4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
39 #include <sys/resource.h>
41 #include <sys/project.h>
43 #include <sys/debug.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
56 #include <sys/sobject.h>
57 #include <sys/cpupart.h>
61 #include <sys/copyops.h>
63 #include <sys/brand.h>
66 #include <sys/cpc_impl.h>
68 #include <sys/reboot.h>
70 #include <sys/schedctl.h>
71 #include <sys/waitq.h>
72 #include <sys/cpucaps.h>
73 #include <sys/kiconv.h>
75 struct kmem_cache
*thread_cache
; /* cache of free threads */
76 struct kmem_cache
*lwp_cache
; /* cache of free lwps */
77 struct kmem_cache
*turnstile_cache
; /* cache of free turnstiles */
80 * allthreads is only for use by kmem_readers. All kernel loops can use
81 * the current thread as a start/end point.
83 kthread_t
*allthreads
= &t0
; /* circular list of all threads */
85 static kcondvar_t reaper_cv
; /* synchronization var */
86 kthread_t
*thread_deathrow
; /* circular list of reapable threads */
87 kthread_t
*lwp_deathrow
; /* circular list of reapable threads */
88 kmutex_t reaplock
; /* protects lwp and thread deathrows */
89 int thread_reapcnt
= 0; /* number of threads on deathrow */
90 int lwp_reapcnt
= 0; /* number of lwps on deathrow */
91 int reaplimit
= 16; /* delay reaping until reaplimit */
93 thread_free_lock_t
*thread_free_lock
;
94 /* protects tick thread from reaper */
98 /* System Scheduling classes. */
99 id_t syscid
; /* system scheduling class ID */
100 id_t sysdccid
= CLASS_UNUSED
; /* reset when SDC loads */
102 void *segkp_thread
; /* cookie for segkp pool */
104 int lwp_cache_sz
= 32;
106 static kt_did_t next_t_id
= 1;
108 /* Default mode for thread binding to CPUs and processor sets */
109 int default_binding_mode
= TB_ALLHARD
;
112 * Min/Max stack sizes for stack size parameters
114 #define MAX_STKSIZE (32 * DEFAULTSTKSZ)
115 #define MIN_STKSIZE DEFAULTSTKSZ
118 * default_stksize overrides lwp_default_stksize if it is set.
121 int lwp_default_stksize
;
123 static zone_key_t zone_thread_key
;
125 unsigned int kmem_stackinfo
; /* stackinfo feature on-off */
126 kmem_stkinfo_t
*kmem_stkinfo_log
; /* stackinfo circular log */
127 static kmutex_t kmem_stkinfo_lock
; /* protects kmem_stkinfo_log */
130 * forward declarations for internal thread specific data (tsd)
132 static void *tsd_realloc(void *, size_t, size_t);
134 void thread_reaper(void);
136 /* forward declarations for stackinfo feature */
137 static void stkinfo_begin(kthread_t
*);
138 static void stkinfo_end(kthread_t
*);
139 static size_t stkinfo_percent(caddr_t
, caddr_t
, caddr_t
);
143 turnstile_constructor(void *buf
, void *cdrarg
, int kmflags
)
145 bzero(buf
, sizeof (turnstile_t
));
151 turnstile_destructor(void *buf
, void *cdrarg
)
153 turnstile_t
*ts
= buf
;
155 ASSERT(ts
->ts_free
== NULL
);
156 ASSERT(ts
->ts_waiters
== 0);
157 ASSERT(ts
->ts_inheritor
== NULL
);
158 ASSERT(ts
->ts_sleepq
[0].sq_first
== NULL
);
159 ASSERT(ts
->ts_sleepq
[1].sq_first
== NULL
);
166 extern char sys_name
[];
168 struct cpu
*cpu
= CPU
;
172 mutex_init(&reaplock
, NULL
, MUTEX_SPIN
, (void *)ipltospl(DISP_LEVEL
));
174 kmem_alloc(sizeof (thread_free_lock_t
) * THREAD_FREE_NUM
, KM_SLEEP
);
175 for (i
= 0; i
< THREAD_FREE_NUM
; i
++) {
176 lp
= &thread_free_lock
[i
].tf_lock
;
177 mutex_init(lp
, NULL
, MUTEX_DEFAULT
, NULL
);
180 #if defined(__i386) || defined(__amd64)
181 thread_cache
= kmem_cache_create("thread_cache", sizeof (kthread_t
),
182 PTR24_ALIGN
, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
185 * "struct _klwp" includes a "struct pcb", which includes a
186 * "struct fpu", which needs to be 64-byte aligned on amd64
187 * (and even on i386) for xsave/xrstor.
