Merge https://source.denx.de/u-boot/custodians/u-boot-snapdragon
[u-boot.git] / disk / part_efi.c
blob932d058c184ce6946b7142e7c2d9637b28e4661e
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2008 RuggedCom, Inc.
4 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 */
7 /*
8 * NOTE:
9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10 * limits the maximum size of addressable storage to < 2 tebibytes
13 #define LOG_CATEGORY LOGC_FS
15 #include <blk.h>
16 #include <log.h>
17 #include <part.h>
18 #include <u-boot/uuid.h>
19 #include <asm/cache.h>
20 #include <asm/global_data.h>
21 #include <asm/unaligned.h>
22 #include <command.h>
23 #include <fdtdec.h>
24 #include <ide.h>
25 #include <malloc.h>
26 #include <memalign.h>
27 #include <part_efi.h>
28 #include <dm/ofnode.h>
29 #include <linux/compiler.h>
30 #include <linux/ctype.h>
31 #include <linux/printk.h>
32 #include <u-boot/crc.h>
34 /* GUID for basic data partitons */
35 #if CONFIG_IS_ENABLED(EFI_PARTITION)
36 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
37 #endif
39 /**
40 * efi_crc32() - EFI version of crc32 function
41 * @buf: buffer to calculate crc32 of
42 * @len - length of buf
44 * Description: Returns EFI-style CRC32 value for @buf
46 static inline u32 efi_crc32(const void *buf, u32 len)
48 return crc32(0, buf, len);
52 * Private function prototypes
55 static int pmbr_part_valid(struct partition *part);
56 static int is_pmbr_valid(legacy_mbr * mbr);
57 static int is_gpt_valid(struct blk_desc *desc, u64 lba, gpt_header *pgpt_head,
58 gpt_entry **pgpt_pte);
59 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *desc,
60 gpt_header *pgpt_head);
61 static int is_pte_valid(gpt_entry * pte);
62 static int find_valid_gpt(struct blk_desc *desc, gpt_header *gpt_head,
63 gpt_entry **pgpt_pte);
65 static char *print_efiname(gpt_entry *pte)
67 static char name[PARTNAME_SZ + 1];
68 int i;
69 for (i = 0; i < PARTNAME_SZ; i++) {
70 u8 c;
71 c = pte->partition_name[i] & 0xff;
72 c = (c && !isprint(c)) ? '.' : c;
73 name[i] = c;
75 name[PARTNAME_SZ] = 0;
76 return name;
79 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
81 static int get_bootable(gpt_entry *p)
83 int ret = 0;
85 if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t)))
86 ret |= PART_EFI_SYSTEM_PARTITION;
87 if (p->attributes.fields.legacy_bios_bootable)
88 ret |= PART_BOOTABLE;
89 return ret;
92 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
93 lbaint_t lastlba)
95 uint32_t crc32_backup = 0;
96 uint32_t calc_crc32;
98 /* Check the GPT header signature */
99 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
100 log_debug("%s signature is wrong: %#llX != %#llX\n",
101 "GUID Partition Table Header",
102 le64_to_cpu(gpt_h->signature),
103 GPT_HEADER_SIGNATURE_UBOOT);
104 return -1;
107 /* Check the GUID Partition Table CRC */
108 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
109 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
111 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
112 le32_to_cpu(gpt_h->header_size));
114 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
116 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
117 log_debug("%s: CRC is wrong: %#x != %#x\n",
118 "GUID Partition Table Header",
119 le32_to_cpu(crc32_backup), calc_crc32);
120 return -1;
124 * Check that the my_lba entry points to the LBA that contains the GPT
126 if (le64_to_cpu(gpt_h->my_lba) != lba) {
127 log_debug("GPT: my_lba incorrect: %llX != " LBAF "\n",
128 le64_to_cpu(gpt_h->my_lba), lba);
129 return -1;
133 * Check that the first_usable_lba and that the last_usable_lba are
134 * within the disk.
