2 * This file is part of Cleanflight.
4 * Cleanflight is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 3 of the License, or
7 * (at your option) any later version.
9 * Cleanflight is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with Cleanflight. If not, see <http://www.gnu.org/licenses/>.
24 #include "build_config.h"
26 #include "common/axis.h"
27 #include "common/maths.h"
28 #include "common/filter.h"
30 #include "drivers/sensor.h"
31 #include "drivers/accgyro.h"
33 #include "sensors/sensors.h"
34 #include "sensors/gyro.h"
35 #include "sensors/acceleration.h"
39 #include "io/rc_controls.h"
42 #include "flight/pid.h"
43 #include "flight/imu.h"
44 #include "flight/navigation.h"
45 #include "flight/gtune.h"
47 #include "config/runtime_config.h"
49 extern uint16_t cycleTime
;
50 extern uint8_t motorCount
;
57 int32_t axisPID_P
[3], axisPID_I
[3], axisPID_D
[3];
60 // PIDweight is a scale factor for PIDs which is derived from the throttle and TPA setting, and 100 = 100% scale means no PID reduction
61 uint8_t dynP8
[3], dynI8
[3], dynD8
[3], PIDweight
[3];
63 static int32_t errorGyroI
[3] = { 0, 0, 0 };
64 static float errorGyroIf
[3] = { 0.0f
, 0.0f
, 0.0f
};
65 static int32_t errorAngleI
[2] = { 0, 0 };
66 static float errorAngleIf
[2] = { 0.0f
, 0.0f
};
68 static void pidMultiWiiRewrite(pidProfile_t
*pidProfile
, controlRateConfig_t
*controlRateConfig
,
69 uint16_t max_angle_inclination
, rollAndPitchTrims_t
*angleTrim
, rxConfig_t
*rxConfig
);
71 typedef void (*pidControllerFuncPtr
)(pidProfile_t
*pidProfile
, controlRateConfig_t
*controlRateConfig
,
72 uint16_t max_angle_inclination
, rollAndPitchTrims_t
*angleTrim
, rxConfig_t
*rxConfig
); // pid controller function prototype
74 pidControllerFuncPtr pid_controller
= pidMultiWiiRewrite
; // which pid controller are we using
76 void pidResetErrorAngle(void)
78 errorAngleI
[ROLL
] = 0;
79 errorAngleI
[PITCH
] = 0;
81 errorAngleIf
[ROLL
] = 0.0f
;
82 errorAngleIf
[PITCH
] = 0.0f
;
85 void pidResetErrorGyro(void)
88 errorGyroI
[PITCH
] = 0;
91 errorGyroIf
[ROLL
] = 0.0f
;
92 errorGyroIf
[PITCH
] = 0.0f
;
93 errorGyroIf
[YAW
] = 0.0f
;
96 const angle_index_t rcAliasToAngleIndexMap
[] = { AI_ROLL
, AI_PITCH
};
98 static filterStatePt1_t PTermState
[3], DTermState
[3];
100 static void pidLuxFloat(pidProfile_t
*pidProfile
, controlRateConfig_t
*controlRateConfig
,
101 uint16_t max_angle_inclination
, rollAndPitchTrims_t
*angleTrim
, rxConfig_t
*rxConfig
)
103 float RateError
, errorAngle
, AngleRate
, gyroRate
;
104 float ITerm
,PTerm
,DTerm
;
105 int32_t stickPosAil
, stickPosEle
, mostDeflectedPos
;
106 static float lastError
[3];
107 static float delta1
[3], delta2
[3];
108 float delta
, deltaSum
;
110 float horizonLevelStrength
= 1;
112 if (FLIGHT_MODE(HORIZON_MODE
)) {
114 // Figure out the raw stick positions
115 stickPosAil
= getRcStickDeflection(FD_ROLL
, rxConfig
->midrc
);
116 stickPosEle
= getRcStickDeflection(FD_PITCH
, rxConfig
->midrc
);
118 if(ABS(stickPosAil
) > ABS(stickPosEle
)){