189 lwp_cache
= kmem_cache_create("lwp_cache", sizeof (klwp_t
),
190 64, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
193 * Allocate thread structures from static_arena. This prevents
194 * issues where a thread tries to relocate its own thread
195 * structure and touches it after the mapping has been suspended.
197 thread_cache
= kmem_cache_create("thread_cache", sizeof (kthread_t
),
198 PTR24_ALIGN
, NULL
, NULL
, NULL
, NULL
, static_arena
, 0);
200 lwp_stk_cache_init();
202 lwp_cache
= kmem_cache_create("lwp_cache", sizeof (klwp_t
),
203 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
206 turnstile_cache
= kmem_cache_create("turnstile_cache",
207 sizeof (turnstile_t
), 0,
208 turnstile_constructor
, turnstile_destructor
, NULL
, NULL
, NULL
, 0);
213 * Initialize various resource management facilities.
218 * Zone_init() should be called before project_init() so that project ID
219 * for the first project is initialized correctly.
228 curthread
->t_ts
= kmem_cache_alloc(turnstile_cache
, KM_SLEEP
);
231 * Originally, we had two parameters to set default stack
232 * size: one for lwp's (lwp_default_stksize), and one for
233 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
234 * Now we have a third parameter that overrides both if it is
235 * set to a legal stack size, called default_stksize.
238 if (default_stksize
== 0) {
239 default_stksize
= DEFAULTSTKSZ
;
240 } else if (default_stksize
% PAGESIZE
!= 0 ||
241 default_stksize
> MAX_STKSIZE
||
242 default_stksize
< MIN_STKSIZE
) {
243 cmn_err(CE_WARN
, "Illegal stack size. Using %d",
245 default_stksize
= DEFAULTSTKSZ
;
247 lwp_default_stksize
= default_stksize
;
250 if (lwp_default_stksize
== 0) {
251 lwp_default_stksize
= default_stksize
;
252 } else if (lwp_default_stksize
% PAGESIZE
!= 0 ||
253 lwp_default_stksize
> MAX_STKSIZE
||
254 lwp_default_stksize
< MIN_STKSIZE
) {
255 cmn_err(CE_WARN
, "Illegal stack size. Using %d",
257 lwp_default_stksize
= default_stksize
;
260 segkp_lwp
= segkp_cache_init(segkp
, lwp_cache_sz
,
262 (KPD_NOWAIT
| KPD_HASREDZONE
| KPD_LOCKED
));
264 segkp_thread
= segkp_cache_init(segkp
, t_cache_sz
,
265 default_stksize
, KPD_HASREDZONE
| KPD_LOCKED
| KPD_NO_ANON
);
267 (void) getcid(sys_name
, &syscid
);
268 curthread
->t_cid
= syscid
; /* current thread is t0 */
271 * Set up the first CPU's idle thread.
272 * It runs whenever the CPU has nothing worthwhile to do.