136 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
137 log_debug("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
138 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
139 return -1;
141 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
142 log_debug("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
143 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
144 return -1;
147 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
148 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
149 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
151 return 0;
154 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
156 uint32_t calc_crc32;
158 /* Check the GUID Partition Table Entry Array CRC */
159 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
160 le32_to_cpu(gpt_h->num_partition_entries) *
161 le32_to_cpu(gpt_h->sizeof_partition_entry));
163 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
164 log_debug("%s: %#x != %#x\n",
165 "GUID Partition Table Entry Array CRC is wrong",
166 le32_to_cpu(gpt_h->partition_entry_array_crc32),
167 calc_crc32);
168 return -1;
171 return 0;
174 static void prepare_backup_gpt_header(gpt_header *gpt_h)
176 uint32_t calc_crc32;
177 uint64_t val;
179 /* recalculate the values for the Backup GPT Header */
180 val = le64_to_cpu(gpt_h->my_lba);
181 gpt_h->my_lba = gpt_h->alternate_lba;
182 gpt_h->alternate_lba = cpu_to_le64(val);
183 gpt_h->partition_entry_lba =
184 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
185 gpt_h->header_crc32 = 0;
187 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
188 le32_to_cpu(gpt_h->header_size));
189 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
192 #if CONFIG_IS_ENABLED(EFI_PARTITION)
194 * Public Functions (include/part.h)
198 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
199 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
201 int get_disk_guid(struct blk_desc *desc, char *guid)
203 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
204 gpt_entry *gpt_pte = NULL;
205 unsigned char *guid_bin;
207 /* This function validates AND fills in the GPT header and PTE */
208 if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
209 return -EINVAL;
211 guid_bin = gpt_head->disk_guid.b;
212 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
214 /* Remember to free pte */
215 free(gpt_pte);
216 return 0;
219 static void __maybe_unused part_print_efi(struct blk_desc *desc)
221 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
222 gpt_entry *gpt_pte = NULL;
223 int i = 0;
224 unsigned char *uuid;
226 /* This function validates AND fills in the GPT header and PTE */
227 if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
228 return;
230 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
232 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
233 printf("\tAttributes\n");
234 printf("\tType GUID\n");
235 printf("\tPartition GUID\n");
237 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
238 /* Skip invalid PTE */
239 if (!is_pte_valid(&gpt_pte[i]))
240 continue;
242 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
243 le64_to_cpu(gpt_pte[i].starting_lba),
244 le64_to_cpu(gpt_pte[i].ending_lba),
245 print_efiname(&gpt_pte[i]));
246 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
247 uuid = (unsigned char *)gpt_pte[i].partition_type_guid.b;
248 if (IS_ENABLED(CONFIG_PARTITION_TYPE_GUID))
249 printf("\ttype:\t%pUl\n\t\t(%pUs)\n", uuid, uuid);
250 else
251 printf("\ttype:\t%pUl\n", uuid);
252 uuid = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
253 printf("\tguid:\t%pUl\n", uuid);
256 /* Remember to free pte */
257 free(gpt_pte);
258 return;
261 static int __maybe_unused part_get_info_efi(struct blk_desc *desc, int part,
262 struct disk_partition *info)
264 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, desc->blksz);
265 gpt_entry *gpt_pte = NULL;
267 /* "part" argument must be at least 1 */
268 if (part < 1) {
269 log_debug("Invalid Argument(s)\n");
270 return -EINVAL;
273 /* This function validates AND fills in the GPT header and PTE */
274 if (find_valid_gpt(desc, gpt_head, &gpt_pte) != 1)
275 return -EINVAL;
277 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
278 !is_pte_valid(&gpt_pte[part - 1])) {
279 log_debug("Invalid partition number %d\n", part);
280 free(gpt_pte);
281 return -EPERM;
284 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
285 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
286 /* The ending LBA is inclusive, to calculate size, add 1 to it */
287 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
288 - info->start;
289 info->blksz = desc->blksz;
291 snprintf((char *)info->name, sizeof(info->name), "%s",
292 print_efiname(&gpt_pte[part - 1]));
293 strcpy((char *)info->type, "U-Boot");
294 info->bootable = get_bootable(&gpt_pte[part - 1]);
295 info->type_flags = gpt_pte[part - 1].attributes.fields.type_guid_specific;
296 if (CONFIG_IS_ENABLED(PARTITION_UUIDS)) {
297 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b,
298 (char *)disk_partition_uuid(info),
299 UUID_STR_FORMAT_GUID);
301 if (IS_ENABLED(CONFIG_PARTITION_TYPE_GUID)) {
302 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
303 (char *)disk_partition_type_guid(info),
304 UUID_STR_FORMAT_GUID);
307 log_debug("start 0x" LBAF ", size 0x" LBAF ", name %s\n", info->start,
308 info->size, info->name);
310 /* Remember to free pte */
311 free(gpt_pte);
312 return 0;
315 static int part_test_efi(struct blk_desc *desc)
317 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, desc->blksz);
319 /* Read legacy MBR from block 0 and validate it */
320 if ((blk_dread(desc, 0, 1, (ulong *)legacymbr) != 1)
321 || (is_pmbr_valid(legacymbr) != 1)) {
323 * TegraPT is compatible with EFI part, but it
324 * cannot pass the Protective MBR check. Skip it
325 * if CONFIG_TEGRA_PARTITION is enabled and the
326 * device in question is eMMC.
