events. These events measure various
98 * physical and sw events of the kernel (and allow the profiling of them as
99 * well):
101 enum perf_sw_ids {
102 PERF_COUNT_SW_CPU_CLOCK = 0,
103 PERF_COUNT_SW_TASK_CLOCK = 1,
104 PERF_COUNT_SW_PAGE_FAULTS = 2,
105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
106 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
110 PERF_COUNT_SW_EMULATION_FAULTS = 8,
111 PERF_COUNT_SW_DUMMY = 9,
113 PERF_COUNT_SW_MAX, /* non-ABI */
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
120 enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133 PERF_SAMPLE_REGS_USER = 1U << 12,
134 PERF_SAMPLE_STACK_USER = 1U << 13,
135 PERF_SAMPLE_WEIGHT = 1U << 14,
136 PERF_SAMPLE_DATA_SRC = 1U << 15,
137 PERF_SAMPLE_IDENTIFIER = 1U << 16,
138 PERF_SAMPLE_TRANSACTION = 1U << 17,
140 PERF_SAMPLE_MAX = 1U << 18, /* non-ABI */
144 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
146 * If the user does not pass priv level information via branch_sample_type,
147 * the kernel uses the event's priv level. Branch and event priv levels do
148 * not have to match. Branch priv level is checked for permissions.
150 * The branch types can be combined, however BRANCH_ANY covers all types
151 * of branches and therefore it supersedes all the other types.
153 enum perf_branch_sample_type {
154 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
155 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
156 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
158 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
159 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
160 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
161 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
162 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << 7, /* transaction aborts */
163 PERF_SAMPLE_BRANCH_IN_TX = 1U << 8, /* in transaction */
164 PERF_SAMPLE_BRANCH_NO_TX = 1U << 9, /* not in transaction */
166 PERF_SAMPLE_BRANCH_MAX = 1U << 10, /* non-ABI */
169 #define PERF_SAMPLE_BRANCH_PLM_ALL \
170 (PERF_SAMPLE_BRANCH_USER|\
171 PERF_SAMPLE_BRANCH_KERNEL|\
172 PERF_SAMPLE_BRANCH_HV)
175 * Values to determine ABI of the registers dump.
177 enum perf_sample_regs_abi {
178 PERF_SAMPLE_REGS_ABI_NONE = 0,
179 PERF_SAMPLE_REGS_ABI_32 = 1,
180 PERF_SAMPLE_REGS_ABI_64 = 2,
184 * Values for the memory transaction event qualifier, mostly for
185 * abort events. Multiple bits can be set.
187 enum {
188 PERF_TXN_ELISION = (1 << 0), /* From elision */
189 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
190 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
191 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
192 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
193 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
194 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
195 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
197 PERF_TXN_MAX = (1 << 8), /* non-ABI */
199 /* bits 32..63 are reserved for the abort code */
201 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
202 PERF_TXN_ABORT_SHIFT = 32,
206 * The format of the data returned by read() on a perf event fd,
207 * as specified by attr.read_format:
209 * struct read_format {
210 * { u64 value;
211 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
212 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
213 * { u64 id; } && PERF_FORMAT_ID
214 * } && !PERF_FORMAT_GROUP
216 * { u64 nr;
217 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
218 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
219 * { u64 value;
220 * { u64 id; } && PERF_FORMAT_ID
221 * } cntr[nr];
222 * } && PERF_FORMAT_GROUP
223 * };
225 enum perf_event_read_format {
226 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
227 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
228 PERF_FORMAT_ID = 1U << 2,
229 PERF_FORMAT_GROUP = 1U << 3,
231 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
234 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
235 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
236 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
237 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
238 /* add: sample_stack_user */
241 * Hardware event_id to monitor via a performance monitoring event:
243 struct perf_event_attr {
246 * Major type: hardware/software/tracepoint/etc.
248 __u32 type;
251 * Size of the attr structure, for fwd/bwd compat.
