arm: vf610: add uart0 clock/iomux definitions
[u-boot/qq2440-u-boot.git] / drivers / mtd / nand / davinci_nand.c
blob5b17d7be8b23d544215a4f9096f955a2419da98d
1 /*
2 * NAND driver for TI DaVinci based boards.
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
9 /*
11 * linux/drivers/mtd/nand/nand_davinci.c
13 * NAND Flash Driver
15 * Copyright (C) 2006 Texas Instruments.
17 * ----------------------------------------------------------------------------
19 * SPDX-License-Identifier: GPL-2.0+
21 * ----------------------------------------------------------------------------
23 * Overview:
24 * This is a device driver for the NAND flash device found on the
25 * DaVinci board which utilizes the Samsung k9k2g08 part.
27 Modifications:
28 ver. 1.0: Feb 2005, Vinod/Sudhakar
32 #include <common.h>
33 #include <asm/io.h>
34 #include <nand.h>
35 #include <asm/arch/nand_defs.h>
36 #include <asm/arch/emif_defs.h>
38 /* Definitions for 4-bit hardware ECC */
39 #define NAND_TIMEOUT 10240
40 #define NAND_ECC_BUSY 0xC
41 #define NAND_4BITECC_MASK 0x03FF03FF
42 #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
43 #define ECC_STATE_NO_ERR 0x0
44 #define ECC_STATE_TOO_MANY_ERRS 0x1
45 #define ECC_STATE_ERR_CORR_COMP_P 0x2
46 #define ECC_STATE_ERR_CORR_COMP_N 0x3
49 * Exploit the little endianness of the ARM to do multi-byte transfers
50 * per device read. This can perform over twice as quickly as individual
51 * byte transfers when buffer alignment is conducive.
53 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
54 * the address bus. On Davinci EVM platforms this has always been true.
56 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
58 struct nand_chip *chip = mtd->priv;
59 const u32 *nand = chip->IO_ADDR_R;
61 /* Make sure that buf is 32 bit aligned */
62 if (((int)buf & 0x3) != 0) {
63 if (((int)buf & 0x1) != 0) {
64 if (len) {
65 *buf = readb(nand);
66 buf += 1;
67 len--;
71 if (((int)buf & 0x3) != 0) {
72 if (len >= 2) {
73 *(u16 *)buf = readw(nand);
74 buf += 2;
75 len -= 2;
80 /* copy aligned data */
81 while (len >= 4) {
82 *(u32 *)buf = __raw_readl(nand);
83 buf += 4;
84 len -= 4;
87 /* mop up any remaining bytes */
88 if (len) {
89 if (len >= 2) {
90 *(u16 *)buf = readw(nand);
91 buf += 2;
92 len -= 2;
95 if (len)
96 *buf = readb(nand);
100 static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
101 int len)
103 struct nand_chip *chip = mtd->priv;
104 const u32 *nand = chip->IO_ADDR_W;
106 /* Make sure that buf is 32 bit aligned */
107 if (((int)buf & 0x3) != 0) {
108 if (((int)buf & 0x1) != 0) {
109 if (len) {
110 writeb(*buf, nand);
111 buf += 1;
112 len--;
116 if (((int)buf & 0x3) != 0) {
117 if (len >= 2) {
118 writew(*(u16 *)buf, nand);
119 buf += 2;
120 len -= 2;
125 /* copy aligned data */
126 while (len >= 4) {
127 __raw_writel(*(u32 *)buf, nand);
128 buf += 4;
129 len -= 4;
132 /* mop up any remaining bytes */
133 if (len) {
134 if (len >= 2) {
135 writew(*(u16 *)buf, nand);
136 buf += 2;
137 len -= 2;
140 if (len)
141 writeb(*buf, nand);
145 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
146 unsigned int ctrl)
148 struct nand_chip *this = mtd->priv;
149 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
151 if (ctrl & NAND_CTRL_CHANGE) {
152 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
154 if (ctrl & NAND_CLE)
155 IO_ADDR_W |= MASK_CLE;
156 if (ctrl & NAND_ALE)
157 IO_ADDR_W |= MASK_ALE;
158 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
161 if (cmd != NAND_CMD_NONE)
162 writeb(cmd, IO_ADDR_W);
165 #ifdef CONFIG_SYS_NAND_HW_ECC
167 static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
169 u_int32_t ecc = 0;
171 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
172 CONFIG_SYS_NAND_CS - 2]));
174 return ecc;
177 static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
179 u_int32_t val;
181 /* reading the ECC result register resets the ECC calculation */
182 nand_davinci_readecc(mtd);
184 val = __raw_readl(&davinci_emif_regs->nandfcr);
185 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