328 if (IS_ENABLED(CONFIG_TEGRA_PARTITION))
329 if (!is_pmbr_valid(legacymbr) &&
330 desc->uclass_id == UCLASS_MMC &&
331 !desc->devnum)
332 return 0;
333 return -1;
335 return 0;
339 * set_protective_mbr(): Set the EFI protective MBR
340 * @param desc - block device descriptor
342 * Return: - zero on success, otherwise error
344 static int set_protective_mbr(struct blk_desc *desc)
346 /* Setup the Protective MBR */
347 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, desc->blksz);
348 if (p_mbr == NULL) {
349 log_debug("calloc failed!\n");
350 return -ENOMEM;
353 /* Read MBR to backup boot code if it exists */
354 if (blk_dread(desc, 0, 1, p_mbr) != 1) {
355 log_debug("** Can't read from device %d **\n",
356 desc->devnum);
357 return -EIO;
360 /* Clear all data in MBR except of backed up boot code */
361 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
362 MSDOS_MBR_BOOT_CODE_SIZE);
364 /* Append signature */
365 p_mbr->signature = MSDOS_MBR_SIGNATURE;
366 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
367 p_mbr->partition_record[0].start_sect = 1;
368 p_mbr->partition_record[0].nr_sects = (u32)desc->lba - 1;
370 /* Write MBR sector to the MMC device */
371 if (blk_dwrite(desc, 0, 1, p_mbr) != 1) {
372 log_debug("** Can't write to device %d **\n", desc->devnum);
373 return -EIO;
376 return 0;
379 int write_gpt_table(struct blk_desc *desc, gpt_header *gpt_h, gpt_entry *gpt_e)
381 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
382 * sizeof(gpt_entry)), desc);
383 u32 calc_crc32;
385 debug("max lba: %x\n", (u32)desc->lba);
386 /* Setup the Protective MBR */
387 if (set_protective_mbr(desc) < 0)
388 goto err;
390 /* Generate CRC for the Primary GPT Header */
391 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
392 le32_to_cpu(gpt_h->num_partition_entries) *
393 le32_to_cpu(gpt_h->sizeof_partition_entry));
394 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
396 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
397 le32_to_cpu(gpt_h->header_size));
398 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
400 /* Write the First GPT to the block right after the Legacy MBR */
401 if (blk_dwrite(desc, 1, 1, gpt_h) != 1)
402 goto err;
404 if (blk_dwrite(desc, le64_to_cpu(gpt_h->partition_entry_lba),
405 pte_blk_cnt, gpt_e) != pte_blk_cnt)
406 goto err;
408 prepare_backup_gpt_header(gpt_h);
410 if (blk_dwrite(desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
411 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
412 goto err;
414 if (blk_dwrite(desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
415 gpt_h) != 1)
416 goto err;
418 debug("GPT successfully written to block device!\n");
419 return 0;
421 err:
422 log_debug("** Can't write to device %d **\n", desc->devnum);
423 return -EIO;
426 int gpt_fill_pte(struct blk_desc *desc,
427 gpt_header *gpt_h, gpt_entry *gpt_e,
428 struct disk_partition *partitions, int parts)
430 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
431 lbaint_t last_usable_lba = (lbaint_t)
432 le64_to_cpu(gpt_h->last_usable_lba);
433 int i, k;
434 size_t efiname_len, dosname_len;
435 unsigned char *bin_uuid;
436 #ifdef CONFIG_PARTITION_TYPE_GUID
437 char *str_type_guid;
438 unsigned char *bin_type_guid;
439 #endif
440 size_t hdr_start = gpt_h->my_lba;
441 size_t hdr_end = hdr_start + 1;
443 size_t pte_start = gpt_h->partition_entry_lba;
444 size_t pte_end = pte_start +
445 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
446 desc->blksz;
448 for (i = 0; i < parts; i++) {
449 /* partition starting lba */
450 lbaint_t start = partitions[i].start;
451 lbaint_t size = partitions[i].size;
453 if (start) {
454 offset = start + size;
455 } else {
456 start = offset;
457 offset += size;
461 * If our partition overlaps with either the GPT
462 * header, or the partition entry, reject it.