253 __u32 size;
256 * Type specific configuration information.
258 __u64 config;
260 union {
261 __u64 sample_period;
262 __u64 sample_freq;
265 __u64 sample_type;
266 __u64 read_format;
268 __u64 disabled : 1, /* off by default */
269 inherit : 1, /* children inherit it */
270 pinned : 1, /* must always be on PMU */
271 exclusive : 1, /* only group on PMU */
272 exclude_user : 1, /* don't count user */
273 exclude_kernel : 1, /* ditto kernel */
274 exclude_hv : 1, /* ditto hypervisor */
275 exclude_idle : 1, /* don't count when idle */
276 mmap : 1, /* include mmap data */
277 comm : 1, /* include comm data */
278 freq : 1, /* use freq, not period */
279 inherit_stat : 1, /* per task counts */
280 enable_on_exec : 1, /* next exec enables */
281 task : 1, /* trace fork/exit */
282 watermark : 1, /* wakeup_watermark */
284 * precise_ip:
286 * 0 - SAMPLE_IP can have arbitrary skid
287 * 1 - SAMPLE_IP must have constant skid
288 * 2 - SAMPLE_IP requested to have 0 skid
289 * 3 - SAMPLE_IP must have 0 skid
291 * See also PERF_RECORD_MISC_EXACT_IP
293 precise_ip : 2, /* skid constraint */
294 mmap_data : 1, /* non-exec mmap data */
295 sample_id_all : 1, /* sample_type all events */
297 exclude_host : 1, /* don't count in host */
298 exclude_guest : 1, /* don't count in guest */
300 exclude_callchain_kernel : 1, /* exclude kernel callchains */
301 exclude_callchain_user : 1, /* exclude user callchains */
302 mmap2 : 1, /* include mmap with inode data */
304 __reserved_1 : 40;
306 union {
307 __u32 wakeup_events; /* wakeup every n events */
308 __u32 wakeup_watermark; /* bytes before wakeup */
311 __u32 bp_type;
312 union {
313 __u64 bp_addr;
314 __u64 config1; /* extension of config */
316 union {
317 __u64 bp_len;
318 __u64 config2; /* extension of config1 */
320 __u64 branch_sample_type; /* enum perf_branch_sample_type */
323 * Defines set of user regs to dump on samples.
324 * See asm/perf_regs.h for details.
326 __u64 sample_regs_user;
329 * Defines size of the user stack to dump on samples.
331 __u32 sample_stack_user;
333 /* Align to u64. */
334 __u32 __reserved_2;
337 #define perf_flags(attr) (*(&(attr)->read_format + 1))
340 * Ioctls that can be done on a perf event fd:
342 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
343 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
344 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
345 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
346 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
347 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
348 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
349 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
351 enum perf_event_ioc_flags {
352 PERF_IOC_FLAG_GROUP = 1U << 0,
356 * Structure of the page that can be mapped via mmap
358 struct perf_event_mmap_page {
359 __u32 version; /* version number of this structure */
360 __u32 compat_version; /* lowest version this is compat with */
363 * Bits needed to read the hw events in user-space.
365 * u32 seq, time_mult, time_shift, idx, width;
366 * u64 count, enabled, running;
367 * u64 cyc, time_offset;
368 * s64 pmc = 0;
370 * do {
371 * seq = pc->lock;
372 * barrier()
374 * enabled = pc->time_enabled;
375 * running = pc->time_running;
377 * if (pc->cap_usr_time && enabled != running) {
378 * cyc = rdtsc();
379 * time_offset = pc->time_offset;
380 * time_mult = pc->time_mult;
381 * time_shift = pc->time_shift;
384 * idx = pc->index;
385 * count = pc->offset;
386 * if (pc->cap_usr_rdpmc && idx) {
387 * width = pc->pmc_width;
388 * pmc = rdpmc(idx - 1);
391 * barrier();
392 * } while (pc->lock != seq);
394 * NOTE: for obvious reason this only works on self-monitoring
395 * processes.
