2 * MUSB OTG driver host support
4 * Copyright 2005 Mentor Graphics Corporation
5 * Copyright (C) 2005-2006 by Texas Instruments
6 * Copyright (C) 2006-2007 Nokia Corporation
7 * Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
23 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
26 * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
29 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
30 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/delay.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/list.h>
46 #include <linux/dma-mapping.h>
50 #include "linux-compat.h"
51 #include "usb-compat.h"
54 #include "musb_core.h"
55 #include "musb_host.h"
58 /* MUSB HOST status 22-mar-2006
60 * - There's still lots of partial code duplication for fault paths, so
61 * they aren't handled as consistently as they need to be.
63 * - PIO mostly behaved when last tested.
64 * + including ep0, with all usbtest cases 9, 10
65 * + usbtest 14 (ep0out) doesn't seem to run at all
66 * + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
67 * configurations, but otherwise double buffering passes basic tests.
68 * + for 2.6.N, for N > ~10, needs API changes for hcd framework.
70 * - DMA (CPPI) ... partially behaves, not currently recommended
71 * + about 1/15 the speed of typical EHCI implementations (PCI)
72 * + RX, all too often reqpkt seems to misbehave after tx
73 * + TX, no known issues (other than evident silicon issue)
75 * - DMA (Mentor/OMAP) ...has at least toggle update problems
77 * - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
78 * starvation ... nothing yet for TX, interrupt, or bulk.
80 * - Not tested with HNP, but some SRP paths seem to behave.
82 * NOTE 24-August-2006:
84 * - Bulk traffic finally uses both sides of hardware ep1, freeing up an
85 * extra endpoint for periodic use enabling hub + keybd + mouse. That
86 * mostly works, except that with "usbnet" it's easy to trigger cases
87 * with "ping" where RX loses. (a) ping to davinci, even "ping -f",
88 * fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
89 * although ARP RX wins. (That test was done with a full speed link.)
94 * NOTE on endpoint usage:
96 * CONTROL transfers all go through ep0. BULK ones go through dedicated IN
97 * and OUT endpoints ... hardware is dedicated for those "async" queue(s).
98 * (Yes, bulk _could_ use more of the endpoints than that, and would even
101 * INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
102 * So far that scheduling is both dumb and optimistic: the endpoint will be
103 * "claimed" until its software queue is no longer refilled. No multiplexing
104 * of transfers between endpoints, or anything clever.
108 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
109 struct urb
*urb
, int is_out
,
110 u8
*buf
, u32 offset
, u32 len
);
113 * Clear TX fifo. Needed to avoid BABBLE errors.
115 static void musb_h_tx_flush_fifo(struct musb_hw_ep
*ep
)
117 struct musb
*musb
= ep
->musb
;
118 void __iomem
*epio
= ep
->regs
;
123 csr
= musb_readw(epio
, MUSB_TXCSR
);
124 while (csr
& MUSB_TXCSR_FIFONOTEMPTY
) {
126 dev_dbg(musb
->controller
, "Host TX FIFONOTEMPTY csr: %02x\n", csr
);
128 csr
|= MUSB_TXCSR_FLUSHFIFO
;
129 musb_writew(epio
, MUSB_TXCSR
, csr
);
130 csr
= musb_readw(epio
, MUSB_TXCSR
);
131 if (WARN(retries
-- < 1,
132 "Could not flush host TX%d fifo: csr: %04x\n",
139 static void musb_h_ep0_flush_fifo(struct musb_hw_ep
*ep
)
141 void __iomem
*epio
= ep
->regs
;
145 /* scrub any data left in the fifo */
147 csr
= musb_readw(epio
, MUSB_TXCSR
);
148 if (!(csr
& (MUSB_CSR0_TXPKTRDY
| MUSB_CSR0_RXPKTRDY
)))
150 musb_writew(epio
, MUSB_TXCSR
, MUSB_CSR0_FLUSHFIFO
);
151 csr
= musb_readw(epio
, MUSB_TXCSR
);
155 WARN(!retries
, "Could not flush host TX%d fifo: csr: %04x\n",
158 /* and reset for the next transfer */
159 musb_writew(epio
, MUSB_TXCSR
, 0);
163 * Start transmit. Caller is responsible for locking shared resources.
164 * musb must be locked.
166 static inline void musb_h_tx_start(struct musb_hw_ep
*ep
)
170 /* NOTE: no locks here; caller should lock and select EP */
172 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
173 txcsr
|= MUSB_TXCSR_TXPKTRDY
| MUSB_TXCSR_H_WZC_BITS
;
174 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
176 txcsr
= MUSB_CSR0_H_SETUPPKT
| MUSB_CSR0_TXPKTRDY
;
177 musb_writew(ep
->regs
, MUSB_CSR0
, txcsr
);
182 static inline void musb_h_tx_dma_start(struct musb_hw_ep
*ep
)
186 /* NOTE: no locks here; caller should lock and select EP */
187 txcsr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
188 txcsr
|= MUSB_TXCSR_DMAENAB
| MUSB_TXCSR_H_WZC_BITS
;
189 if (is_cppi_enabled())
190 txcsr
|= MUSB_TXCSR_DMAMODE
;
191 musb_writew(ep
->regs
, MUSB_TXCSR
, txcsr
);
194 static void musb_ep_set_qh(struct musb_hw_ep
*ep
, int is_in
, struct musb_qh
*qh
)
196 if (is_in
!= 0 || ep
->is_shared_fifo
)
198 if (is_in
== 0 || ep
->is_shared_fifo
)
202 static struct musb_qh
*musb_ep_get_qh(struct musb_hw_ep
*ep
, int is_in
)
204 return is_in
? ep
->in_qh
: ep
->out_qh
;
208 * Start the URB at the front of an endpoint's queue
209 * end must be claimed from the caller.
211 * Context: controller locked, irqs blocked
214 musb_start_urb(struct musb
*musb
, int is_in
, struct musb_qh
*qh
)
218 void __iomem
*mbase
= musb
->mregs
;
219 struct urb
*urb
= next_urb(qh
);
220 void *buf
= urb
->transfer_buffer
;
222 struct musb_hw_ep
*hw_ep
= qh
->hw_ep
;
223 unsigned pipe
= urb
->pipe
;
224 u8 address
= usb_pipedevice(pipe
);
225 int epnum
= hw_ep
->epnum
;
227 /* initialize software qh state */
231 /* gather right source of data */
233 case USB_ENDPOINT_XFER_CONTROL
:
234 /* control transfers always start with SETUP */
236 musb
->ep0_stage
= MUSB_EP0_START
;
237 buf
= urb
->setup_packet
;
241 case USB_ENDPOINT_XFER_ISOC
:
244 offset
= urb
->iso_frame_desc
[0].offset
;
245 len
= urb
->iso_frame_desc
[0].length
;
248 default: /* bulk, interrupt */
249 /* actual_length may be nonzero on retry paths */
250 buf
= urb
->transfer_buffer
+ urb
->actual_length
;
251 len
= urb
->transfer_buffer_length
- urb
->actual_length
;
254 dev_dbg(musb
->controller
, "qh %p urb %p dev%d ep%d%s%s, hw_ep %d, %p/%d\n",
255 qh
, urb
, address
, qh
->epnum
,
256 is_in
? "in" : "out",
257 ({char *s
; switch (qh
->type
) {
258 case USB_ENDPOINT_XFER_CONTROL
: s
= ""; break;
259 case USB_ENDPOINT_XFER_BULK
: s
= "-bulk"; break;
261 case USB_ENDPOINT_XFER_ISOC
: s
= "-iso"; break;
263 default: s
= "-intr"; break;
265 epnum
, buf
+ offset
, len
);
267 /* Configure endpoint */
268 musb_ep_set_qh(hw_ep
, is_in
, qh
);
269 musb_ep_program(musb
, epnum
, urb
, !is_in
, buf
, offset
, len
);
271 /* transmit may have more work: start it when it is time */
275 /* determine if the time is right for a periodic transfer */
278 case USB_ENDPOINT_XFER_ISOC
:
280 case USB_ENDPOINT_XFER_INT
:
281 dev_dbg(musb
->controller
, "check whether there's still time for periodic Tx\n");
282 frame
= musb_readw(mbase
, MUSB_FRAME
);
283 /* FIXME this doesn't implement that scheduling policy ...
284 * or handle framecounter wrapping
287 if ((urb
->transfer_flags
& URB_ISO_ASAP
)
288 || (frame
>= urb
->start_frame
)) {
289 /* REVISIT the SOF irq handler shouldn't duplicate
290 * this code; and we don't init urb->start_frame...
296 qh
->frame
= urb
->start_frame
;
297 /* enable SOF interrupt so we can count down */
298 dev_dbg(musb
->controller
, "SOF for %d\n", epnum
);
299 #if 1 /* ifndef CONFIG_ARCH_DAVINCI */
300 musb_writeb(mbase
, MUSB_INTRUSBE
, 0xff);
308 dev_dbg(musb
->controller
, "Start TX%d %s\n", epnum
,
309 hw_ep
->tx_channel
? "dma" : "pio");
311 if (!hw_ep
->tx_channel
)
312 musb_h_tx_start(hw_ep
);
313 else if (is_cppi_enabled() || tusb_dma_omap())
314 musb_h_tx_dma_start(hw_ep
);
318 /* Context: caller owns controller lock, IRQs are blocked */
319 static void musb_giveback(struct musb
*musb
, struct urb
*urb
, int status
)
320 __releases(musb
->lock
)
321 __acquires(musb
->lock
)
323 dev_dbg(musb
->controller
,
324 "complete %p %pF (%d), dev%d ep%d%s, %d/%d\n",
325 urb
, urb
->complete
, status
,
326 usb_pipedevice(urb
->pipe
),
327 usb_pipeendpoint(urb
->pipe
),
328 usb_pipein(urb
->pipe
) ? "in" : "out",
329 urb
->actual_length
, urb
->transfer_buffer_length
332 usb_hcd_unlink_urb_from_ep(musb_to_hcd(musb
), urb
);
333 spin_unlock(&musb
->lock
);
334 usb_hcd_giveback_urb(musb_to_hcd(musb
), urb
, status
);
335 spin_lock(&musb
->lock
);
338 /* For bulk/interrupt endpoints only */
339 static inline void musb_save_toggle(struct musb_qh
*qh
, int is_in
,
342 void __iomem
*epio
= qh
->hw_ep
->regs
;
346 * FIXME: the current Mentor DMA code seems to have
347 * problems getting toggle correct.