464 if (((start < hdr_end && hdr_start < (start + size)) ||
465 (start < pte_end && pte_start < (start + size)))) {
466 log_debug("Partition overlap\n");
467 return -ENOSPC;
470 gpt_e[i].starting_lba = cpu_to_le64(start);
472 if (offset > (last_usable_lba + 1)) {
473 log_debug("Partitions layout exceeds disk size\n");
474 return -E2BIG;
476 /* partition ending lba */
477 if ((i == parts - 1) && (size == 0))
478 /* extend the last partition to maximuim */
479 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
480 else
481 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
483 #ifdef CONFIG_PARTITION_TYPE_GUID
484 str_type_guid = partitions[i].type_guid;
485 bin_type_guid = gpt_e[i].partition_type_guid.b;
486 if (strlen(str_type_guid)) {
487 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
488 UUID_STR_FORMAT_GUID)) {
489 log_debug("Partition no. %d: invalid type guid: %s\n",
490 i, str_type_guid);
491 return -EINVAL;
493 } else {
494 /* default partition type GUID */
495 memcpy(bin_type_guid,
496 &partition_basic_data_guid, 16);
498 #else
499 /* partition type GUID */
500 memcpy(gpt_e[i].partition_type_guid.b,
501 &partition_basic_data_guid, 16);
502 #endif
504 if (CONFIG_IS_ENABLED(PARTITION_UUIDS)) {
505 const char *str_uuid;
507 str_uuid = disk_partition_uuid(&partitions[i]);
508 bin_uuid = gpt_e[i].unique_partition_guid.b;
510 if (uuid_str_to_bin(str_uuid, bin_uuid,
511 UUID_STR_FORMAT_GUID)) {
512 log_debug("Partition no. %d: invalid guid: %s\n",
513 i, str_uuid);
514 return -EINVAL;
518 /* partition attributes */
519 memset(&gpt_e[i].attributes, 0,
520 sizeof(gpt_entry_attributes));
522 if (partitions[i].bootable & PART_BOOTABLE)
523 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
525 /* partition name */
526 efiname_len = sizeof(gpt_e[i].partition_name)
527 / sizeof(efi_char16_t);
528 dosname_len = sizeof(partitions[i].name);
530 memset(gpt_e[i].partition_name, 0,
531 sizeof(gpt_e[i].partition_name));
533 for (k = 0; k < min(dosname_len, efiname_len); k++)
534 gpt_e[i].partition_name[k] =
535 (efi_char16_t)(partitions[i].name[k]);
537 debug("%s: name: %s offset[%d]: 0x" LBAF
538 " size[%d]: 0x" LBAF "\n",
539 __func__, partitions[i].name, i,
540 offset, i, size);
543 return 0;
546 static uint32_t partition_entries_offset(struct blk_desc *desc)
548 uint32_t offset_blks = 2;
549 uint32_t __maybe_unused offset_bytes;
550 int __maybe_unused config_offset;
552 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
554 * Some architectures require their SPL loader at a fixed
555 * address within the first 16KB of the disk. To avoid an
556 * overlap with the partition entries of the EFI partition
557 * table, the first safe offset (in bytes, from the start of
558 * the disk) for the entries can be set in
559 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
561 offset_bytes =
562 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, desc);
563 offset_blks = offset_bytes / desc->blksz;
564 #endif
566 #if defined(CONFIG_OF_CONTROL)
568 * Allow the offset of the first partition entires (in bytes
569 * from the start of the device) to be specified as a property
570 * of the device tree '/config' node.
572 config_offset = ofnode_conf_read_int(
573 "u-boot,efi-partition-entries-offset", -EINVAL);
574 if (config_offset != -EINVAL) {
575 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, desc);
576 offset_blks = offset_bytes / desc->blksz;
578 #endif
580 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
583 * The earliest LBA this can be at is LBA#2 (i.e. right behind
584 * the (protective) MBR and the GPT header.