186 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
187 __raw_writel(val, &davinci_emif_regs->nandfcr);
190 static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
191 u_char *ecc_code)
193 u_int32_t tmp;
195 tmp = nand_davinci_readecc(mtd);
197 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
198 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
199 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
201 /* Invert so that erased block ECC is correct */
202 tmp = ~tmp;
204 *ecc_code++ = tmp;
205 *ecc_code++ = tmp >> 8;
206 *ecc_code++ = tmp >> 16;
208 /* NOTE: the above code matches mainline Linux:
209 * .PQR.stu ==> ~PQRstu
211 * MontaVista/TI kernels encode those bytes differently, use
212 * complicated (and allegedly sometimes-wrong) correction code,
213 * and usually shipped with U-Boot that uses software ECC:
214 * .PQR.stu ==> PsQRtu
216 * If you need MV/TI compatible NAND I/O in U-Boot, it should
217 * be possible to (a) change the mangling above, (b) reverse
218 * that mangling in nand_davinci_correct_data() below.
221 return 0;
224 static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
225 u_char *read_ecc, u_char *calc_ecc)
227 struct nand_chip *this = mtd->priv;
228 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
229 (read_ecc[2] << 16);
230 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
231 (calc_ecc[2] << 16);
232 u_int32_t diff = ecc_calc ^ ecc_nand;
234 if (diff) {
235 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
236 /* Correctable error */
237 if ((diff >> (12 + 3)) < this->ecc.size) {
238 uint8_t find_bit = 1 << ((diff >> 12) & 7);
239 uint32_t find_byte = diff >> (12 + 3);
241 dat[find_byte] ^= find_bit;
242 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
243 "bit ECC error at offset: %d, bit: "
244 "%d\n", find_byte, find_bit);
245 return 1;
246 } else {
247 return -1;
249 } else if (!(diff & (diff - 1))) {
250 /* Single bit ECC error in the ECC itself,
251 nothing to fix */
252 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
253 "ECC.\n");
254 return 1;
255 } else {
256 /* Uncorrectable error */
257 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
258 return -1;
261 return 0;
263 #endif /* CONFIG_SYS_NAND_HW_ECC */
265 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
266 static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
267 #if defined(CONFIG_SYS_NAND_PAGE_2K)
268 .eccbytes = 40,
269 #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
270 .eccpos = {
271 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
272 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
273 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
274 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
276 .oobfree = {
277 {2, 4}, {16, 6}, {32, 6}, {48, 6},
279 #else
280 .eccpos = {
281 24, 25, 26, 27, 28,
282 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
283 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
284 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
285 59, 60, 61, 62, 63,
287 .oobfree = {
288 {.offset = 2, .length = 22, },
290 #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
291 #elif defined(CONFIG_SYS_NAND_PAGE_4K)
292 .eccbytes = 80,
293 .eccpos = {
294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
295 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
296 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
297 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
298 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
299 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
300 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
301 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
303 .oobfree = {
304 {.offset = 2, .length = 46, },
306 #endif
309 static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
311 u32 val;
313 switch (mode) {
314 case NAND_ECC_WRITE:
315 case NAND_ECC_READ:
317 * Start a new ECC calculation for reading or writing 512 bytes
318 * of data.