351 csr
= musb_readw(epio
, MUSB_RXCSR
) & MUSB_RXCSR_H_DATATOGGLE
;
353 csr
= musb_readw(epio
, MUSB_TXCSR
) & MUSB_TXCSR_H_DATATOGGLE
;
355 usb_settoggle(urb
->dev
, qh
->epnum
, !is_in
, csr
? 1 : 0);
359 * Advance this hardware endpoint's queue, completing the specified URB and
360 * advancing to either the next URB queued to that qh, or else invalidating
361 * that qh and advancing to the next qh scheduled after the current one.
363 * Context: caller owns controller lock, IRQs are blocked
365 static void musb_advance_schedule(struct musb
*musb
, struct urb
*urb
,
366 struct musb_hw_ep
*hw_ep
, int is_in
)
368 struct musb_qh
*qh
= musb_ep_get_qh(hw_ep
, is_in
);
369 struct musb_hw_ep
*ep
= qh
->hw_ep
;
370 int ready
= qh
->is_ready
;
373 status
= (urb
->status
== -EINPROGRESS
) ? 0 : urb
->status
;
375 /* save toggle eagerly, for paranoia */
377 case USB_ENDPOINT_XFER_BULK
:
378 case USB_ENDPOINT_XFER_INT
:
379 musb_save_toggle(qh
, is_in
, urb
);
382 case USB_ENDPOINT_XFER_ISOC
:
383 if (status
== 0 && urb
->error_count
)
390 musb_giveback(musb
, urb
, status
);
391 qh
->is_ready
= ready
;
393 /* reclaim resources (and bandwidth) ASAP; deschedule it, and
394 * invalidate qh as soon as list_empty(&hep->urb_list)
396 if (list_empty(&qh
->hep
->urb_list
)) {
397 struct list_head
*head
;
398 struct dma_controller
*dma
= musb
->dma_controller
;
402 if (ep
->rx_channel
) {
403 dma
->channel_release(ep
->rx_channel
);
404 ep
->rx_channel
= NULL
;
408 if (ep
->tx_channel
) {
409 dma
->channel_release(ep
->tx_channel
);
410 ep
->tx_channel
= NULL
;
414 /* Clobber old pointers to this qh */
415 musb_ep_set_qh(ep
, is_in
, NULL
);
416 qh
->hep
->hcpriv
= NULL
;
420 case USB_ENDPOINT_XFER_CONTROL
:
421 case USB_ENDPOINT_XFER_BULK
:
422 /* fifo policy for these lists, except that NAKing
423 * should rotate a qh to the end (for fairness).
426 head
= qh
->ring
.prev
;
433 case USB_ENDPOINT_XFER_ISOC
:
434 case USB_ENDPOINT_XFER_INT
:
435 /* this is where periodic bandwidth should be
436 * de-allocated if it's tracked and allocated;
437 * and where we'd update the schedule tree...
445 if (qh
!= NULL
&& qh
->is_ready
) {
446 dev_dbg(musb
->controller
, "... next ep%d %cX urb %p\n",
447 hw_ep
->epnum
, is_in
? 'R' : 'T', next_urb(qh
));
448 musb_start_urb(musb
, is_in
, qh
);
452 static u16
musb_h_flush_rxfifo(struct musb_hw_ep
*hw_ep
, u16 csr
)
454 /* we don't want fifo to fill itself again;
455 * ignore dma (various models),
456 * leave toggle alone (may not have been saved yet)
458 csr
|= MUSB_RXCSR_FLUSHFIFO
| MUSB_RXCSR_RXPKTRDY
;
459 csr
&= ~(MUSB_RXCSR_H_REQPKT
460 | MUSB_RXCSR_H_AUTOREQ
461 | MUSB_RXCSR_AUTOCLEAR
);
463 /* write 2x to allow double buffering */
464 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
465 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
467 /* flush writebuffer */
468 return musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
472 * PIO RX for a packet (or part of it).
475 musb_host_packet_rx(struct musb
*musb
, struct urb
*urb
, u8 epnum
, u8 iso_err
)
483 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
484 void __iomem
*epio
= hw_ep
->regs
;
485 struct musb_qh
*qh
= hw_ep
->in_qh
;
486 int pipe
= urb
->pipe
;
487 void *buffer
= urb
->transfer_buffer
;
489 /* musb_ep_select(mbase, epnum); */
490 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
491 dev_dbg(musb
->controller
, "RX%d count %d, buffer %p len %d/%d\n", epnum
, rx_count
,
492 urb
->transfer_buffer
, qh
->offset
,
493 urb
->transfer_buffer_length
);
497 if (usb_pipeisoc(pipe
)) {
499 struct usb_iso_packet_descriptor
*d
;
506 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
507 buf
= buffer
+ d
->offset
;
509 if (rx_count
> length
) {
514 dev_dbg(musb
->controller
, "** OVERFLOW %d into %d\n", rx_count
, length
);
518 urb
->actual_length
+= length
;
519 d
->actual_length
= length
;
523 /* see if we are done */
524 done
= (++qh
->iso_idx
>= urb
->number_of_packets
);
528 buf
= buffer
+ qh
->offset
;
529 length
= urb
->transfer_buffer_length
- qh
->offset
;
530 if (rx_count
> length
) {
531 if (urb
->status
== -EINPROGRESS
)
532 urb
->status
= -EOVERFLOW
;
533 dev_dbg(musb
->controller
, "** OVERFLOW %d into %d\n", rx_count
, length
);
537 urb
->actual_length
+= length
;
538 qh
->offset
+= length
;
540 /* see if we are done */
541 done
= (urb
->actual_length
== urb
->transfer_buffer_length
)
542 || (rx_count
< qh
->maxpacket
)
543 || (urb
->status
!= -EINPROGRESS
);
545 && (urb
->status
== -EINPROGRESS
)
546 && (urb
->transfer_flags
& URB_SHORT_NOT_OK
)
547 && (urb
->actual_length
548 < urb
->transfer_buffer_length
))
549 urb
->status
= -EREMOTEIO
;
554 musb_read_fifo(hw_ep
, length
, buf
);
556 csr
= musb_readw(epio
, MUSB_RXCSR
);
557 csr
|= MUSB_RXCSR_H_WZC_BITS
;
558 if (unlikely(do_flush
))
559 musb_h_flush_rxfifo(hw_ep
, csr
);
561 /* REVISIT this assumes AUTOCLEAR is never set */
562 csr
&= ~(MUSB_RXCSR_RXPKTRDY
| MUSB_RXCSR_H_REQPKT
);
564 csr
|= MUSB_RXCSR_H_REQPKT
;
565 musb_writew(epio
, MUSB_RXCSR
, csr
);
571 /* we don't always need to reinit a given side of an endpoint...
572 * when we do, use tx/rx reinit routine and then construct a new CSR
573 * to address data toggle, NYET, and DMA or PIO.
575 * it's possible that driver bugs (especially for DMA) or aborting a
576 * transfer might have left the endpoint busier than it should be.
577 * the busy/not-empty tests are basically paranoia.
580 musb_rx_reinit(struct musb
*musb
, struct musb_qh
*qh
, struct musb_hw_ep
*ep
)
584 /* NOTE: we know the "rx" fifo reinit never triggers for ep0.
585 * That always uses tx_reinit since ep0 repurposes TX register
586 * offsets; the initial SETUP packet is also a kind of OUT.
589 /* if programmed for Tx, put it in RX mode */
590 if (ep
->is_shared_fifo
) {
591 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
592 if (csr
& MUSB_TXCSR_MODE
) {
593 musb_h_tx_flush_fifo(ep
);
594 csr
= musb_readw(ep
->regs
, MUSB_TXCSR
);
595 musb_writew(ep
->regs
, MUSB_TXCSR
,
596 csr
| MUSB_TXCSR_FRCDATATOG
);
600 * Clear the MODE bit (and everything else) to enable Rx.
601 * NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
603 if (csr
& MUSB_TXCSR_DMAMODE
)
604 musb_writew(ep
->regs
, MUSB_TXCSR
, MUSB_TXCSR_DMAMODE
);
605 musb_writew(ep
->regs
, MUSB_TXCSR
, 0);
607 /* scrub all previous state, clearing toggle */
609 csr
= musb_readw(ep
->regs
, MUSB_RXCSR
);
610 if (csr
& MUSB_RXCSR_RXPKTRDY
)
611 WARNING("rx%d, packet/%d ready?\n", ep
->epnum
,
612 musb_readw(ep
->regs
, MUSB_RXCOUNT
));
614 musb_h_flush_rxfifo(ep
, MUSB_RXCSR_CLRDATATOG
);
617 /* target addr and (for multipoint) hub addr/port */
618 if (musb
->is_multipoint
) {
619 musb_write_rxfunaddr(ep
->target_regs
, qh
->addr_reg
);
620 musb_write_rxhubaddr(ep
->target_regs
, qh
->h_addr_reg
);
621 musb_write_rxhubport(ep
->target_regs
, qh
->h_port_reg
);
624 musb_writeb(musb
->mregs
, MUSB_FADDR
, qh
->addr_reg
);
626 /* protocol/endpoint, interval/NAKlimit, i/o size */
627 musb_writeb(ep
->regs
, MUSB_RXTYPE
, qh
->type_reg
);
628 musb_writeb(ep
->regs
, MUSB_RXINTERVAL
, qh
->intv_reg
);
629 /* NOTE: bulk combining rewrites high bits of maxpacket */
630 /* Set RXMAXP with the FIFO size of the endpoint
631 * to disable double buffer mode.