586 if (offset_blks < 2)
587 offset_blks = 2;
589 return offset_blks;
592 int gpt_fill_header(struct blk_desc *desc, gpt_header *gpt_h, char *str_guid,
593 int parts_count)
595 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
596 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
597 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
598 gpt_h->my_lba = cpu_to_le64(1);
599 gpt_h->alternate_lba = cpu_to_le64(desc->lba - 1);
600 gpt_h->last_usable_lba = cpu_to_le64(desc->lba - 34);
601 gpt_h->partition_entry_lba =
602 cpu_to_le64(partition_entries_offset(desc));
603 gpt_h->first_usable_lba =
604 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
605 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
606 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
607 gpt_h->header_crc32 = 0;
608 gpt_h->partition_entry_array_crc32 = 0;
610 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
611 return -1;
613 return 0;
616 int gpt_restore(struct blk_desc *desc, char *str_disk_guid,
617 struct disk_partition *partitions, int parts_count)
619 gpt_header *gpt_h;
620 gpt_entry *gpt_e;
621 int ret, size;
623 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), desc);
624 gpt_h = malloc_cache_aligned(size);
625 if (gpt_h == NULL) {
626 log_debug("calloc failed!\n");
627 return -ENOMEM;
629 memset(gpt_h, 0, size);
631 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
632 desc);
633 gpt_e = malloc_cache_aligned(size);
634 if (gpt_e == NULL) {
635 log_debug("calloc failed!\n");
636 free(gpt_h);
637 return -ENOMEM;
639 memset(gpt_e, 0, size);
641 /* Generate Primary GPT header (LBA1) */
642 ret = gpt_fill_header(desc, gpt_h, str_disk_guid, parts_count);
643 if (ret)
644 goto err;
646 /* Generate partition entries */
647 ret = gpt_fill_pte(desc, gpt_h, gpt_e, partitions, parts_count);
648 if (ret)
649 goto err;
651 /* Write GPT partition table */
652 ret = write_gpt_table(desc, gpt_h, gpt_e);
654 err:
655 free(gpt_e);
656 free(gpt_h);
657 return ret;
661 * gpt_convert_efi_name_to_char() - convert u16 string to char string
663 * TODO: this conversion only supports ANSI characters
665 * @s: target buffer
666 * @es: u16 string to be converted
667 * @n: size of target buffer
669 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
671 char *ess = es;
672 int i, j;
674 memset(s, '\0', n);
676 for (i = 0, j = 0; j < n; i += 2, j++) {
677 s[j] = ess[i];
678 if (!ess[i])
679 return;
683 int gpt_verify_headers(struct blk_desc *desc, gpt_header *gpt_head,
684 gpt_entry **gpt_pte)
687 * This function validates AND
688 * fills in the GPT header and PTE
690 if (is_gpt_valid(desc,
691 GPT_PRIMARY_PARTITION_TABLE_LBA,
692 gpt_head, gpt_pte) != 1) {
693 log_debug("Invalid GPT\n");
694 return -1;
697 /* Free pte before allocating again */
698 free(*gpt_pte);
701 * Check that the alternate_lba entry points to the last LBA
703 if (le64_to_cpu(gpt_head->alternate_lba) != (desc->lba - 1)) {
704 log_debug("Misplaced Backup GPT\n");
705 return -1;
708 if (is_gpt_valid(desc, (desc->lba - 1),
709 gpt_head, gpt_pte) != 1) {
710 log_debug("Invalid Backup GPT\n");
711 return -1;
714 return 0;
717 static void restore_primary_gpt_header(gpt_header *gpt_h, struct blk_desc *desc)
719 u32 calc_crc32;
720 u64 val;
722 /* recalculate the values for the Primary GPT Header */
723 val = le64_to_cpu(gpt_h->my_lba);
724 gpt_h->my_lba = gpt_h->alternate_lba;
725 gpt_h->alternate_lba = cpu_to_le64(val);
726 gpt_h->partition_entry_lba = cpu_to_le64(partition_entries_offset(desc));
728 gpt_h->header_crc32 = 0;
730 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
731 le32_to_cpu(gpt_h->header_size));
732 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
735 static int write_one_gpt_table(struct blk_desc *desc, gpt_header *gpt_h,