397 __u32 lock; /* seqlock for synchronization */
398 __u32 index; /* hardware event identifier */
399 __s64 offset; /* add to hardware event value */
400 __u64 time_enabled; /* time event active */
401 __u64 time_running; /* time event on cpu */
402 union {
403 __u64 capabilities;
404 struct {
405 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
406 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
408 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
409 cap_user_time : 1, /* The time_* fields are used */
410 cap_user_time_zero : 1, /* The time_zero field is used */
411 cap_____res : 59;
416 * If cap_usr_rdpmc this field provides the bit-width of the value
417 * read using the rdpmc() or equivalent instruction. This can be used
418 * to sign extend the result like:
420 * pmc <<= 64 - width;
421 * pmc >>= 64 - width; // signed shift right
422 * count += pmc;
424 __u16 pmc_width;
427 * If cap_usr_time the below fields can be used to compute the time
428 * delta since time_enabled (in ns) using rdtsc or similar.
430 * u64 quot, rem;
431 * u64 delta;
433 * quot = (cyc >> time_shift);
434 * rem = cyc & ((1 << time_shift) - 1);
435 * delta = time_offset + quot * time_mult +
436 * ((rem * time_mult) >> time_shift);
438 * Where time_offset,time_mult,time_shift and cyc are read in the
439 * seqcount loop described above. This delta can then be added to
440 * enabled and possible running (if idx), improving the scaling:
442 * enabled += delta;
443 * if (idx)
444 * running += delta;
446 * quot = count / running;
447 * rem = count % running;
448 * count = quot * enabled + (rem * enabled) / running;
450 __u16 time_shift;
451 __u32 time_mult;
452 __u64 time_offset;
454 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
455 * from sample timestamps.
457 * time = timestamp - time_zero;
458 * quot = time / time_mult;
459 * rem = time % time_mult;
460 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
462 * And vice versa:
464 * quot = cyc >> time_shift;
465 * rem = cyc & ((1 << time_shift) - 1);
466 * timestamp = time_zero + quot * time_mult +
467 * ((rem * time_mult) >> time_shift);
469 __u64 time_zero;
470 __u32 size; /* Header size up to __reserved[] fields. */
473 * Hole for extension of the self monitor capabilities
476 __u8 __reserved[118*8+4]; /* align to 1k. */
479 * Control data for the mmap() data buffer.
481 * User-space reading the @data_head value should issue an smp_rmb(),
482 * after reading this value.
484 * When the mapping is PROT_WRITE the @data_tail value should be
485 * written by userspace to reflect the last read data, after issueing
486 * an smp_mb() to separate the data read from the ->data_tail store.
487 * In this case the kernel will not over-write unread data.
489 * See perf_output_put_handle() for the data ordering.
491 __u64 data_head; /* head in the data section */
492 __u64 data_tail; /* user-space written tail */
495 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
496 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
497 #define PERF_RECORD_MISC_KERNEL (1 << 0)
498 #define PERF_RECORD_MISC_USER (2 << 0)
499 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
500 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
501 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
503 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
505 * Indicates that the content of PERF_SAMPLE_IP points to
506 * the actual instruction that triggered the event. See also
507 * perf_event_attr::precise_ip.
509 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
511 * Reserve the last bit to indicate some extended misc field
513 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
515 struct perf_event_header {
516 __u32 type;
517 __u16 misc;
518 __u16 size;
521 enum perf_event_type {
524 * If perf_event_attr.sample_id_all is set then all event types will
525 * have the sample_type selected fields related to where/when
526 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
527 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
528 * just after the perf_event_header and the fields already present for
529 * the existing fields, i.e. at the end of the payload. That way a newer
530 * perf.data file will be supported by older perf tools, with these new
531 * optional fields being ignored.