274 tp
= thread_create(NULL
, 0, idle
, NULL
, 0, &p0
, TS_STOPPED
, -1);
275 cpu
->cpu_idle_thread
= tp
;
277 tp
->t_disp_queue
= cpu
->cpu_disp
;
278 ASSERT(tp
->t_disp_queue
!= NULL
);
279 tp
->t_bound_cpu
= cpu
;
280 tp
->t_affinitycnt
= 1;
283 * Registering a thread in the callback table is usually
284 * done in the initialization code of the thread. In this
285 * case, we do it right after thread creation to avoid
286 * blocking idle thread while registering itself. It also
287 * avoids the possibility of reregistration in case a CPU
288 * restarts its idle thread.
290 CALLB_CPR_INIT_SAFE(tp
, "idle");
293 * Create the thread_reaper daemon. From this point on, exited
294 * threads will get reaped.
296 (void) thread_create(NULL
, 0, (void (*)())thread_reaper
,
297 NULL
, 0, &p0
, TS_RUN
, minclsyspri
);
300 * Finish initializing the kernel memory allocator now that
301 * thread_create() is available.
305 if (boothowto
& RB_DEBUG
)
312 * thread_create() blocks for memory if necessary. It never fails.
314 * If stk is NULL, the thread is created at the base of the stack
315 * and cannot be swapped.
329 extern struct classfuncs sys_classfuncs
;
333 * Every thread keeps a turnstile around in case it needs to block.
334 * The only reason the turnstile is not simply part of the thread
335 * structure is that we may have to break the association whenever
336 * more than one thread blocks on a given synchronization object.
337 * From a memory-management standpoint, turnstiles are like the
338 * "attached mblks" that hang off dblks in the streams allocator.
340 ts
= kmem_cache_alloc(turnstile_cache
, KM_SLEEP
);
344 * alloc both thread and stack in segkp chunk
347 if (stksize
< default_stksize
)
348 stksize
= default_stksize
;
350 if (stksize
== default_stksize
) {
351 stk
= (caddr_t
)segkp_cache_get(segkp_thread
);
353 stksize
= roundup(stksize
, PAGESIZE
);
354 stk
= (caddr_t
)segkp_get(segkp
, stksize
,
355 (KPD_HASREDZONE
| KPD_NO_ANON
| KPD_LOCKED
));
361 * The machine-dependent mutex code may require that
362 * thread pointers (since they may be used for mutex owner
363 * fields) have certain alignment requirements.
364 * PTR24_ALIGN is the size of the alignment quanta.
365 * XXX - assumes stack grows toward low addresses.
367 if (stksize
<= sizeof (kthread_t
) + PTR24_ALIGN
)
368 cmn_err(CE_PANIC
, "thread_create: proposed stack size"
369 " too small to hold thread.");
370 #ifdef STACK_GROWTH_DOWN
371 stksize
-= SA(sizeof (kthread_t
) + PTR24_ALIGN
- 1);
372 stksize
&= -PTR24_ALIGN
; /* make thread aligned */
373 t
= (kthread_t
*)(stk
+ stksize
);
374 bzero(t
, sizeof (kthread_t
));
375 t
->t_stk
= stk
+ stksize
;
377 #else /* stack grows to larger addresses */
378 stksize
-= SA(sizeof (kthread_t
));
379 t
= (kthread_t
*)(stk
);
380 bzero(t
, sizeof (kthread_t
));
381 t
->t_stk
= stk
+ sizeof (kthread_t
);
382 t
->t_stkbase
= stk
+ stksize
+ sizeof (kthread_t
);
383 #endif /* STACK_GROWTH_DOWN */
384 t
->t_flag
|= T_TALLOCSTK
;
387 t
= kmem_cache_alloc(thread_cache
, KM_SLEEP
);
388 bzero(t
, sizeof (kthread_t
));
389 ASSERT(((uintptr_t)t
& (PTR24_ALIGN
- 1)) == 0);
391 * Initialize t_stk to the kernel stack pointer to use
392 * upon entry to the kernel
394 #ifdef STACK_GROWTH_DOWN
395 t
->t_stk
= stk
+ stksize
;
398 t