320 val = __raw_readl(&davinci_emif_regs->nandfcr);
321 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
322 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
323 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
324 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
325 __raw_writel(val, &davinci_emif_regs->nandfcr);
326 break;
327 case NAND_ECC_READSYN:
328 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
329 break;
330 default:
331 break;
335 static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
337 int i;
339 for (i = 0; i < 4; i++) {
340 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
341 NAND_4BITECC_MASK;
344 return 0;
347 static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
348 const uint8_t *dat,
349 uint8_t *ecc_code)
351 unsigned int hw_4ecc[4];
352 unsigned int i;
354 nand_davinci_4bit_readecc(mtd, hw_4ecc);
356 /*Convert 10 bit ecc value to 8 bit */
357 for (i = 0; i < 2; i++) {
358 unsigned int hw_ecc_low = hw_4ecc[i * 2];
359 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
361 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
362 *ecc_code++ = hw_ecc_low & 0xFF;
365 * Take 2 bits as LSB bits from val1 (count1=0) or val5
366 * (count1=1) and 6 bits from val2 (count1=0) or
367 * val5 (count1=1)
369 *ecc_code++ =
370 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
373 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
374 * 4 bits from val3 (count1=0) or val6 (count1=1)
376 *ecc_code++ =
377 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
380 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
381 * 2 bits from val4 (count1=0) or val7 (count1=1)
383 *ecc_code++ =
384 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
386 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
387 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
390 return 0;
393 static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
394 uint8_t *read_ecc, uint8_t *calc_ecc)
396 int i;
397 unsigned int hw_4ecc[4];
398 unsigned int iserror;
399 unsigned short *ecc16;
400 unsigned int numerrors, erroraddress, errorvalue;
401 u32 val;
404 * Check for an ECC where all bytes are 0xFF. If this is the case, we
405 * will assume we are looking at an erased page and we should ignore
406 * the ECC.
408 for (i = 0; i < 10; i++) {
409 if (read_ecc[i] != 0xFF)
410 break;
412 if (i == 10)
413 return 0;
415 /* Convert 8 bit in to 10 bit */
416 ecc16 = (unsigned short *)&read_ecc[0];
419 * Write the parity values in the NAND Flash 4-bit ECC Load register.
420 * Write each parity value one at a time starting from 4bit_ecc_val8
421 * to 4bit_ecc_val1.
424 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
425 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
426 &davinci_emif_regs->nand4biteccload);
428 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
429 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
430 &davinci_emif_regs->nand4biteccload);
432 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
433 __raw_writel((ecc16[3] >> 2) & 0x3FF,
434 &davinci_emif_regs->nand4biteccload);
436 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
437 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
438 &davinci_emif_regs->nand4biteccload);
440 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
441 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
442 &davinci_emif_regs->nand4biteccload);
444 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
445 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
446 &davinci_emif_regs->nand4biteccload);
448 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
449 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
450 &davinci_emif_regs->nand4biteccload);
452 /* Take 10 bits from 0th and 1st bytes */
453 __raw_writel((ecc16[0]) & 0x3FF,
454 &davinci_emif_regs->nand4biteccload);
457 * Perform a dummy read to the EMIF Revision Code and Status register.
458 * This is required to ensure time for syndrome calculation after
459 * writing the ECC values in previous step.
462 val = __raw_readl(&davinci_emif_regs->nandfsr);
465 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
466 * A syndrome value of 0 means no bit errors. If the syndrome is
467 * non-zero then go further otherwise return.
469 nand_davinci_4bit_readecc(mtd, hw_4ecc);
471 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
472 return 0;
475 * Clear any previous address calculation by doing a dummy read of an
476 * error address register.
478 val = __raw_readl(&davinci_emif_regs->nanderradd1);
481 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
482 * register to 1.
484 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
485 &davinci_emif_regs->nandfcr);
488 * Wait for the corr_state field (bits 8 to 11) in the
489 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
490 * Otherwise ECC calculation has not even begun and the next loop might
491 * fail because of a false positive!
493 i = NAND_TIMEOUT;
494 do {
495 val = __raw_readl(&davinci_emif_regs->nandfsr);
496 val &= 0xc00;
497 i--;
498 } while ((i > 0) && !val);
501 * Wait for the corr_state field (bits 8 to 11) in the
502 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
504 i = NAND_TIMEOUT;
505 do {
506 val = __raw_readl(&davinci_emif_regs->nandfsr);
507 val &= 0xc00;
508 i--;
509 } while ((i > 0) && val);
511 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
512 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
513 iserror = iserror >> 8;
516 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
517 * corrected (five or more errors). The number of errors
518 * calculated (err_num field) differs from the number of errors
519 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
520 * correction complete (errors on bit 8 or 9).