533 * struct sample_id {
534 * { u32 pid, tid; } && PERF_SAMPLE_TID
535 * { u64 time; } && PERF_SAMPLE_TIME
536 * { u64 id; } && PERF_SAMPLE_ID
537 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
538 * { u32 cpu, res; } && PERF_SAMPLE_CPU
539 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
540 * } && perf_event_attr::sample_id_all
542 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
543 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
544 * relative to header.size.
548 * The MMAP events record the PROT_EXEC mappings so that we can
549 * correlate userspace IPs to code. They have the following structure:
551 * struct {
552 * struct perf_event_header header;
554 * u32 pid, tid;
555 * u64 addr;
556 * u64 len;
557 * u64 pgoff;
558 * char filename[];
559 * struct sample_id sample_id;
560 * };
562 PERF_RECORD_MMAP = 1,
565 * struct {
566 * struct perf_event_header header;
567 * u64 id;
568 * u64 lost;
569 * struct sample_id sample_id;
570 * };
572 PERF_RECORD_LOST = 2,
575 * struct {
576 * struct perf_event_header header;
578 * u32 pid, tid;
579 * char comm[];
580 * struct sample_id sample_id;
581 * };
583 PERF_RECORD_COMM = 3,
586 * struct {
587 * struct perf_event_header header;
588 * u32 pid, ppid;
589 * u32 tid, ptid;
590 * u64 time;
591 * struct sample_id sample_id;
592 * };
594 PERF_RECORD_EXIT = 4,
597 * struct {
598 * struct perf_event_header header;
599 * u64 time;
600 * u64 id;
601 * u64 stream_id;
602 * struct sample_id sample_id;
603 * };
605 PERF_RECORD_THROTTLE = 5,
606 PERF_RECORD_UNTHROTTLE = 6,
609 * struct {
610 * struct perf_event_header header;
611 * u32 pid, ppid;
612 * u32 tid, ptid;
613 * u64 time;
614 * struct sample_id sample_id;
615 * };
617 PERF_RECORD_FORK = 7,
620 * struct {
621 * struct perf_event_header header;
622 * u32 pid, tid;
624 * struct read_format values;
625 * struct sample_id sample_id;
626 * };
628 PERF_RECORD_READ = 8,
631 * struct {
632 * struct perf_event_header header;
635 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
636 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
637 * # is fixed relative to header.
640 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
641 * { u64 ip; } && PERF_SAMPLE_IP
642 * { u32 pid, tid; } && PERF_SAMPLE_TID
643 * { u64 time; } && PERF_SAMPLE_TIME
644 * { u64 addr; } && PERF_SAMPLE_ADDR
645 * { u64 id; } && PERF_SAMPLE_ID
646 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
647 * { u32 cpu, res; } && PERF_SAMPLE_CPU
648 * { u64 period; } && PERF_SAMPLE_PERIOD
650 * { struct read_format values; } && PERF_SAMPLE_READ
652 * { u64 nr,
653 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
656 * # The RAW record below is opaque data wrt the ABI
658 * # That is, the ABI doesn't make any promises wrt to
659 * # the stability of its content, it may vary depending
660 * # on event, hardware, kernel version and phase of
661 * # the moon.