736 gpt_entry *gpt_e)
738 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
739 * sizeof(gpt_entry)), desc);
740 lbaint_t start;
741 int ret = 0;
743 start = le64_to_cpu(gpt_h->my_lba);
744 if (blk_dwrite(desc, start, 1, gpt_h) != 1) {
745 ret = -1;
746 goto out;
749 start = le64_to_cpu(gpt_h->partition_entry_lba);
750 if (blk_dwrite(desc, start, pte_blk_cnt, gpt_e) != pte_blk_cnt) {
751 ret = -1;
752 goto out;
755 out:
756 return ret;
759 int gpt_repair_headers(struct blk_desc *desc)
761 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h1, 1, desc->blksz);
762 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_h2, 1, desc->blksz);
763 gpt_entry *gpt_e1 = NULL, *gpt_e2 = NULL;
764 int is_gpt1_valid, is_gpt2_valid;
765 int ret = -1;
767 is_gpt1_valid = is_gpt_valid(desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
768 gpt_h1, &gpt_e1);
769 is_gpt2_valid = is_gpt_valid(desc, desc->lba - 1,
770 gpt_h2, &gpt_e2);
772 if (is_gpt1_valid && is_gpt2_valid) {
773 ret = 0;
774 goto out;
777 if (is_gpt1_valid && !is_gpt2_valid) {
778 prepare_backup_gpt_header(gpt_h1);
779 ret = write_one_gpt_table(desc, gpt_h1, gpt_e1);
780 goto out;
783 if (!is_gpt1_valid && is_gpt2_valid) {
784 restore_primary_gpt_header(gpt_h2, desc);
785 ret = write_one_gpt_table(desc, gpt_h2, gpt_e2);
786 goto out;
789 if (!is_gpt1_valid && !is_gpt2_valid) {
790 ret = -1;
791 goto out;
794 out:
795 if (is_gpt1_valid)
796 free(gpt_e1);
797 if (is_gpt2_valid)
798 free(gpt_e2);
800 return ret;
803 int gpt_verify_partitions(struct blk_desc *desc,
804 struct disk_partition *partitions, int parts,
805 gpt_header *gpt_head, gpt_entry **gpt_pte)
807 char efi_str[PARTNAME_SZ + 1];
808 u64 gpt_part_size;
809 gpt_entry *gpt_e;
810 int ret, i;
812 ret = gpt_verify_headers(desc, gpt_head, gpt_pte);
813 if (ret)
814 return ret;
816 gpt_e = *gpt_pte;
818 for (i = 0; i < parts; i++) {
819 if (i == gpt_head->num_partition_entries) {
820 pr_err("More partitions than allowed!\n");
821 return -1;
824 /* Check if GPT and ENV partition names match */
825 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
826 PARTNAME_SZ + 1);
828 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
829 __func__, i, efi_str, partitions[i].name);
831 if (strncmp(efi_str, (char *)partitions[i].name,
832 sizeof(partitions->name))) {
833 pr_err("Partition name: %s does not match %s!\n",
834 efi_str, (char *)partitions[i].name);
835 return -1;
838 /* Check if GPT and ENV sizes match */
839 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
840 le64_to_cpu(gpt_e[i].starting_lba) + 1;
841 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
842 (unsigned long long)gpt_part_size,
843 (unsigned long long)partitions[i].size);
845 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
846 /* We do not check the extend partition size */
847 if ((i == parts - 1) && (partitions[i].size == 0))
848 continue;
850 pr_err("Partition %s size: %llu does not match %llu!\n",
851 efi_str, (unsigned long long)gpt_part_size,
852 (unsigned long long)partitions[i].size);
853 return -1;
857 * Start address is optional - check only if provided
858 * in '$partition' variable
860 if (!partitions[i].start) {
861 debug("\n");
862 continue;
865 /* Check if GPT and ENV start LBAs match */
866 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
867 le64_to_cpu(gpt_e[i].starting_lba),
868 (unsigned long long)partitions[i].start);
870 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
871 pr_err("Partition %s start: %llu does not match %llu!\n",
872 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
873 (unsigned long long)partitions[i].start);
874 return -1;
878 return 0;
881 int is_valid_gpt_buf(struct blk_desc *desc, void *buf)
883 gpt_header *gpt_h;
884 gpt_entry *gpt_e;