119 mostDeflectedPos
= ABS(stickPosAil
);
122 mostDeflectedPos
= ABS(stickPosEle
);
125 // Progressively turn off the horizon self level strength as the stick is banged over
126 horizonLevelStrength
= (float)(500 - mostDeflectedPos
) / 500; // 1 at centre stick, 0 = max stick deflection
127 if(pidProfile
->H_sensitivity
== 0){
128 horizonLevelStrength
= 0;
130 horizonLevelStrength
= constrainf(((horizonLevelStrength
- 1) * (100 / pidProfile
->H_sensitivity
)) + 1, 0, 1);
134 // ----------PID controller----------
135 for (axis
= 0; axis
< 3; axis
++) {
136 // -----Get the desired angle rate depending on flight mode
137 uint8_t rate
= controlRateConfig
->rates
[axis
];
139 if (axis
== FD_YAW
) {
140 // YAW is always gyro-controlled (MAG correction is applied to rcCommand) 100dps to 1100dps max yaw rate
141 AngleRate
= (float)((rate
+ 10) * rcCommand
[YAW
]) / 50.0f
;
143 // calculate error and limit the angle to the max inclination
145 errorAngle
= (constrain(rcCommand
[axis
] + GPS_angle
[axis
], -((int) max_angle_inclination
),
146 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
]) / 10.0f
; // 16 bits is ok here
148 errorAngle
= (constrain(rcCommand
[axis
], -((int) max_angle_inclination
),
149 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
]) / 10.0f
; // 16 bits is ok here
152 if (FLIGHT_MODE(ANGLE_MODE
)) {
153 // it's the ANGLE mode - control is angle based, so control loop is needed
154 AngleRate
= errorAngle
* pidProfile
->A_level
;
156 //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
157 AngleRate
= (float)((rate
+ 20) * rcCommand
[axis
]) / 50.0f
; // 200dps to 1200dps max roll/pitch rate
158 if (FLIGHT_MODE(HORIZON_MODE
)) {
159 // mix up angle error to desired AngleRate to add a little auto-level feel
160 AngleRate
+= errorAngle
* pidProfile
->H_level
* horizonLevelStrength
;
165 gyroRate
= gyroADC
[axis
] * gyro
.scale
; // gyro output scaled to dps
167 // --------low-level gyro-based PID. ----------
168 // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
169 // -----calculate scaled error.AngleRates
170 // multiplication of rcCommand corresponds to changing the sticks scaling here
171 RateError
= AngleRate
- gyroRate
;
173 // -----calculate P component
174 PTerm
= RateError
* pidProfile
->P_f
[axis
] * PIDweight
[axis
] / 100;
177 if (pidProfile
->pterm_cut_hz
) {
178 PTerm
= filterApplyPt1(PTerm
, &PTermState
[axis
], pidProfile
->pterm_cut_hz
, dT
);
181 // -----calculate I component.
182 errorGyroIf
[axis
] = constrainf(errorGyroIf
[axis
] + RateError
* dT
* pidProfile
->I_f
[axis
] * 10, -250.0f
, 250.0f
);
184 // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
185 // I coefficient (I8) moved before integration to make limiting independent from PID settings
186 ITerm
= errorGyroIf
[axis
];
188 //-----calculate D-term
189 delta
= RateError
- lastError
[axis
];
190 lastError
[axis
] = RateError
;
192 // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
193 // would be scaled by different dt each time. Division by dT fixes that.