633 if (musb
->double_buffer_not_ok
)
634 musb_writew(ep
->regs
, MUSB_RXMAXP
, ep
->max_packet_sz_rx
);
636 musb_writew(ep
->regs
, MUSB_RXMAXP
,
637 qh
->maxpacket
| ((qh
->hb_mult
- 1) << 11));
642 static bool musb_tx_dma_program(struct dma_controller
*dma
,
643 struct musb_hw_ep
*hw_ep
, struct musb_qh
*qh
,
644 struct urb
*urb
, u32 offset
, u32 length
)
646 struct dma_channel
*channel
= hw_ep
->tx_channel
;
647 void __iomem
*epio
= hw_ep
->regs
;
648 u16 pkt_size
= qh
->maxpacket
;
652 #ifdef CONFIG_USB_INVENTRA_DMA
653 if (length
> channel
->max_len
)
654 length
= channel
->max_len
;
656 csr
= musb_readw(epio
, MUSB_TXCSR
);
657 if (length
> pkt_size
) {
659 csr
|= MUSB_TXCSR_DMAMODE
| MUSB_TXCSR_DMAENAB
;
660 /* autoset shouldn't be set in high bandwidth */
661 if (qh
->hb_mult
== 1)
662 csr
|= MUSB_TXCSR_AUTOSET
;
665 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAMODE
);
666 csr
|= MUSB_TXCSR_DMAENAB
; /* against programmer's guide */
668 channel
->desired_mode
= mode
;
669 musb_writew(epio
, MUSB_TXCSR
, csr
);
671 if (!is_cppi_enabled() && !tusb_dma_omap())
674 channel
->actual_len
= 0;
677 * TX uses "RNDIS" mode automatically but needs help
678 * to identify the zero-length-final-packet case.
680 mode
= (urb
->transfer_flags
& URB_ZERO_PACKET
) ? 1 : 0;
683 qh
->segsize
= length
;
686 * Ensure the data reaches to main memory before starting
691 if (!dma
->channel_program(channel
, pkt_size
, mode
,
692 urb
->transfer_dma
+ offset
, length
)) {
693 dma
->channel_release(channel
);
694 hw_ep
->tx_channel
= NULL
;
696 csr
= musb_readw(epio
, MUSB_TXCSR
);
697 csr
&= ~(MUSB_TXCSR_AUTOSET
| MUSB_TXCSR_DMAENAB
);
698 musb_writew(epio
, MUSB_TXCSR
, csr
| MUSB_TXCSR_H_WZC_BITS
);
705 * Program an HDRC endpoint as per the given URB
706 * Context: irqs blocked, controller lock held
708 static void musb_ep_program(struct musb
*musb
, u8 epnum
,
709 struct urb
*urb
, int is_out
,
710 u8
*buf
, u32 offset
, u32 len
)
712 struct dma_controller
*dma_controller
;
713 struct dma_channel
*dma_channel
;
715 void __iomem
*mbase
= musb
->mregs
;
716 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
717 void __iomem
*epio
= hw_ep
->regs
;
718 struct musb_qh
*qh
= musb_ep_get_qh(hw_ep
, !is_out
);
719 u16 packet_sz
= qh
->maxpacket
;
721 dev_dbg(musb
->controller
, "%s hw%d urb %p spd%d dev%d ep%d%s "
722 "h_addr%02x h_port%02x bytes %d\n",
723 is_out
? "-->" : "<--",
724 epnum
, urb
, urb
->dev
->speed
,
725 qh
->addr_reg
, qh
->epnum
, is_out
? "out" : "in",
726 qh
->h_addr_reg
, qh
->h_port_reg
,
729 musb_ep_select(mbase
, epnum
);
731 /* candidate for DMA? */
732 dma_controller
= musb
->dma_controller
;
733 if (is_dma_capable() && epnum
&& dma_controller
) {
734 dma_channel
= is_out
? hw_ep
->tx_channel
: hw_ep
->rx_channel
;
736 dma_channel
= dma_controller
->channel_alloc(
737 dma_controller
, hw_ep
, is_out
);
739 hw_ep
->tx_channel
= dma_channel
;
741 hw_ep
->rx_channel
= dma_channel
;
746 /* make sure we clear DMAEnab, autoSet bits from previous run */
748 /* OUT/transmit/EP0 or IN/receive? */
754 csr
= musb_readw(epio
, MUSB_TXCSR
);
756 /* disable interrupt in case we flush */
757 int_txe
= musb_readw(mbase
, MUSB_INTRTXE
);
758 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
& ~(1 << epnum
));
760 /* general endpoint setup */
762 /* flush all old state, set default */
763 musb_h_tx_flush_fifo(hw_ep
);
766 * We must not clear the DMAMODE bit before or in
767 * the same cycle with the DMAENAB bit, so we clear
768 * the latter first...
770 csr
&= ~(MUSB_TXCSR_H_NAKTIMEOUT
773 | MUSB_TXCSR_FRCDATATOG
774 | MUSB_TXCSR_H_RXSTALL
776 | MUSB_TXCSR_TXPKTRDY
778 csr
|= MUSB_TXCSR_MODE
;
780 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 1))
781 csr
|= MUSB_TXCSR_H_WR_DATATOGGLE
782 | MUSB_TXCSR_H_DATATOGGLE
;
784 csr
|= MUSB_TXCSR_CLRDATATOG
;
786 musb_writew(epio
, MUSB_TXCSR
, csr
);
787 /* REVISIT may need to clear FLUSHFIFO ... */
788 csr
&= ~MUSB_TXCSR_DMAMODE
;
789 musb_writew(epio
, MUSB_TXCSR
, csr
);
790 csr
= musb_readw(epio
, MUSB_TXCSR
);
792 /* endpoint 0: just flush */
793 musb_h_ep0_flush_fifo(hw_ep
);
796 /* target addr and (for multipoint) hub addr/port */
797 if (musb
->is_multipoint
) {
798 musb_write_txfunaddr(mbase
, epnum
, qh
->addr_reg
);
799 musb_write_txhubaddr(mbase
, epnum
, qh
->h_addr_reg
);
800 musb_write_txhubport(mbase
, epnum
, qh
->h_port_reg
);
801 /* FIXME if !epnum, do the same for RX ... */
803 musb_writeb(mbase
, MUSB_FADDR
, qh
->addr_reg
);
805 /* protocol/endpoint/interval/NAKlimit */
807 musb_writeb(epio
, MUSB_TXTYPE
, qh
->type_reg
);
808 if (musb
->double_buffer_not_ok
)
809 musb_writew(epio
, MUSB_TXMAXP
,
810 hw_ep
->max_packet_sz_tx
);
811 else if (can_bulk_split(musb
, qh
->type
))
812 musb_writew(epio
, MUSB_TXMAXP
, packet_sz
813 | ((hw_ep
->max_packet_sz_tx
/
814 packet_sz
) - 1) << 11);
816 musb_writew(epio
, MUSB_TXMAXP
,
818 ((qh
->hb_mult
- 1) << 11));
819 musb_writeb(epio
, MUSB_TXINTERVAL
, qh
->intv_reg
);
821 musb_writeb(epio
, MUSB_NAKLIMIT0
, qh
->intv_reg
);
822 if (musb
->is_multipoint
)
823 musb_writeb(epio
, MUSB_TYPE0
,
827 if (can_bulk_split(musb
, qh
->type
))
828 load_count
= min((u32
) hw_ep
->max_packet_sz_tx
,
831 load_count
= min((u32
) packet_sz
, len
);
833 if (dma_channel
&& musb_tx_dma_program(dma_controller
,
834 hw_ep
, qh
, urb
, offset
, len
))
838 /* PIO to load FIFO */
839 qh
->segsize
= load_count
;
840 musb_write_fifo(hw_ep
, load_count
, buf
);
843 /* re-enable interrupt */
844 musb_writew(mbase
, MUSB_INTRTXE
, int_txe
);
850 if (hw_ep
->rx_reinit
) {
851 musb_rx_reinit(musb
, qh
, hw_ep
);
853 /* init new state: toggle and NYET, maybe DMA later */
854 if (usb_gettoggle(urb
->dev
, qh
->epnum
, 0))
855 csr
= MUSB_RXCSR_H_WR_DATATOGGLE
856 | MUSB_RXCSR_H_DATATOGGLE
;
859 if (qh
->type
== USB_ENDPOINT_XFER_INT
)
860 csr
|= MUSB_RXCSR_DISNYET
;
863 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
865 if (csr
& (MUSB_RXCSR_RXPKTRDY
867 | MUSB_RXCSR_H_REQPKT
))
868 ERR("broken !rx_reinit, ep%d csr %04x\n",
871 /* scrub any stale state, leaving toggle alone */
872 csr
&= MUSB_RXCSR_DISNYET
;
875 /* kick things off */
877 if ((is_cppi_enabled() || tusb_dma_omap()) && dma_channel
) {
878 /* Candidate for DMA */
879 dma_channel
->actual_len
= 0L;
882 /* AUTOREQ is in a DMA register */
883 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
884 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
887 * Unless caller treats short RX transfers as
888 * errors, we dare not queue multiple transfers.
890 dma_ok
= dma_controller
->channel_program(dma_channel
,
891 packet_sz
, !(urb
->transfer_flags
&
893 urb
->transfer_dma
+ offset
,
896 dma_controller
->channel_release(dma_channel
);
897 hw_ep
->rx_channel
= dma_channel
= NULL
;
899 csr
|= MUSB_RXCSR_DMAENAB
;
902 csr
|= MUSB_RXCSR_H_REQPKT
;
903 dev_dbg(musb
->controller
, "RXCSR%d := %04x\n", epnum
, csr
);
904 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, csr
);
905 csr
= musb_readw(hw_ep
->regs
, MUSB_RXCSR
);
911 * Service the default endpoint (ep0) as host.