->t_stk
= stk
; /* 3b2-like */
399 t
->t_stkbase
= stk
+ stksize
;
400 #endif /* STACK_GROWTH_DOWN */
403 if (kmem_stackinfo
!= 0) {
410 * p_cred could be NULL if it thread_create is called before cred_init
413 mutex_enter(&pp
->p_crlock
);
415 crhold(t
->t_cred
= pp
->p_cred
);
416 mutex_exit(&pp
->p_crlock
);
417 t
->t_start
= gethrestime_sec();
420 t
->t_clfuncs
= &sys_classfuncs
.thread
;
424 t
->t_bind_cpu
= PBIND_NONE
;
425 t
->t_bindflag
= (uchar_t
)default_binding_mode
;
426 t
->t_bind_pset
= PS_NONE
;
427 t
->t_plockp
= &pp
->p_lock
;
433 t
->t_dtrace_vtime
= 1; /* assure vtimestamp is always non-zero */
435 CPU_STATS_ADDQ(CPU
, sys
, nthreads
, 1);
438 tnf_thread_create(t
);
440 LOCK_INIT_CLEAR(&t
->t_lock
);
443 * Callers who give us a NULL proc must do their own
444 * stack initialization. e.g. lwp_create()
447 t
->t_stk
= thread_stk_init(t
->t_stk
);
448 thread_load(t
, proc
, arg
, len
);
452 * Put a hold on project0. If this thread is actually in a
453 * different project, then t_proj will be changed later in
454 * lwp_create(). All kernel-only threads must be in project 0.
456 t
->t_proj
= project_hold(proj0p
);
458 lgrp_affinity_init(&t
->t_lgrp_affinity
);
460 mutex_enter(&pidlock
);
462 t
->t_did
= next_t_id
++;
463 t
->t_prev
= curthread
->t_prev
;
464 t
->t_next
= curthread
;
467 * Add the thread to the list of all threads, and initialize
468 * its t_cpu pointer. We need to block preemption since
469 * cpu_offline walks the thread list looking for threads
470 * with t_cpu pointing to the CPU being offlined. We want
471 * to make sure that the list is consistent and that if t_cpu
472 * is set, the thread is on the list.
475 curthread
->t_prev
->t_next
= t
;
476 curthread
->t_prev
= t
;
479 * Threads should never have a NULL t_cpu pointer so assign it
480 * here. If the thread is being created with state TS_RUN a
481 * better CPU may be chosen when it is placed on the run queue.
483 * We need to keep kernel preemption disabled when setting all
484 * three fields to keep them in sync. Also, always create in
485 * the default partition since that's where kernel threads go
486 * (if this isn't a kernel thread, t_cpupart will be changed
487 * in lwp_create before setting the thread runnable).
489 t
->t_cpupart
= &cp_default
;
492 * For now, affiliate this thread with the root lgroup.
493 * Since the kernel does not (presently) allocate its memory
494 * in a locality aware fashion, the root is an appropriate home.
495 * If this thread is later associated with an lwp, it will have
496 * it's lgroup re-assigned at that time.
498 lgrp_move_thread(t
, &cp_default
.cp_lgrploads
[LGRP_ROOTID
], 1);
501 * Inherit the current cpu. If this cpu isn't part of the chosen
502 * lgroup, a new cpu will be chosen by cpu_choose when the thread
505 if (CPU
->cpu_part
== &cp_default
)
508 t
->t_cpu
= disp_lowpri_cpu(cp_default
.cp_cpulist
, t
->t_lpl
,
511 t
->t_disp_queue
= t
->t_cpu
->cpu_disp
;
515 * Initialize thread state and the dispatcher lock pointer.
516 * Need to hold onto pidlock to block allthreads walkers until
521 curthread
->t_oldspl
= splhigh(); /* get dispatcher spl */
522 THREAD_SET_STATE(t
, TS_STOPPED
, &transition_lock
);
528 THREAD_ONPROC(t
, t
->t_cpu
);
533 * Free state will be used for intr threads.