886 /* determine start of GPT Header in the buffer */
887 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * desc->blksz);
888 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
889 desc->lba))
890 return -1;
892 /* determine start of GPT Entries in the buffer */
893 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
894 desc->blksz);
895 if (validate_gpt_entries(gpt_h, gpt_e))
896 return -1;
898 return 0;
901 int write_mbr_and_gpt_partitions(struct blk_desc *desc, void *buf)
903 gpt_header *gpt_h;
904 gpt_entry *gpt_e;
905 int gpt_e_blk_cnt;
906 lbaint_t lba;
907 int cnt;
909 if (is_valid_gpt_buf(desc, buf))
910 return -1;
912 /* determine start of GPT Header in the buffer */
913 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * desc->blksz);
915 /* determine start of GPT Entries in the buffer */
916 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * desc->blksz);
917 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
918 le32_to_cpu(gpt_h->sizeof_partition_entry)),
919 desc);
921 /* write MBR */
922 lba = 0; /* MBR is always at 0 */
923 cnt = 1; /* MBR (1 block) */
924 if (blk_dwrite(desc, lba, cnt, buf) != cnt) {
925 log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
926 "MBR", cnt, lba);
927 return 1;
930 /* write Primary GPT */
931 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
932 cnt = 1; /* GPT Header (1 block) */
933 if (blk_dwrite(desc, lba, cnt, gpt_h) != cnt) {
934 log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
935 "Primary GPT Header", cnt, lba);
936 return 1;
939 lba = le64_to_cpu(gpt_h->partition_entry_lba);
940 cnt = gpt_e_blk_cnt;
941 if (blk_dwrite(desc, lba, cnt, gpt_e) != cnt) {
942 log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
943 "Primary GPT Entries", cnt, lba);
944 return 1;
947 prepare_backup_gpt_header(gpt_h);
949 /* write Backup GPT */
950 lba = le64_to_cpu(gpt_h->partition_entry_lba);
951 cnt = gpt_e_blk_cnt;
952 if (blk_dwrite(desc, lba, cnt, gpt_e) != cnt) {
953 log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
954 "Backup GPT Entries", cnt, lba);
955 return 1;
958 lba = le64_to_cpu(gpt_h->my_lba);
959 cnt = 1; /* GPT Header (1 block) */
960 if (blk_dwrite(desc, lba, cnt, gpt_h) != cnt) {
961 log_debug("failed writing '%s' (%d blks at 0x" LBAF ")\n",
962 "Backup GPT Header", cnt, lba);
963 return 1;
966 /* Update the partition table entries*/
967 part_init(desc);
969 return 0;
971 #endif
974 * Private functions
977 * pmbr_part_valid(): Check for EFI partition signature
979 * Returns: 1 if EFI GPT partition type is found.
981 static int pmbr_part_valid(struct partition *part)
983 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
984 get_unaligned_le32(&part->start_sect) == 1UL) {
985 return 1;
988 return 0;
992 * is_pmbr_valid(): test Protective MBR for validity
994 * @mbr: Pointer to Master Boot-Record data
996 * Returns: 1 if PMBR is valid, 0 otherwise.
997 * Validity depends on two things:
998 * 1) MSDOS signature is in the last two bytes of the MBR
999 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
1001 static int is_pmbr_valid(legacy_mbr *mbr)
1003 uint sig = le16_to_cpu(mbr->signature);
1004 int i = 0;
1006 if (sig != MSDOS_MBR_SIGNATURE) {
1007 log_debug("Invalid signature %x\n", sig);
1008 return 0;
1010 log_debug("Signature %x valid\n", sig);
1012 for (i = 0; i < 4; i++) {
1013 if (pmbr_part_valid(&mbr->partition_record[i])) {
1014 return 1;
1017 return 0;
1021 * is_gpt_valid() - tests one GPT header and PTEs for validity
1023 * lba is the logical block address of the GPT header to test
1024 * gpt is a GPT header ptr, filled on return.
1025 * ptes is a PTEs ptr, filled on return.
1027 * Description: returns 1 if valid, 0 on error, 2 if ignored header
1028 * If valid, returns pointers to PTEs.