912 * Return true until it's time to start the status stage.
914 static bool musb_h_ep0_continue(struct musb
*musb
, u16 len
, struct urb
*urb
)
917 u8
*fifo_dest
= NULL
;
919 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
920 struct musb_qh
*qh
= hw_ep
->in_qh
;
921 struct usb_ctrlrequest
*request
;
923 switch (musb
->ep0_stage
) {
925 fifo_dest
= urb
->transfer_buffer
+ urb
->actual_length
;
926 fifo_count
= min_t(size_t, len
, urb
->transfer_buffer_length
-
928 if (fifo_count
< len
)
929 urb
->status
= -EOVERFLOW
;
931 musb_read_fifo(hw_ep
, fifo_count
, fifo_dest
);
933 urb
->actual_length
+= fifo_count
;
934 if (len
< qh
->maxpacket
) {
935 /* always terminate on short read; it's
936 * rarely reported as an error.
938 } else if (urb
->actual_length
<
939 urb
->transfer_buffer_length
)
943 request
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
945 if (!request
->wLength
) {
946 dev_dbg(musb
->controller
, "start no-DATA\n");
948 } else if (request
->bRequestType
& USB_DIR_IN
) {
949 dev_dbg(musb
->controller
, "start IN-DATA\n");
950 musb
->ep0_stage
= MUSB_EP0_IN
;
954 dev_dbg(musb
->controller
, "start OUT-DATA\n");
955 musb
->ep0_stage
= MUSB_EP0_OUT
;
960 fifo_count
= min_t(size_t, qh
->maxpacket
,
961 urb
->transfer_buffer_length
-
964 fifo_dest
= (u8
*) (urb
->transfer_buffer
965 + urb
->actual_length
);
966 dev_dbg(musb
->controller
, "Sending %d byte%s to ep0 fifo %p\n",
968 (fifo_count
== 1) ? "" : "s",
970 musb_write_fifo(hw_ep
, fifo_count
, fifo_dest
);
972 urb
->actual_length
+= fifo_count
;
977 ERR("bogus ep0 stage %d\n", musb
->ep0_stage
);
985 * Handle default endpoint interrupt as host. Only called in IRQ time
986 * from musb_interrupt().
988 * called with controller irqlocked
990 irqreturn_t
musb_h_ep0_irq(struct musb
*musb
)
995 void __iomem
*mbase
= musb
->mregs
;
996 struct musb_hw_ep
*hw_ep
= musb
->control_ep
;
997 void __iomem
*epio
= hw_ep
->regs
;
998 struct musb_qh
*qh
= hw_ep
->in_qh
;
999 bool complete
= false;
1000 irqreturn_t retval
= IRQ_NONE
;
1002 /* ep0 only has one queue, "in" */
1005 musb_ep_select(mbase
, 0);
1006 csr
= musb_readw(epio
, MUSB_CSR0
);
1007 len
= (csr
& MUSB_CSR0_RXPKTRDY
)
1008 ? musb_readb(epio
, MUSB_COUNT0
)
1011 dev_dbg(musb
->controller
, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d\n",
1012 csr
, qh
, len
, urb
, musb
->ep0_stage
);
1014 /* if we just did status stage, we are done */
1015 if (MUSB_EP0_STATUS
== musb
->ep0_stage
) {
1016 retval
= IRQ_HANDLED
;
1020 /* prepare status */
1021 if (csr
& MUSB_CSR0_H_RXSTALL
) {
1022 dev_dbg(musb
->controller
, "STALLING ENDPOINT\n");
1025 } else if (csr
& MUSB_CSR0_H_ERROR
) {
1026 dev_dbg(musb
->controller
, "no response, csr0 %04x\n", csr
);
1029 } else if (csr
& MUSB_CSR0_H_NAKTIMEOUT
) {
1030 dev_dbg(musb
->controller
, "control NAK timeout\n");
1032 /* NOTE: this code path would be a good place to PAUSE a
1033 * control transfer, if another one is queued, so that
1034 * ep0 is more likely to stay busy. That's already done
1035 * for bulk RX transfers.
1037 * if (qh->ring.next != &musb->control), then
1038 * we have a candidate... NAKing is *NOT* an error
1040 musb_writew(epio
, MUSB_CSR0
, 0);
1041 retval
= IRQ_HANDLED
;
1045 dev_dbg(musb
->controller
, "aborting\n");
1046 retval
= IRQ_HANDLED
;
1048 urb
->status
= status
;
1051 /* use the proper sequence to abort the transfer */
1052 if (csr
& MUSB_CSR0_H_REQPKT
) {
1053 csr
&= ~MUSB_CSR0_H_REQPKT
;
1054 musb_writew(epio
, MUSB_CSR0
, csr
);
1055 csr
&= ~MUSB_CSR0_H_NAKTIMEOUT
;
1056 musb_writew(epio
, MUSB_CSR0
, csr
);
1058 musb_h_ep0_flush_fifo(hw_ep
);
1061 musb_writeb(epio
, MUSB_NAKLIMIT0
, 0);
1064 musb_writew(epio
, MUSB_CSR0
, 0);
1067 if (unlikely(!urb
)) {
1068 /* stop endpoint since we have no place for its data, this
1069 * SHOULD NEVER HAPPEN! */
1070 ERR("no URB for end 0\n");
1072 musb_h_ep0_flush_fifo(hw_ep
);
1077 /* call common logic and prepare response */
1078 if (musb_h_ep0_continue(musb
, len
, urb
)) {
1079 /* more packets required */
1080 csr
= (MUSB_EP0_IN
== musb
->ep0_stage
)
1081 ? MUSB_CSR0_H_REQPKT
: MUSB_CSR0_TXPKTRDY
;
1083 /* data transfer complete; perform status phase */
1084 if (usb_pipeout(urb
->pipe
)
1085 || !urb
->transfer_buffer_length
)
1086 csr
= MUSB_CSR0_H_STATUSPKT
1087 | MUSB_CSR0_H_REQPKT
;
1089 csr
= MUSB_CSR0_H_STATUSPKT
1090 | MUSB_CSR0_TXPKTRDY
;
1092 /* flag status stage */
1093 musb
->ep0_stage
= MUSB_EP0_STATUS
;
1095 dev_dbg(musb
->controller
, "ep0 STATUS, csr %04x\n", csr
);
1098 musb_writew(epio
, MUSB_CSR0
, csr
);
1099 retval
= IRQ_HANDLED
;
1101 musb
->ep0_stage
= MUSB_EP0_IDLE
;
1103 /* call completion handler if done */
1105 musb_advance_schedule(musb
, urb
, hw_ep
, 1);
1111 #ifdef CONFIG_USB_INVENTRA_DMA
1113 /* Host side TX (OUT) using Mentor DMA works as follows:
1115 - if queue was empty, Program Endpoint
1116 - ... which starts DMA to fifo in mode 1 or 0
1118 DMA Isr (transfer complete) -> TxAvail()
1119 - Stop DMA (~DmaEnab) (<--- Alert ... currently happens
1120 only in musb_cleanup_urb)
1121 - TxPktRdy has to be set in mode 0 or for
1122 short packets in mode 1.
1127 /* Service a Tx-Available or dma completion irq for the endpoint */
1128 void musb_host_tx(struct musb
*musb
, u8 epnum
)
1135 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1136 void __iomem
*epio
= hw_ep
->regs
;
1137 struct musb_qh
*qh
= hw_ep
->out_qh
;
1138 struct urb
*urb
= next_urb(qh
);
1140 void __iomem
*mbase
= musb
->mregs
;
1141 struct dma_channel
*dma
;
1142 bool transfer_pending
= false;
1144 musb_ep_select(mbase
, epnum
);
1145 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1147 /* with CPPI, DMA sometimes triggers "extra" irqs */
1149 dev_dbg(musb
->controller
, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1154 dma
= is_dma_capable() ? hw_ep
->tx_channel
: NULL
;
1155 dev_dbg(musb
->controller
, "OUT/TX%d end, csr %04x%s\n", epnum
, tx_csr
,
1156 dma
? ", dma" : "");
1158 /* check for errors */
1159 if (tx_csr
& MUSB_TXCSR_H_RXSTALL
) {
1160 /* dma was disabled, fifo flushed */
1161 dev_dbg(musb
->controller
, "TX end %d stall\n", epnum
);
1163 /* stall; record URB status */
1166 } else if (tx_csr
& MUSB_TXCSR_H_ERROR
) {
1167 /* (NON-ISO) dma was disabled, fifo flushed */
1168 dev_dbg(musb
->controller
, "TX 3strikes on ep=%d\n", epnum
);
1170 status
= -ETIMEDOUT
;
1172 } else if (tx_csr
& MUSB_TXCSR_H_NAKTIMEOUT
) {
1173 dev_dbg(musb
->controller
, "TX end=%d device not responding\n", epnum
);
1175 /* NOTE: this code path would be a good place to PAUSE a
1176 * transfer, if there's some other (nonperiodic) tx urb
1177 * that could use this fifo. (dma complicates it...)
1178 * That's already done for bulk RX transfers.
1180 * if (bulk && qh->ring.next != &musb->out_bulk), then
1181 * we have a candidate... NAKing is *NOT* an error
1183 musb_ep_select(mbase
, epnum
);
1184 musb_writew(epio
, MUSB_TXCSR
,
1185 MUSB_TXCSR_H_WZC_BITS
1186 | MUSB_TXCSR_TXPKTRDY
);
1191 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1192 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1193 (void) musb
->dma_controller
->channel_abort(dma
);
1196 /* do the proper sequence to abort the transfer in the
1197 * usb core; the dma engine should already be stopped.