194 delta
*= (1.0f
/ dT
);
195 // add moving average here to reduce noise
196 deltaSum
= delta1
[axis
] + delta2
[axis
] + delta
;
197 delta2
[axis
] = delta1
[axis
];
198 delta1
[axis
] = delta
;
201 if (pidProfile
->dterm_cut_hz
) {
202 deltaSum
= filterApplyPt1(deltaSum
, &DTermState
[axis
], pidProfile
->dterm_cut_hz
, dT
);
205 DTerm
= constrainf((deltaSum
/ 3.0f
) * pidProfile
->D_f
[axis
] * PIDweight
[axis
] / 100, -300.0f
, 300.0f
);
207 // -----calculate total PID output
208 axisPID
[axis
] = constrain(lrintf(PTerm
+ ITerm
+ DTerm
), -1000, 1000);
211 if (FLIGHT_MODE(GTUNE_MODE
) && ARMING_FLAG(ARMED
)) {
212 calculate_Gtune(axis
);
217 axisPID_P
[axis
] = PTerm
;
218 axisPID_I
[axis
] = ITerm
;
219 axisPID_D
[axis
] = DTerm
;
224 static void pidMultiWii23(pidProfile_t
*pidProfile
, controlRateConfig_t
*controlRateConfig
, uint16_t max_angle_inclination
,
225 rollAndPitchTrims_t
*angleTrim
, rxConfig_t
*rxConfig
)
230 int32_t rc
, error
, errorAngle
;
231 int32_t PTerm
, ITerm
, PTermACC
, ITermACC
, DTerm
;
232 static int16_t lastGyro
[2] = { 0, 0 };
233 static int32_t delta1
[2] = { 0, 0 }, delta2
[2] = { 0, 0 };
236 if (FLIGHT_MODE(HORIZON_MODE
)) {
237 prop
= MIN(MAX(ABS(rcCommand
[PITCH
]), ABS(rcCommand
[ROLL
])), 512);
241 for (axis
= 0; axis
< 2; axis
++) {
243 rc
= rcCommand
[axis
] << 1;
245 error
= rc
- (gyroADC
[axis
] / 4);
246 errorGyroI
[axis
] = constrain(errorGyroI
[axis
] + error
, -16000, +16000); // WindUp 16 bits is ok here
248 if (ABS(gyroADC
[axis
]) > (640 * 4)) {
249 errorGyroI
[axis
] = 0;
252 ITerm
= (errorGyroI
[axis
] >> 7) * pidProfile
->I8
[axis
] >> 6; // 16 bits is ok here 16000/125 = 128 ; 128*250 = 32000
254 PTerm
= (int32_t)rc
* pidProfile
->P8
[axis
] >> 6;
256 if (FLIGHT_MODE(ANGLE_MODE
) || FLIGHT_MODE(HORIZON_MODE
)) { // axis relying on ACC
257 // 50 degrees max inclination
259 errorAngle
= constrain(2 * rcCommand
[axis
] + GPS_angle
[axis
], -((int) max_angle_inclination
),
260 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
];
262 errorAngle
= constrain(2 * rcCommand
[axis
], -((int) max_angle_inclination
),
263 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
];
266 errorAngleI
[axis
] = constrain(errorAngleI
[axis
] + errorAngle
, -10000, +10000); // WindUp //16 bits is ok here
268 PTermACC
= ((int32_t)errorAngle
* pidProfile
->P8
[PIDLEVEL
]) >> 7; // 32 bits is needed for calculation: errorAngle*P8 could exceed 32768 16 bits is ok for result
270 int16_t limit
= pidProfile
->D8
[PIDLEVEL
] * 5;
271 PTermACC
= constrain(PTermACC
, -limit
, +limit
);
273 ITermACC
= ((int32_t)errorAngleI
[axis
] * pidProfile
->I8
[PIDLEVEL
]) >> 12; // 32 bits is needed for calculation:10000*I8 could exceed 32768 16 bits is ok for result
275 ITerm
= ITermACC
+ ((ITerm
- ITermACC
) * prop
>> 9);
276 PTerm
= PTermACC
+ ((PTerm
- PTermACC
) * prop
>> 9);
279 PTerm
-= ((int32_t)(gyroADC
[axis
] / 4) * dynP8
[axis
]) >> 6; // 32 bits is needed for calculation
282 if (pidProfile
->pterm_cut_hz
) {
283 PTerm
= filterApplyPt1(PTerm