663 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
666 * { u32 size;
667 * char data[size];}&& PERF_SAMPLE_RAW
669 * { u64 nr;
670 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
672 * { u64 abi; # enum perf_sample_regs_abi
673 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
675 * { u64 size;
676 * char data[size];
677 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
679 * { u64 weight; } && PERF_SAMPLE_WEIGHT
680 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
681 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
682 * };
684 PERF_RECORD_SAMPLE = 9,
687 * The MMAP2 records are an augmented version of MMAP, they add
688 * maj, min, ino numbers to be used to uniquely identify each mapping
690 * struct {
691 * struct perf_event_header header;
693 * u32 pid, tid;
694 * u64 addr;
695 * u64 len;
696 * u64 pgoff;
697 * u32 maj;
698 * u32 min;
699 * u64 ino;
700 * u64 ino_generation;
701 * char filename[];
702 * struct sample_id sample_id;
703 * };
705 PERF_RECORD_MMAP2 = 10,
707 PERF_RECORD_MAX, /* non-ABI */
710 #define PERF_MAX_STACK_DEPTH 127
712 enum perf_callchain_context {
713 PERF_CONTEXT_HV = (__u64)-32,
714 PERF_CONTEXT_KERNEL = (__u64)-128,
715 PERF_CONTEXT_USER = (__u64)-512,
717 PERF_CONTEXT_GUEST = (__u64)-2048,
718 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
719 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
721 PERF_CONTEXT_MAX = (__u64)-4095,
724 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
725 #define PERF_FLAG_FD_OUTPUT (1U << 1)
726 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
727 #define PERF_FLAG_FD_CLOEXEC (1U << 3) /* O_CLOEXEC */
729 union perf_mem_data_src {
730 __u64 val;
731 struct {
732 __u64 mem_op:5, /* type of opcode */
733 mem_lvl:14, /* memory hierarchy level */
734 mem_snoop:5, /* snoop mode */
735 mem_lock:2, /* lock instr */
736 mem_dtlb:7, /* tlb access */
737 mem_rsvd:31;
741 /* type of opcode (load/store/prefetch,code) */
742 #define PERF_MEM_OP_NA 0x01 /* not available */
743 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */
744 #define PERF_MEM_OP_STORE 0x04 /* store instruction */
745 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
746 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
747 #define PERF_MEM_OP_SHIFT 0
749 /* memory hierarchy (memory level, hit or miss) */
750 #define PERF_MEM_LVL_NA 0x01 /* not available */
751 #define PERF_MEM_LVL_HIT 0x02 /* hit level */
752 #define PERF_MEM_LVL_MISS 0x04 /* miss level */
753 #define PERF_MEM_LVL_L1 0x08 /* L1 */
754 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
755 #define PERF_MEM_LVL_L2 0x20 /* L2 */
756 #define PERF_MEM_LVL_L3 0x40 /* L3 */
757 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
758 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
759 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
760 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
761 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
762 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
763 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
764 #define PERF_MEM_LVL_SHIFT 5
766 /* snoop mode */
767 #define PERF_MEM_SNOOP_NA 0x01 /* not available */
768 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
769 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
770 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
771 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
772 #define PERF_MEM_SNOOP_SHIFT 19
774 /* locked instruction */
775 #define PERF_MEM_LOCK_NA 0x01 /* not available */
776 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
777 #define PERF_MEM_LOCK_SHIFT 24
779 /* TLB access */
780 #define PERF_MEM_TLB_NA 0x01 /* not available */
781 #define PERF_MEM_TLB_HIT 0x02 /* hit level */
782 #define PERF_MEM_TLB_MISS 0x04 /* miss level */
783 #define PERF_MEM_TLB_L1 0x08 /* L1 */
784 #define PERF_MEM_TLB_L2 0x10 /* L2 */
785 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
786 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
787 #define PERF_MEM_TLB_SHIFT 26
789 #define PERF_MEM_S(a, s) \
790 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
793 * single taken branch record layout:
795 * from: source instruction (may not always be a branch insn)
796 * to: branch target
797 * mispred: branch target was mispredicted
798 * predicted: branch target was predicted
800 * support for mispred, predicted is optional. In case it
801 * is not supported mispred = predicted = 0.
803 * in_tx: running in a hardware transaction
804 * abort: aborting a hardware transaction
806 struct perf_branch_entry {
807 __u64 from;
808 __u64 to;
809 __u64 mispred:1, /* target mispredicted */
810 predicted:1,/* target predicted */
811 in_tx:1, /* in transaction */
812 abort:1, /* transaction abort */
813 reserved:60;