1199 musb_h_tx_flush_fifo(hw_ep
);
1200 tx_csr
&= ~(MUSB_TXCSR_AUTOSET
1201 | MUSB_TXCSR_DMAENAB
1202 | MUSB_TXCSR_H_ERROR
1203 | MUSB_TXCSR_H_RXSTALL
1204 | MUSB_TXCSR_H_NAKTIMEOUT
1207 musb_ep_select(mbase
, epnum
);
1208 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1209 /* REVISIT may need to clear FLUSHFIFO ... */
1210 musb_writew(epio
, MUSB_TXCSR
, tx_csr
);
1211 musb_writeb(epio
, MUSB_TXINTERVAL
, 0);
1216 /* second cppi case */
1217 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1218 dev_dbg(musb
->controller
, "extra TX%d ready, csr %04x\n", epnum
, tx_csr
);
1222 if (is_dma_capable() && dma
&& !status
) {
1224 * DMA has completed. But if we're using DMA mode 1 (multi
1225 * packet DMA), we need a terminal TXPKTRDY interrupt before
1226 * we can consider this transfer completed, lest we trash
1227 * its last packet when writing the next URB's data. So we
1228 * switch back to mode 0 to get that interrupt; we'll come
1229 * back here once it happens.
1231 if (tx_csr
& MUSB_TXCSR_DMAMODE
) {
1233 * We shouldn't clear DMAMODE with DMAENAB set; so
1234 * clear them in a safe order. That should be OK
1235 * once TXPKTRDY has been set (and I've never seen
1236 * it being 0 at this moment -- DMA interrupt latency
1237 * is significant) but if it hasn't been then we have
1238 * no choice but to stop being polite and ignore the
1239 * programmer's guide... :-)
1241 * Note that we must write TXCSR with TXPKTRDY cleared
1242 * in order not to re-trigger the packet send (this bit
1243 * can't be cleared by CPU), and there's another caveat:
1244 * TXPKTRDY may be set shortly and then cleared in the
1245 * double-buffered FIFO mode, so we do an extra TXCSR
1246 * read for debouncing...
1248 tx_csr
&= musb_readw(epio
, MUSB_TXCSR
);
1249 if (tx_csr
& MUSB_TXCSR_TXPKTRDY
) {
1250 tx_csr
&= ~(MUSB_TXCSR_DMAENAB
|
1251 MUSB_TXCSR_TXPKTRDY
);
1252 musb_writew(epio
, MUSB_TXCSR
,
1253 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1255 tx_csr
&= ~(MUSB_TXCSR_DMAMODE
|
1256 MUSB_TXCSR_TXPKTRDY
);
1257 musb_writew(epio
, MUSB_TXCSR
,
1258 tx_csr
| MUSB_TXCSR_H_WZC_BITS
);
1261 * There is no guarantee that we'll get an interrupt
1262 * after clearing DMAMODE as we might have done this
1263 * too late (after TXPKTRDY was cleared by controller).
1264 * Re-read TXCSR as we have spoiled its previous value.
1266 tx_csr
= musb_readw(epio
, MUSB_TXCSR
);
1270 * We may get here from a DMA completion or TXPKTRDY interrupt.
1271 * In any case, we must check the FIFO status here and bail out
1272 * only if the FIFO still has data -- that should prevent the
1273 * "missed" TXPKTRDY interrupts and deal with double-buffered
1276 if (tx_csr
& (MUSB_TXCSR_FIFONOTEMPTY
| MUSB_TXCSR_TXPKTRDY
)) {
1277 dev_dbg(musb
->controller
, "DMA complete but packet still in FIFO, "
1278 "CSR %04x\n", tx_csr
);
1283 if (!status
|| dma
|| usb_pipeisoc(pipe
)) {
1285 length
= dma
->actual_len
;
1287 length
= qh
->segsize
;
1288 qh
->offset
+= length
;
1290 if (usb_pipeisoc(pipe
)) {
1292 struct usb_iso_packet_descriptor
*d
;
1294 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1295 d
->actual_length
= length
;
1297 if (++qh
->iso_idx
>= urb
->number_of_packets
) {
1305 } else if (dma
&& urb
->transfer_buffer_length
== qh
->offset
) {
1308 /* see if we need to send more data, or ZLP */
1309 if (qh
->segsize
< qh
->maxpacket
)
1311 else if (qh
->offset
== urb
->transfer_buffer_length
1312 && !(urb
->transfer_flags
1316 offset
= qh
->offset
;
1317 length
= urb
->transfer_buffer_length
- offset
;
1318 transfer_pending
= true;
1323 /* urb->status != -EINPROGRESS means request has been faulted,
1324 * so we must abort this transfer after cleanup
1326 if (urb
->status
!= -EINPROGRESS
) {
1329 status
= urb
->status
;
1334 urb
->status
= status
;
1335 urb
->actual_length
= qh
->offset
;
1336 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_OUT
);
1338 } else if ((usb_pipeisoc(pipe
) || transfer_pending
) && dma
) {
1339 if (musb_tx_dma_program(musb
->dma_controller
, hw_ep
, qh
, urb
,
1341 if (is_cppi_enabled() || tusb_dma_omap())
1342 musb_h_tx_dma_start(hw_ep
);
1345 } else if (tx_csr
& MUSB_TXCSR_DMAENAB
) {
1346 dev_dbg(musb
->controller
, "not complete, but DMA enabled?\n");
1351 * PIO: start next packet in this URB.
1353 * REVISIT: some docs say that when hw_ep->tx_double_buffered,
1354 * (and presumably, FIFO is not half-full) we should write *two*
1355 * packets before updating TXCSR; other docs disagree...
1357 if (length
> qh
->maxpacket
)
1358 length
= qh
->maxpacket
;
1359 /* Unmap the buffer so that CPU can use it */
1360 usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb
), urb
);
1361 musb_write_fifo(hw_ep
, length
, urb
->transfer_buffer
+ offset
);
1362 qh
->segsize
= length
;
1364 musb_ep_select(mbase
, epnum
);
1365 musb_writew(epio
, MUSB_TXCSR
,
1366 MUSB_TXCSR_H_WZC_BITS
| MUSB_TXCSR_TXPKTRDY
);
1370 #ifdef CONFIG_USB_INVENTRA_DMA
1372 /* Host side RX (IN) using Mentor DMA works as follows:
1374 - if queue was empty, ProgramEndpoint
1375 - first IN token is sent out (by setting ReqPkt)
1376 LinuxIsr -> RxReady()
1377 /\ => first packet is received
1378 | - Set in mode 0 (DmaEnab, ~ReqPkt)
1379 | -> DMA Isr (transfer complete) -> RxReady()
1380 | - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
1381 | - if urb not complete, send next IN token (ReqPkt)
1382 | | else complete urb.
1384 ---------------------------
1386 * Nuances of mode 1:
1387 * For short packets, no ack (+RxPktRdy) is sent automatically
1388 * (even if AutoClear is ON)
1389 * For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
1390 * automatically => major problem, as collecting the next packet becomes
1391 * difficult. Hence mode 1 is not used.
1394 * All we care about at this driver level is that
1395 * (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
1396 * (b) termination conditions are: short RX, or buffer full;
1397 * (c) fault modes include
1398 * - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
1399 * (and that endpoint's dma queue stops immediately)
1400 * - overflow (full, PLUS more bytes in the terminal packet)
1402 * So for example, usb-storage sets URB_SHORT_NOT_OK, and would
1403 * thus be a great candidate for using mode 1 ... for all but the
1404 * last packet of one URB's transfer.
1409 /* Schedule next QH from musb->in_bulk and move the current qh to
1410 * the end; avoids starvation for other endpoints.
1412 static void musb_bulk_rx_nak_timeout(struct musb
*musb
, struct musb_hw_ep
*ep
)
1414 struct dma_channel
*dma
;
1416 void __iomem
*mbase
= musb
->mregs
;
1417 void __iomem
*epio
= ep
->regs
;
1418 struct musb_qh
*cur_qh
, *next_qh
;
1421 musb_ep_select(mbase
, ep
->epnum
);
1422 dma
= is_dma_capable() ? ep
->rx_channel
: NULL
;
1424 /* clear nak timeout bit */
1425 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1426 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1427 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1428 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1430 cur_qh
= first_qh(&musb
->in_bulk
);
1432 urb
= next_urb(cur_qh
);
1433 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1434 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1435 musb
->dma_controller
->channel_abort(dma
);
1436 urb
->actual_length
+= dma
->actual_len
;
1437 dma
->actual_len
= 0L;
1439 musb_save_toggle(cur_qh
, 1, urb
);
1441 /* move cur_qh to end of queue */
1442 list_move_tail(&cur_qh
->ring
, &musb
->in_bulk
);
1444 /* get the next qh from musb->in_bulk */
1445 next_qh
= first_qh(&musb
->in_bulk
);
1447 /* set rx_reinit and schedule the next qh */
1449 musb_start_urb(musb
, 1, next_qh
);
1454 * Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
1455 * and high-bandwidth IN transfer cases.
1457 void musb_host_rx(struct musb
*musb
, u8 epnum
)
1460 struct musb_hw_ep
*hw_ep
= musb
->endpoints
+ epnum
;
1461 void __iomem
*epio
= hw_ep
->regs
;
1462 struct musb_qh
*qh
= hw_ep
->in_qh
;
1464 void __iomem
*mbase
= musb
->mregs
;
1467 bool iso_err
= false;
1470 struct dma_channel
*dma
;
1472 musb_ep_select(mbase
, epnum
);
1475 dma
= is_dma_capable() ? hw_ep
->rx_channel
: NULL
;
1479 rx_csr
= musb_readw(epio
, MUSB_RXCSR
);
1482 if (unlikely(!urb
)) {
1483 /* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
1484 * usbtest #11 (unlinks) triggers it regularly, sometimes
1485 * with fifo full. (Only with DMA??)