, &PTermState
[axis
], pidProfile
->pterm_cut_hz
, dT
);
286 delta
= (gyroADC
[axis
] - lastGyro
[axis
]) / 4; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
287 lastGyro
[axis
] = gyroADC
[axis
];
288 DTerm
= delta1
[axis
] + delta2
[axis
] + delta
;
289 delta2
[axis
] = delta1
[axis
];
290 delta1
[axis
] = delta
;
293 if (pidProfile
->dterm_cut_hz
) {
294 DTerm
= filterApplyPt1(DTerm
, &DTermState
[axis
], pidProfile
->dterm_cut_hz
, dT
);
297 DTerm
= ((int32_t)DTerm
* dynD8
[axis
]) >> 5; // 32 bits is needed for calculation
299 axisPID
[axis
] = PTerm
+ ITerm
- DTerm
;
302 if (FLIGHT_MODE(GTUNE_MODE
) && ARMING_FLAG(ARMED
)) {
303 calculate_Gtune(axis
);
308 axisPID_P
[axis
] = PTerm
;
309 axisPID_I
[axis
] = ITerm
;
310 axisPID_D
[axis
] = -DTerm
;
315 rc
= (int32_t)rcCommand
[FD_YAW
] * (2 * controlRateConfig
->rates
[FD_YAW
] + 30) >> 5;
317 error
= rc
- gyroADC
[FD_YAW
];
319 error
= rc
- (gyroADC
[FD_YAW
] / 4);
321 errorGyroI
[FD_YAW
] += (int32_t)error
* pidProfile
->I8
[FD_YAW
];
322 errorGyroI
[FD_YAW
] = constrain(errorGyroI
[FD_YAW
], 2 - ((int32_t)1 << 28), -2 + ((int32_t)1 << 28));
323 if (ABS(rc
) > 50) errorGyroI
[FD_YAW
] = 0;
325 PTerm
= (int32_t)error
* pidProfile
->P8
[FD_YAW
] >> 6; // TODO: Bitwise shift on a signed integer is not recommended
327 // Constrain YAW by D value if not servo driven in that case servolimits apply
328 if(motorCount
>= 4 && pidProfile
->yaw_p_limit
< YAW_P_LIMIT_MAX
) {
329 PTerm
= constrain(PTerm
, -pidProfile
->yaw_p_limit
, pidProfile
->yaw_p_limit
);
332 ITerm
= constrain((int16_t)(errorGyroI
[FD_YAW
] >> 13), -GYRO_I_MAX
, +GYRO_I_MAX
);
334 axisPID
[FD_YAW
] = PTerm
+ ITerm
;
337 if (FLIGHT_MODE(GTUNE_MODE
) && ARMING_FLAG(ARMED
)) {
338 calculate_Gtune(FD_YAW
);
343 axisPID_P
[FD_YAW
] = PTerm
;
344 axisPID_I
[FD_YAW
] = ITerm
;
345 axisPID_D
[FD_YAW
] = 0;
349 static void pidMultiWiiRewrite(pidProfile_t
*pidProfile
, controlRateConfig_t
*controlRateConfig
, uint16_t max_angle_inclination
,
350 rollAndPitchTrims_t
*angleTrim
, rxConfig_t
*rxConfig
)
356 int32_t delta
, deltaSum
;
357 static int32_t delta1
[3], delta2
[3];
358 int32_t PTerm
, ITerm
, DTerm
;
359 static int32_t lastError
[3] = { 0, 0, 0 };
360 int32_t AngleRateTmp
, RateError
;
362 int8_t horizonLevelStrength
= 100;
363 int32_t stickPosAil
, stickPosEle
, mostDeflectedPos
;
365 if (FLIGHT_MODE(HORIZON_MODE
)) {
367 // Figure out the raw stick positions
368 stickPosAil
= getRcStickDeflection(FD_ROLL
, rxConfig
->midrc
);
369 stickPosEle
= getRcStickDeflection(FD_PITCH
, rxConfig
->midrc
);
371 if(ABS(stickPosAil
) > ABS(stickPosEle
)){
372 mostDeflectedPos
= ABS(stickPosAil
);
375 mostDeflectedPos
= ABS(stickPosEle
);
378 // Progressively turn off the horizon self level strength as the stick is banged over
379 horizonLevelStrength
= (500 - mostDeflectedPos
) / 5; // 100 at centre stick, 0 = max stick deflection
381 // Using Level D as a Sensitivity for Horizon. 0 more level to 255 more rate. Default value of 100 seems to work fine.