521 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
522 * complete (error exists).
525 if (iserror == ECC_STATE_NO_ERR) {
526 val = __raw_readl(&davinci_emif_regs->nanderrval1);
527 return 0;
528 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
529 val = __raw_readl(&davinci_emif_regs->nanderrval1);
530 return -1;
533 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
534 & 0x3) + 1;
536 /* Read the error address, error value and correct */
537 for (i = 0; i < numerrors; i++) {
538 if (i > 1) {
539 erroraddress =
540 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
541 (16 * (i & 1))) & 0x3FF);
542 erroraddress = ((512 + 7) - erroraddress);
543 errorvalue =
544 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
545 (16 * (i & 1))) & 0xFF);
546 } else {
547 erroraddress =
548 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
549 (16 * (i & 1))) & 0x3FF);
550 erroraddress = ((512 + 7) - erroraddress);
551 errorvalue =
552 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
553 (16 * (i & 1))) & 0xFF);
555 /* xor the corrupt data with error value */
556 if (erroraddress < 512)
557 dat[erroraddress] ^= errorvalue;
560 return numerrors;
562 #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
564 static int nand_davinci_dev_ready(struct mtd_info *mtd)
566 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
569 static void nand_flash_init(void)
571 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
572 * Instead, have your board_init() set EMIF timings, based on its
573 * knowledge of the clocks and what devices are hooked up ... and
574 * don't even do that unless no UBL handled it.
576 #ifdef CONFIG_SOC_DM644X
577 u_int32_t acfg1 = 0x3ffffffc;
579 /*------------------------------------------------------------------*
580 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
582 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
583 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
585 *------------------------------------------------------------------*/
586 acfg1 = 0
587 | (0 << 31) /* selectStrobe */
588 | (0 << 30) /* extWait */
589 | (1 << 26) /* writeSetup 10 ns */
590 | (3 << 20) /* writeStrobe 40 ns */
591 | (1 << 17) /* writeHold 10 ns */
592 | (1 << 13) /* readSetup 10 ns */
593 | (5 << 7) /* readStrobe 60 ns */
594 | (1 << 4) /* readHold 10 ns */
595 | (3 << 2) /* turnAround ?? ns */
596 | (0 << 0) /* asyncSize 8-bit bus */
599 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
601 /* NAND flash on CS2 */
602 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
603 #endif
606 void davinci_nand_init(struct nand_chip *nand)
608 nand->chip_delay = 0;
609 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
610 nand->bbt_options |= NAND_BBT_USE_FLASH;
611 #endif
612 #ifdef CONFIG_SYS_NAND_HW_ECC
613 nand->ecc.mode = NAND_ECC_HW;
614 nand->ecc.size = 512;
615 nand->ecc.bytes = 3;
616 nand->ecc.strength = 1;
617 nand->ecc.calculate = nand_davinci_calculate_ecc;
618 nand->ecc.correct = nand_davinci_correct_data;
619 nand->ecc.hwctl = nand_davinci_enable_hwecc;
620 #else
621 nand->ecc.mode = NAND_ECC_SOFT;
622 #endif /* CONFIG_SYS_NAND_HW_ECC */
623 #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
624 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
625 nand->ecc.size = 512;
626 nand->ecc.bytes = 10;
627 nand->ecc.strength = 4;
628 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
629 nand->ecc.correct = nand_davinci_4bit_correct_data;
630 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
631 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
632 #endif
633 /* Set address of hardware control function */
634 nand->cmd_ctrl = nand_davinci_hwcontrol;
636 nand->read_buf = nand_davinci_read_buf;
637 nand->write_buf = nand_davinci_write_buf;
639 nand->dev_ready = nand_davinci_dev_ready;
641 nand_flash_init();
644 int board_nand_init(struct nand_chip *chip) __attribute__((weak));
646 int board_nand_init(struct nand_chip *chip)
648 davinci_nand_init(chip);
649 return 0;