1487 dev_dbg(musb
->controller
, "BOGUS RX%d ready, csr %04x, count %d\n", epnum
, val
,
1488 musb_readw(epio
, MUSB_RXCOUNT
));
1489 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1495 dev_dbg(musb
->controller
, "<== hw %d rxcsr %04x, urb actual %d (+dma %zu)\n",
1496 epnum
, rx_csr
, urb
->actual_length
,
1497 dma
? dma
->actual_len
: 0);
1499 /* check for errors, concurrent stall & unlink is not really
1501 if (rx_csr
& MUSB_RXCSR_H_RXSTALL
) {
1502 dev_dbg(musb
->controller
, "RX end %d STALL\n", epnum
);
1504 /* stall; record URB status */
1507 } else if (rx_csr
& MUSB_RXCSR_H_ERROR
) {
1508 dev_dbg(musb
->controller
, "end %d RX proto error\n", epnum
);
1511 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1513 } else if (rx_csr
& MUSB_RXCSR_DATAERROR
) {
1515 if (USB_ENDPOINT_XFER_ISOC
!= qh
->type
) {
1516 dev_dbg(musb
->controller
, "RX end %d NAK timeout\n", epnum
);
1518 /* NOTE: NAKing is *NOT* an error, so we want to
1519 * continue. Except ... if there's a request for
1520 * another QH, use that instead of starving it.
1522 * Devices like Ethernet and serial adapters keep
1523 * reads posted at all times, which will starve
1524 * other devices without this logic.
1526 if (usb_pipebulk(urb
->pipe
)
1528 && !list_is_singular(&musb
->in_bulk
)) {
1529 musb_bulk_rx_nak_timeout(musb
, hw_ep
);
1532 musb_ep_select(mbase
, epnum
);
1533 rx_csr
|= MUSB_RXCSR_H_WZC_BITS
;
1534 rx_csr
&= ~MUSB_RXCSR_DATAERROR
;
1535 musb_writew(epio
, MUSB_RXCSR
, rx_csr
);
1539 dev_dbg(musb
->controller
, "RX end %d ISO data error\n", epnum
);
1540 /* packet error reported later */
1543 } else if (rx_csr
& MUSB_RXCSR_INCOMPRX
) {
1544 dev_dbg(musb
->controller
, "end %d high bandwidth incomplete ISO packet RX\n",
1549 /* faults abort the transfer */
1551 /* clean up dma and collect transfer count */
1552 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1553 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1554 (void) musb
->dma_controller
->channel_abort(dma
);
1555 xfer_len
= dma
->actual_len
;
1557 musb_h_flush_rxfifo(hw_ep
, MUSB_RXCSR_CLRDATATOG
);
1558 musb_writeb(epio
, MUSB_RXINTERVAL
, 0);
1563 if (unlikely(dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
)) {
1564 /* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
1565 ERR("RX%d dma busy, csr %04x\n", epnum
, rx_csr
);
1569 /* thorough shutdown for now ... given more precise fault handling
1570 * and better queueing support, we might keep a DMA pipeline going
1571 * while processing this irq for earlier completions.
1574 /* FIXME this is _way_ too much in-line logic for Mentor DMA */
1576 #ifndef CONFIG_USB_INVENTRA_DMA
1577 if (rx_csr
& MUSB_RXCSR_H_REQPKT
) {
1578 /* REVISIT this happened for a while on some short reads...
1579 * the cleanup still needs investigation... looks bad...
1580 * and also duplicates dma cleanup code above ... plus,
1581 * shouldn't this be the "half full" double buffer case?
1583 if (dma_channel_status(dma
) == MUSB_DMA_STATUS_BUSY
) {
1584 dma
->status
= MUSB_DMA_STATUS_CORE_ABORT
;
1585 (void) musb
->dma_controller
->channel_abort(dma
);
1586 xfer_len
= dma
->actual_len
;
1590 dev_dbg(musb
->controller
, "RXCSR%d %04x, reqpkt, len %zu%s\n", epnum
, rx_csr
,
1591 xfer_len
, dma
? ", dma" : "");
1592 rx_csr
&= ~MUSB_RXCSR_H_REQPKT
;
1594 musb_ep_select(mbase
, epnum
);
1595 musb_writew(epio
, MUSB_RXCSR
,
1596 MUSB_RXCSR_H_WZC_BITS
| rx_csr
);
1599 if (dma
&& (rx_csr
& MUSB_RXCSR_DMAENAB
)) {
1600 xfer_len
= dma
->actual_len
;
1602 val
&= ~(MUSB_RXCSR_DMAENAB
1603 | MUSB_RXCSR_H_AUTOREQ
1604 | MUSB_RXCSR_AUTOCLEAR
1605 | MUSB_RXCSR_RXPKTRDY
);
1606 musb_writew(hw_ep
->regs
, MUSB_RXCSR
, val
);
1608 #ifdef CONFIG_USB_INVENTRA_DMA
1609 if (usb_pipeisoc(pipe
)) {
1610 struct usb_iso_packet_descriptor
*d
;
1612 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1613 d
->actual_length
= xfer_len
;
1615 /* even if there was an error, we did the dma
1616 * for iso_frame_desc->length
1618 if (d
->status
!= -EILSEQ
&& d
->status
!= -EOVERFLOW
)
1621 if (++qh
->iso_idx
>= urb
->number_of_packets
)
1627 /* done if urb buffer is full or short packet is recd */
1628 done
= (urb
->actual_length
+ xfer_len
>=
1629 urb
->transfer_buffer_length
1630 || dma
->actual_len
< qh
->maxpacket
);
1633 /* send IN token for next packet, without AUTOREQ */
1635 val
|= MUSB_RXCSR_H_REQPKT
;
1636 musb_writew(epio
, MUSB_RXCSR
,
1637 MUSB_RXCSR_H_WZC_BITS
| val
);
1640 dev_dbg(musb
->controller
, "ep %d dma %s, rxcsr %04x, rxcount %d\n", epnum
,
1641 done
? "off" : "reset",
1642 musb_readw(epio
, MUSB_RXCSR
),
1643 musb_readw(epio
, MUSB_RXCOUNT
));
1647 } else if (urb
->status
== -EINPROGRESS
) {
1648 /* if no errors, be sure a packet is ready for unloading */
1649 if (unlikely(!(rx_csr
& MUSB_RXCSR_RXPKTRDY
))) {
1651 ERR("Rx interrupt with no errors or packet!\n");
1653 /* FIXME this is another "SHOULD NEVER HAPPEN" */
1656 /* do the proper sequence to abort the transfer */
1657 musb_ep_select(mbase
, epnum
);
1658 val
&= ~MUSB_RXCSR_H_REQPKT
;
1659 musb_writew(epio
, MUSB_RXCSR
, val
);
1663 /* we are expecting IN packets */
1664 #ifdef CONFIG_USB_INVENTRA_DMA
1666 struct dma_controller
*c
;
1671 rx_count
= musb_readw(epio
, MUSB_RXCOUNT
);
1673 dev_dbg(musb
->controller
, "RX%d count %d, buffer 0x%x len %d/%d\n",
1676 + urb
->actual_length
,
1678 urb
->transfer_buffer_length
);
1680 c
= musb
->dma_controller
;
1682 if (usb_pipeisoc(pipe
)) {
1684 struct usb_iso_packet_descriptor
*d
;
1686 d
= urb
->iso_frame_desc
+ qh
->iso_idx
;
1692 if (rx_count
> d
->length
) {
1693 if (d_status
== 0) {
1694 d_status
= -EOVERFLOW
;
1697 dev_dbg(musb
->controller
, "** OVERFLOW %d into %d\n",\
1698 rx_count
, d
->length
);
1703 d
->status
= d_status
;
1704 buf
= urb
->transfer_dma
+ d
->offset
;
1707 buf
= urb
->transfer_dma
+
1711 dma
->desired_mode
= 0;
1713 /* because of the issue below, mode 1 will
1714 * only rarely behave with correct semantics.
1716 if ((urb
->transfer_flags
&
1718 && (urb
->transfer_buffer_length
-
1721 dma
->desired_mode
= 1;
1722 if (rx_count
< hw_ep
->max_packet_sz_rx
) {
1724 dma
->desired_mode
= 0;
1726 length
= urb
->transfer_buffer_length
;
1730 /* Disadvantage of using mode 1:
1731 * It's basically usable only for mass storage class; essentially all
1732 * other protocols also terminate transfers on short packets.
1735 * An extra IN token is sent at the end of the transfer (due to AUTOREQ)
1736 * If you try to use mode 1 for (transfer_buffer_length - 512), and try
1737 * to use the extra IN token to grab the last packet using mode 0, then
1738 * the problem is that you cannot be sure when the device will send the
1739 * last packet and RxPktRdy set. Sometimes the packet is recd too soon
1740 * such that it gets lost when RxCSR is re-set at the end of the mode 1
1741 * transfer, while sometimes it is recd just a little late so that if you
1742 * try to configure for mode 0 soon after the mode 1 transfer is
1743 * completed, you will find rxcount 0. Okay, so you might think why not
1744 * wait for an interrupt when the pkt is recd. Well, you won't get any!