382 // For more rate mode increase D and slower flips and rolls will be possible
383 horizonLevelStrength
= constrain((10 * (horizonLevelStrength
- 100) * (10 * pidProfile
->D8
[PIDLEVEL
] / 80) / 100) + 100, 0, 100);
386 // ----------PID controller----------
387 for (axis
= 0; axis
< 3; axis
++) {
388 uint8_t rate
= controlRateConfig
->rates
[axis
];
390 // -----Get the desired angle rate depending on flight mode
391 if (axis
== FD_YAW
) { // YAW is always gyro-controlled (MAG correction is applied to rcCommand)
392 AngleRateTmp
= (((int32_t)(rate
+ 27) * rcCommand
[YAW
]) >> 5);
394 // calculate error and limit the angle to max configured inclination
396 errorAngle
= constrain(2 * rcCommand
[axis
] + GPS_angle
[axis
], -((int) max_angle_inclination
),
397 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
]; // 16 bits is ok here
399 errorAngle
= constrain(2 * rcCommand
[axis
], -((int) max_angle_inclination
),
400 +max_angle_inclination
) - inclination
.raw
[axis
] + angleTrim
->raw
[axis
]; // 16 bits is ok here
403 if (!FLIGHT_MODE(ANGLE_MODE
)) { //control is GYRO based (ACRO and HORIZON - direct sticks control is applied to rate PID
404 AngleRateTmp
= ((int32_t)(rate
+ 27) * rcCommand
[axis
]) >> 4;
405 if (FLIGHT_MODE(HORIZON_MODE
)) {
406 // mix up angle error to desired AngleRateTmp to add a little auto-level feel. horizonLevelStrength is scaled to the stick input
407 AngleRateTmp
+= (errorAngle
* pidProfile
->I8
[PIDLEVEL
] * horizonLevelStrength
/ 100) >> 4;
409 } else { // it's the ANGLE mode - control is angle based, so control loop is needed
410 AngleRateTmp
= (errorAngle
* pidProfile
->P8
[PIDLEVEL
]) >> 4;
414 // --------low-level gyro-based PID. ----------
415 // Used in stand-alone mode for ACRO, controlled by higher level regulators in other modes
416 // -----calculate scaled error.AngleRates
417 // multiplication of rcCommand corresponds to changing the sticks scaling here
418 RateError
= AngleRateTmp
- (gyroADC
[axis
] / 4);
420 // -----calculate P component
421 PTerm
= (RateError
* pidProfile
->P8
[axis
] * PIDweight
[axis
] / 100) >> 7;
424 if (pidProfile
->pterm_cut_hz
) {
425 PTerm
= filterApplyPt1(PTerm
, &PTermState
[axis
], pidProfile
->pterm_cut_hz
, dT
);
428 // -----calculate I component
429 // there should be no division before accumulating the error to integrator, because the precision would be reduced.
430 // Precision is critical, as I prevents from long-time drift. Thus, 32 bits integrator is used.
431 // Time correction (to avoid different I scaling for different builds based on average cycle time)
432 // is normalized to cycle time = 2048.
433 errorGyroI
[axis
] = errorGyroI
[axis
] + ((RateError
* cycleTime
) >> 11) * pidProfile
->I8
[axis
];
435 // limit maximum integrator value to prevent WindUp - accumulating extreme values when system is saturated.
436 // I coefficient (I8) moved before integration to make limiting independent from PID settings
437 errorGyroI
[axis
] = constrain(errorGyroI
[axis
], (int32_t) - GYRO_I_MAX
<< 13, (int32_t) + GYRO_I_MAX
<< 13);
438 ITerm
= errorGyroI
[axis
] >> 13;
440 //-----calculate D-term
441 delta
= RateError
- lastError
[axis
]; // 16 bits is ok here, the dif between 2 consecutive gyro reads is limited to 800
442 lastError
[axis
] = RateError
;
444 // Correct difference by cycle time. Cycle time is jittery (can be different 2 times), so calculated difference
445 // would be scaled by different dt each time. Division by dT fixes that.
446 delta
= (delta
* ((uint16_t) 0xFFFF / (cycleTime
>> 4))) >> 6;
447 // add moving average here to reduce noise
448 deltaSum
= delta1
[axis
] + delta2
[axis
] + delta
;
449 delta2
[axis
] = delta1
[axis
];
450 delta1
[axis
] = delta
;
452 // Dterm delta low pass
453 if (pidProfile
->dterm_cut_hz
) {
454 deltaSum
= filterApplyPt1(deltaSum
, &DTermState
[axis
], pidProfile
->dterm_cut_hz
, dT
);
457 DTerm
= (deltaSum
* pidProfile
->D8
[axis
] * PIDweight
[axis
] / 100) >> 8;
459 // -----calculate total PID output
460 axisPID
[axis
] = PTerm
+ ITerm
+ DTerm
;
463 if (FLIGHT_MODE(GTUNE_MODE
) && ARMING_FLAG(ARMED
)) {
464 calculate_Gtune(axis
);
469 axisPID_P
[axis
] = PTerm
;
470 axisPID_I
[axis
] = ITerm
;
471 axisPID_D
[axis
] = DTerm
;
476 void pidSetController(pidControllerType_e type
)
480 case PID_CONTROLLER_MWREWRITE
:
481 pid_controller
= pidMultiWiiRewrite
;
483 case PID_CONTROLLER_LUX_FLOAT
:
484 pid_controller
= pidLuxFloat
;
486 case PID_CONTROLLER_MW23
:
487 pid_controller
= pidMultiWii23
;