1030 static int is_gpt_valid(struct blk_desc *desc, u64 lba, gpt_header *pgpt_head,
1031 gpt_entry **pgpt_pte)
1033 /* Confirm valid arguments prior to allocation. */
1034 if (!desc || !pgpt_head) {
1035 log_debug("Invalid Argument(s)\n");
1036 return 0;
1039 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, desc->blksz);
1041 /* Read MBR Header from device */
1042 if (blk_dread(desc, 0, 1, (ulong *)mbr) != 1) {
1043 log_debug("Can't read MBR header\n");
1044 return 0;
1047 /* Read GPT Header from device */
1048 if (blk_dread(desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
1049 log_debug("Can't read GPT header\n");
1050 return 0;
1053 /* Invalid but nothing to yell about. */
1054 if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
1055 log_debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
1056 return 2;
1059 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, desc->lba))
1060 return 0;
1062 if (desc->sig_type == SIG_TYPE_NONE) {
1063 efi_guid_t empty = {};
1064 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
1065 desc->sig_type = SIG_TYPE_GUID;
1066 memcpy(&desc->guid_sig, &pgpt_head->disk_guid,
1067 sizeof(empty));
1068 } else if (mbr->unique_mbr_signature != 0) {
1069 desc->sig_type = SIG_TYPE_MBR;
1070 desc->mbr_sig = mbr->unique_mbr_signature;
1074 /* Read and allocate Partition Table Entries */
1075 *pgpt_pte = alloc_read_gpt_entries(desc, pgpt_head);
1076 if (!*pgpt_pte)
1077 return 0;
1079 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
1080 free(*pgpt_pte);
1081 return 0;
1084 /* We're done, all's well */
1085 return 1;
1089 * find_valid_gpt() - finds a valid GPT header and PTEs
1091 * gpt is a GPT header ptr, filled on return.
1092 * ptes is a PTEs ptr, filled on return.
1094 * Description: returns 1 if found a valid gpt, 0 on error.
1095 * If valid, returns pointers to PTEs.
1097 static int find_valid_gpt(struct blk_desc *desc, gpt_header *gpt_head,
1098 gpt_entry **pgpt_pte)
1100 int r;
1102 r = is_gpt_valid(desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
1103 pgpt_pte);
1105 if (r != 1) {
1106 if (r != 2)
1107 log_debug("Invalid GPT\n");
1109 if (is_gpt_valid(desc, desc->lba - 1, gpt_head, pgpt_pte)
1110 != 1) {
1111 log_debug("Invalid Backup GPT\n");
1112 return 0;
1114 if (r != 2)
1115 log_debug(" Using Backup GPT\n");
1117 return 1;
1121 * alloc_read_gpt_entries(): reads partition entries from disk
1122 * @desc
1123 * @gpt - GPT header
1125 * Description: Returns ptes on success, NULL on error.
1126 * Allocates space for PTEs based on information found in @gpt.
1127 * Notes: remember to free pte when you're done!
1129 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *desc,
1130 gpt_header *pgpt_head)
1132 size_t count = 0, blk_cnt;
1133 lbaint_t blk;
1134 gpt_entry *pte = NULL;
1136 if (!desc || !pgpt_head) {
1137 log_debug("Invalid Argument(s)\n");
1138 return NULL;
1141 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1142 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1144 log_debug("count = %u * %u = %lu\n",
1145 (u32)le32_to_cpu(pgpt_head->num_partition_entries),
1146 (u32)le32_to_cpu(pgpt_head->sizeof_partition_entry),
1147 (ulong)count);
1149 /* Allocate memory for PTE, remember to FREE */
1150 if (count != 0) {
1151 pte = memalign(ARCH_DMA_MINALIGN,
1152 PAD_TO_BLOCKSIZE(count, desc));
1155 if (count == 0 || pte == NULL) {
1156 log_debug("ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1157 (ulong)count);
1158 return NULL;
1161 /* Read GPT Entries from device */
1162 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1163 blk_cnt = BLOCK_CNT(count, desc);
1164 if (blk_dread(desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1165 log_debug("Can't read GPT Entries\n");
1166 free(pte);
1167 return NULL;
1169 return pte;
1173 * is_pte_valid(): validates a single Partition Table Entry
1174 * @gpt_entry - Pointer to a single Partition Table Entry
1176 * Description: returns 1 if valid, 0 on error.
1178 static int is_pte_valid(gpt_entry * pte)
1180 efi_guid_t unused_guid;
1182 if (!pte) {
1183 log_debug("Invalid Argument(s)\n");
1184 return 0;
1187 /* Only one validation for now:
1188 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1190 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1192 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1193 sizeof(unused_guid.b)) == 0) {
1195 log_debug("Found an unused PTE GUID at 0x%08X\n",
1196 (unsigned int)(uintptr_t)pte);
1198 return 0;
1199 } else {
1200 return 1;
1205 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1206 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1207 * with EFI.
1209 U_BOOT_PART_TYPE(a_efi) = {
1210 .name = "EFI",
1211 .part_type = PART_TYPE_EFI,
1212 .max_entries = GPT_ENTRY_NUMBERS,
1213 .get_info = part_get_info_ptr(part_get_info_efi),
1214 .print = part_print_ptr(part_print_efi),
1215 .test = part_test_efi,