1747 val
= musb_readw(epio
, MUSB_RXCSR
);
1748 val
&= ~MUSB_RXCSR_H_REQPKT
;
1750 if (dma
->desired_mode
== 0)
1751 val
&= ~MUSB_RXCSR_H_AUTOREQ
;
1753 val
|= MUSB_RXCSR_H_AUTOREQ
;
1754 val
|= MUSB_RXCSR_DMAENAB
;
1756 /* autoclear shouldn't be set in high bandwidth */
1757 if (qh
->hb_mult
== 1)
1758 val
|= MUSB_RXCSR_AUTOCLEAR
;
1760 musb_writew(epio
, MUSB_RXCSR
,
1761 MUSB_RXCSR_H_WZC_BITS
| val
);
1763 /* REVISIT if when actual_length != 0,
1764 * transfer_buffer_length needs to be
1767 ret
= c
->channel_program(
1769 dma
->desired_mode
, buf
, length
);
1772 c
->channel_release(dma
);
1773 hw_ep
->rx_channel
= NULL
;
1775 val
= musb_readw(epio
, MUSB_RXCSR
);
1776 val
&= ~(MUSB_RXCSR_DMAENAB
1777 | MUSB_RXCSR_H_AUTOREQ
1778 | MUSB_RXCSR_AUTOCLEAR
);
1779 musb_writew(epio
, MUSB_RXCSR
, val
);
1782 #endif /* Mentor DMA */
1785 /* Unmap the buffer so that CPU can use it */
1786 usb_hcd_unmap_urb_for_dma(musb_to_hcd(musb
), urb
);
1787 done
= musb_host_packet_rx(musb
, urb
,
1789 dev_dbg(musb
->controller
, "read %spacket\n", done
? "last " : "");
1794 urb
->actual_length
+= xfer_len
;
1795 qh
->offset
+= xfer_len
;
1797 if (urb
->status
== -EINPROGRESS
)
1798 urb
->status
= status
;
1799 musb_advance_schedule(musb
, urb
, hw_ep
, USB_DIR_IN
);
1803 /* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
1804 * the software schedule associates multiple such nodes with a given
1805 * host side hardware endpoint + direction; scheduling may activate
1806 * that hardware endpoint.
1808 static int musb_schedule(
1815 int best_end
, epnum
;
1816 struct musb_hw_ep
*hw_ep
= NULL
;
1817 struct list_head
*head
= NULL
;
1820 struct urb
*urb
= next_urb(qh
);
1822 /* use fixed hardware for control and bulk */
1823 if (qh
->type
== USB_ENDPOINT_XFER_CONTROL
) {
1824 head
= &musb
->control
;
1825 hw_ep
= musb
->control_ep
;
1829 /* else, periodic transfers get muxed to other endpoints */
1832 * We know this qh hasn't been scheduled, so all we need to do
1833 * is choose which hardware endpoint to put it on ...
1835 * REVISIT what we really want here is a regular schedule tree
1836 * like e.g. OHCI uses.
1841 for (epnum
= 1, hw_ep
= musb
->endpoints
+ 1;
1842 epnum
< musb
->nr_endpoints
;
1846 if (musb_ep_get_qh(hw_ep
, is_in
) != NULL
)
1849 if (hw_ep
== musb
->bulk_ep
)
1853 diff
= hw_ep
->max_packet_sz_rx
;
1855 diff
= hw_ep
->max_packet_sz_tx
;
1856 diff
-= (qh
->maxpacket
* qh
->hb_mult
);
1858 if (diff
>= 0 && best_diff
> diff
) {
1861 * Mentor controller has a bug in that if we schedule
1862 * a BULK Tx transfer on an endpoint that had earlier
1863 * handled ISOC then the BULK transfer has to start on
1864 * a zero toggle. If the BULK transfer starts on a 1
1865 * toggle then this transfer will fail as the mentor
1866 * controller starts the Bulk transfer on a 0 toggle
1867 * irrespective of the programming of the toggle bits
1868 * in the TXCSR register. Check for this condition
1869 * while allocating the EP for a Tx Bulk transfer. If
1872 hw_ep
= musb
->endpoints
+ epnum
;
1873 toggle
= usb_gettoggle(urb
->dev
, qh
->epnum
, !is_in
);
1874 txtype
= (musb_readb(hw_ep
->regs
, MUSB_TXTYPE
)
1876 if (!is_in
&& (qh
->type
== USB_ENDPOINT_XFER_BULK
) &&
1877 toggle
&& (txtype
== USB_ENDPOINT_XFER_ISOC
))
1884 /* use bulk reserved ep1 if no other ep is free */
1885 if (best_end
< 0 && qh
->type
== USB_ENDPOINT_XFER_BULK
) {
1886 hw_ep
= musb
->bulk_ep
;
1888 head
= &musb
->in_bulk
;
1890 head
= &musb
->out_bulk
;
1892 /* Enable bulk RX NAK timeout scheme when bulk requests are
1893 * multiplexed. This scheme doen't work in high speed to full
1894 * speed scenario as NAK interrupts are not coming from a
1895 * full speed device connected to a high speed device.
1896 * NAK timeout interval is 8 (128 uframe or 16ms) for HS and
1897 * 4 (8 frame or 8ms) for FS device.
1899 if (is_in
&& qh
->dev
)
1901 (USB_SPEED_HIGH
== qh
->dev
->speed
) ? 8 : 4;
1903 } else if (best_end
< 0) {
1909 hw_ep
= musb
->endpoints
+ best_end
;
1910 dev_dbg(musb
->controller
, "qh %p periodic slot %d\n", qh
, best_end
);
1913 idle
= list_empty(head
);
1914 list_add_tail(&qh
->ring
, head
);
1918 qh
->hep
->hcpriv
= qh
;
1920 musb_start_urb(musb
, is_in
, qh
);
1925 /* check if transaction translator is needed for device */
1926 static int tt_needed(struct musb
*musb
, struct usb_device
*dev
)
1928 if ((musb_readb(musb
->mregs
, MUSB_POWER
) & MUSB_POWER_HSMODE
) &&
1929 (dev
->speed
< USB_SPEED_HIGH
))
1936 static int musb_urb_enqueue(
1938 int musb_urb_enqueue(
1940 struct usb_hcd
*hcd
,
1944 unsigned long flags
;
1945 struct musb
*musb
= hcd_to_musb(hcd
);
1946 struct usb_host_endpoint
*hep
= urb
->ep
;
1948 struct usb_endpoint_descriptor
*epd
= &hep
->desc
;
1953 /* host role must be active */
1954 if (!is_host_active(musb
) || !musb
->is_active
)
1957 spin_lock_irqsave(&musb
->lock
, flags
);
1958 ret
= usb_hcd_link_urb_to_ep(hcd
, urb
);
1959 qh
= ret
? NULL
: hep
->hcpriv
;
1962 spin_unlock_irqrestore(&musb
->lock
, flags
);
1964 /* DMA mapping was already done, if needed, and this urb is on
1965 * hep->urb_list now ... so we're done, unless hep wasn't yet
1966 * scheduled onto a live qh.
1968 * REVISIT best to keep hep->hcpriv valid until the endpoint gets
1969 * disabled, testing for empty qh->ring and avoiding qh setup costs
1970 * except for the first urb queued after a config change.
1975 /* Allocate and initialize qh, minimizing the work done each time
1976 * hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
1978 * REVISIT consider a dedicated qh kmem_cache, so it's harder
1979 * for bugs in other kernel code to break this driver...
1981 qh
= kzalloc(sizeof *qh
, mem_flags
);
1983 spin_lock_irqsave(&musb
->lock
, flags
);
1984 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1985 spin_unlock_irqrestore(&musb
->lock
, flags
);
1991 INIT_LIST_HEAD(&qh
->ring
);
1994 qh
->maxpacket
= usb_endpoint_maxp(epd
);
1995 qh
->type
= usb_endpoint_type(epd
);
1997 /* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
1998 * Some musb cores don't support high bandwidth ISO transfers; and
1999 * we don't (yet!) support high bandwidth interrupt transfers.
2001 qh
->hb_mult
= 1 + ((qh
->maxpacket
>> 11) & 0x03);
2002 if (qh
->hb_mult
> 1) {
2003 int ok
= (qh
->type
== USB_ENDPOINT_XFER_ISOC
);
2006 ok
= (usb_pipein(urb
->pipe
) && musb
->hb_iso_rx
)
2007 || (usb_pipeout(urb
->pipe
) && musb
->hb_iso_tx
);
2012 qh
->maxpacket
&= 0x7ff;
2015 qh
->epnum
= usb_endpoint_num(epd
);
2017 /* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
2018 qh
->addr_reg
= (u8
) usb_pipedevice(urb
->pipe
);
2020 /* precompute rxtype/txtype/type0 register */
2021 type_reg
= (qh
->type
<< 4) | qh
->epnum
;
2022 switch (urb
->dev
->speed
) {
2026 case USB_SPEED_FULL
:
2032 qh
->type_reg
= type_reg
;
2034 /* Precompute RXINTERVAL/TXINTERVAL register */
2036 case USB_ENDPOINT_XFER_INT
:
2038 * Full/low speeds use the linear encoding,
2039 * high speed uses the logarithmic encoding.
2041 if (urb
->dev
->speed
<= USB_SPEED_FULL
) {
2042 interval
= max_t(u8
, epd
->bInterval
, 1);
2046 case USB_ENDPOINT_XFER_ISOC
:
2047 /* ISO always uses logarithmic encoding */
2048 interval
= min_t(u8
, epd
->bInterval
, 16);
2051 /* REVISIT we actually want to use NAK limits, hinting to the
2052 * transfer scheduling logic to try some other qh, e.g. try
2055 * interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
2057 * The downside of disabling this is that transfer scheduling
2058 * gets VERY unfair for nonperiodic transfers; a misbehaving
2059 * peripheral could make that hurt. That's perfectly normal
2060 * for reads from network or serial adapters ... so we have
2061 * partial NAKlimit support for bulk RX.
2063 * The upside of disabling it is simpler transfer scheduling.
2067 qh
->intv_reg
= interval
;
2069 /* precompute addressing for external hub/tt ports */
2070 if (musb
->is_multipoint
) {
2071 struct usb_device
*parent
= urb
->dev
->parent
;
2074 if (parent
!= hcd
->self
.root_hub
) {
2078 qh
->h_addr_reg
= (u8
) parent
->devnum
;
2081 /* set up tt info if needed */
2083 qh
->h_port_reg
= (u8
) urb
->dev
->ttport
;
2084 if (urb
->dev
->tt
->hub
)
2086 (u8
) urb
->dev
->tt
->hub
->devnum
;
2087 if (urb
->dev
->tt
->multi
)
2088 qh
->h_addr_reg
|= 0x80;
2091 if (tt_needed(musb
, urb
->dev
)) {
2092 u16 hub_port
= find_tt(urb
->dev
);
2093 qh
->h_addr_reg
= (u8
) (hub_port
>> 8);
2094 qh
->h_port_reg
= (u8
) (hub_port
& 0xff);
2100 /* invariant: hep->hcpriv is null OR the qh that's already scheduled.
2101 * until we get real dma queues (with an entry for each urb/buffer),
2102 * we only have work to do in the former case.
2104 spin_lock_irqsave(&musb
->lock
, flags
);
2106 /* some concurrent activity submitted another urb to hep...
2107 * odd, rare, error prone, but legal.
2113 ret
= musb_schedule(musb
, qh
,
2114 epd
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
);
2118 /* FIXME set urb->start_frame for iso/intr, it's tested in
2119 * musb_start_urb(), but otherwise only konicawc cares ...
2122 spin_unlock_irqrestore(&musb
->lock
, flags
);
2126 spin_lock_irqsave(&musb
->lock
, flags
);
2127 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
2128 spin_unlock_irqrestore(&musb
->lock
, flags
);
2137 * abort a transfer that's at the head of a hardware queue.
2138 * called with controller locked, irqs blocked
2139 * that hardware queue advances to the next transfer, unless prevented
2141 static int musb_cleanup_urb(struct urb
*urb
, struct musb_qh
*qh
)
2143 struct musb_hw_ep
*ep
= qh
->hw_ep
;
2144 struct musb
*musb
= ep
->musb
;
2145 void __iomem
*epio
= ep
->regs
;
2146 unsigned hw_end
= ep
->epnum
;
2147 void __iomem
*regs
= ep
->musb
->mregs
;
2148 int is_in
= usb_pipein(urb
->pipe
);
2152 musb_ep_select(regs
, hw_end
);
2154 if (is_dma_capable()) {
2155 struct dma_channel
*dma
;
2157 dma
= is_in
? ep
->rx_channel
: ep
->tx_channel
;
2159 status
= ep
->musb
->dma_controller
->channel_abort(dma
);
2160 dev_dbg(musb
->controller
,
2161 "abort %cX%d DMA for urb %p --> %d\n",
2162 is_in
? 'R' : 'T', ep
->epnum
,
2164 urb
->actual_length
+= dma
->actual_len
;
2168 /* turn off DMA requests, discard state, stop polling ... */
2169 if (ep
->epnum
&& is_in
) {
2170 /* giveback saves bulk toggle */
2171 csr
= musb_h_flush_rxfifo(ep
, 0);
2173 /* REVISIT we still get an irq; should likely clear the
2174 * endpoint's irq status here to avoid bogus irqs.
2175 * clearing that status is platform-specific...
2177 } else if (ep
->epnum
) {
2178 musb_h_tx_flush_fifo(ep
);
2179 csr
= musb_readw(epio
, MUSB_TXCSR
);
2180 csr
&= ~(MUSB_TXCSR_AUTOSET
2181 | MUSB_TXCSR_DMAENAB
2182 | MUSB_TXCSR_H_RXSTALL
2183 | MUSB_TXCSR_H_NAKTIMEOUT
2184 | MUSB_TXCSR_H_ERROR
2185 | MUSB_TXCSR_TXPKTRDY
);
2186 musb_writew(epio
, MUSB_TXCSR
, csr
);
2187 /* REVISIT may need to clear FLUSHFIFO ... */
2188 musb_writew(epio
, MUSB_TXCSR
, csr
);
2189 /* flush cpu writebuffer */
2190 csr
= musb_readw(epio
, MUSB_TXCSR
);
2192 musb_h_ep0_flush_fifo(ep
);
2195 musb_advance_schedule(ep
->musb
, urb
, ep
, is_in
);
2199 static int musb_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
2201 struct musb
*musb
= hcd_to_musb(hcd
);
2203 unsigned long flags
;
2204 int is_in
= usb_pipein(urb
->pipe
);
2207 dev_dbg(musb
->controller
, "urb=%p, dev%d ep%d%s\n", urb
,
2208 usb_pipedevice(urb
->pipe
),
2209 usb_pipeendpoint(urb
->pipe
),
2210 is_in
? "in" : "out");
2212 spin_lock_irqsave(&musb
->lock
, flags
);
2213 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
2222 * Any URB not actively programmed into endpoint hardware can be
2223 * immediately given back; that's any URB not at the head of an
2224 * endpoint queue, unless someday we get real DMA queues. And even
2225 * if it's at the head, it might not be known to the hardware...
2227 * Otherwise abort current transfer, pending DMA, etc.; urb->status
2228 * has already been updated. This is a synchronous abort; it'd be
2229 * OK to hold off until after some IRQ, though.
2231 * NOTE: qh is invalid unless !list_empty(&hep->urb_list)
2234 || urb
->urb_list
.prev
!= &qh
->hep
->urb_list
2235 || musb_ep_get_qh(qh
->hw_ep
, is_in
) != qh
) {
2236 int ready
= qh
->is_ready
;
2239 musb_giveback(musb
, urb
, 0);
2240 qh
->is_ready
= ready
;
2242 /* If nothing else (usually musb_giveback) is using it
2243 * and its URB list has emptied, recycle this qh.
2245 if (ready
&& list_empty(&qh
->hep
->urb_list
)) {
2246 qh
->hep
->hcpriv
= NULL
;
2247 list_del(&qh
->ring
);
2251 ret
= musb_cleanup_urb(urb
, qh
);
2253 spin_unlock_irqrestore(&musb
->lock
, flags
);
2257 /* disable an endpoint */
2259 musb_h_disable(struct usb_hcd
*hcd
, struct usb_host_endpoint
*hep
)
2261 u8 is_in
= hep
->desc
.bEndpointAddress
& USB_DIR_IN
;
2262 unsigned long flags
;
2263 struct musb
*musb
= hcd_to_musb(hcd
);
2267 spin_lock_irqsave(&musb
->lock
, flags
);
2273 /* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
2275 /* Kick the first URB off the hardware, if needed */
2277 if (musb_ep_get_qh(qh
->hw_ep
, is_in
) == qh
) {
2280 /* make software (then hardware) stop ASAP */
2282 urb
->status
= -ESHUTDOWN
;
2285 musb_cleanup_urb(urb
, qh
);
2287 /* Then nuke all the others ... and advance the
2288 * queue on hw_ep (e.g. bulk ring) when we're done.
2290 while (!list_empty(&hep
->urb_list
)) {
2292 urb
->status
= -ESHUTDOWN
;
2293 musb_advance_schedule(musb
, urb
, qh
->hw_ep
, is_in
);
2296 /* Just empty the queue; the hardware is busy with
2297 * other transfers, and since !qh->is_ready nothing
2298 * will activate any of these as it advances.
2300 while (!list_empty(&hep
->urb_list
))
2301 musb_giveback(musb
, next_urb(qh
), -ESHUTDOWN
);
2304 list_del(&qh
->ring
);
2308 spin_unlock_irqrestore(&musb
->lock
, flags
);
2311 static int musb_h_get_frame_number(struct usb_hcd
*hcd
)
2313 struct musb
*musb
= hcd_to_musb(hcd
);
2315 return musb_readw(musb
->mregs
, MUSB_FRAME
);
2318 static int musb_h_start(struct usb_hcd
*hcd
)
2320 struct musb
*musb
= hcd_to_musb(hcd
);
2322 /* NOTE: musb_start() is called when the hub driver turns
2323 * on port power, or when (OTG) peripheral starts.
2325 hcd
->state
= HC_STATE_RUNNING
;
2326 musb
->port1_status
= 0;
2330 static void musb_h_stop(struct usb_hcd
*hcd
)
2332 musb_stop(hcd_to_musb(hcd
));
2333 hcd
->state
= HC_STATE_HALT
;
2336 static int musb_bus_suspend(struct usb_hcd
*hcd
)
2338 struct musb
*musb
= hcd_to_musb(hcd
);
2341 if (!is_host_active(musb
))
2344 switch (musb
->xceiv
->state
) {
2345 case OTG_STATE_A_SUSPEND
:
2347 case OTG_STATE_A_WAIT_VRISE
:
2348 /* ID could be grounded even if there's no device
2349 * on the other end of the cable. NOTE that the
2350 * A_WAIT_VRISE timers are messy with MUSB...
2352 devctl
= musb_readb(musb
->mregs
, MUSB_DEVCTL
);
2353 if ((devctl
& MUSB_DEVCTL_VBUS
) == MUSB_DEVCTL_VBUS
)
2354 musb
->xceiv
->state
= OTG_STATE_A_WAIT_BCON
;
2360 if (musb
->is_active
) {
2361 WARNING("trying to suspend as %s while active\n",
2362 otg_state_string(musb
->xceiv
->state
));
2368 static int musb_bus_resume(struct usb_hcd
*hcd
)
2370 /* resuming child port does the work */
2374 const struct hc_driver musb_hc_driver
= {
2375 .description
= "musb-hcd",
2376 .product_desc
= "MUSB HDRC host driver",
2377 .hcd_priv_size
= sizeof(struct musb
),
2378 .flags
= HCD_USB2
| HCD_MEMORY
,
2380 /* not using irq handler or reset hooks from usbcore, since
2381 * those must be shared with peripheral code for OTG configs
2384 .start
= musb_h_start
,
2385 .stop
= musb_h_stop
,
2387 .get_frame_number
= musb_h_get_frame_number
,
2389 .urb_enqueue
= musb_urb_enqueue
,
2390 .urb_dequeue
= musb_urb_dequeue
,
2391 .endpoint_disable
= musb_h_disable
,
2393 .hub_status_data
= musb_hub_status_data
,
2394 .hub_control
= musb_hub_control
,
2395 .bus_suspend
= musb_bus_suspend
,
2396 .bus_resume
= musb_bus_resume
,
2397 /* .start_port_reset = NULL, */
2398 /* .hub_irq_enable = NULL, */