534 * The interrupt routine must set the thread dispatcher
535 * lock pointer (t_lockp) if starting on a CPU
536 * other than the current one.
538 THREAD_FREEINTR(t
, CPU
);
542 THREAD_SET_STATE(t
, TS_STOPPED
, &stop_lock
);
545 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
546 cmn_err(CE_PANIC
, "thread_create: invalid state %d", state
);
548 mutex_exit(&pidlock
);
553 * Move thread to project0 and take care of project reference counters.
556 thread_rele(kthread_t
*t
)
562 ASSERT(t
== curthread
|| t
->t_state
== TS_FREE
|| t
->t_procp
== &p0
);
570 (void) project_hold(proj0p
);
577 kthread_t
*t
= curthread
;
579 if ((t
->t_proc_flag
& TP_ZTHREAD
) != 0)
580 cmn_err(CE_PANIC
, "thread_exit: zthread_exit() not called");
582 tsd_exit(); /* Clean up this thread's TSD */
584 kcpc_passivate(); /* clean up performance counter state */
587 * No kernel thread should have called poll() without arranging
588 * calling pollcleanup() here.
590 ASSERT(t
->t_pollstate
== NULL
);
591 ASSERT(t
->t_schedctl
== NULL
);
593 door_slam(); /* in case thread did an upcall */
605 * remove thread from the all threads list so that
606 * death-row can use the same pointers.
608 mutex_enter(&pidlock
);
609 t
->t_next
->t_prev
= t
->t_prev
;
610 t
->t_prev
->t_next
= t
->t_next
;
611 ASSERT(allthreads
!= t
); /* t0 never exits */
612 cv_broadcast(&t
->t_joincv
); /* wake up anyone in thread_join */
613 mutex_exit(&pidlock
);
615 if (t
->t_ctx
!= NULL
)
617 if (t
->t_procp
->p_pctx
!= NULL
)
618 exitpctx(t
->t_procp
);
620 if (kmem_stackinfo
!= 0) {
624 t
->t_state
= TS_ZOMB
; /* set zombie thread */
626 swtch_from_zombie(); /* give up the CPU */
631 * Check to see if the specified thread is active (defined as being on
632 * the thread list). This is certainly a slow way to do this; if there's
633 * ever a reason to speed it up, we could maintain a hash table of active
634 * threads indexed by their t_did.
637 did_to_thread(kt_did_t tid
)
641 ASSERT(MUTEX_HELD(&pidlock
));
642 for (t
= curthread
->t_next
; t
!= curthread
; t
= t
->t_next
) {
653 * Wait for specified thread to exit. Returns immediately if the thread
654 * could not be found, meaning that it has either already exited or never
658 thread_join(kt_did_t tid
)
662 ASSERT(tid
!= curthread
->t_did
);
663 ASSERT(tid
!= t0
.t_did
);
665 mutex_enter(&pidlock
);
667 * Make sure we check that the thread is on the thread list
668 * before blocking on it; otherwise we could end up blocking on
669 * a cv that's already been freed. In other words, don't cache
670 * the thread pointer across calls to cv_wait.
672 * The choice of loop invariant means that whenever a thread
673 * is taken off the allthreads list, a cv_broadcast must be
674 * performed on that thread's t_joincv to wake up any waiters.
675 * The broadcast doesn't have to happen right away, but it
676 * shouldn't be postponed indefinitely (e.g., by doing it in
677 * thread_free which may only be executed when the deathrow
678 * queue is processed.
680 while (t
= did_to_thread(tid
))
681 cv_wait(&t
->t_joincv
, &pidlock
);
682 mutex_exit(&pidlock
);
686 thread_free_prevent(kthread_t
*t
)
690 lp
= &thread_free_lock
[THREAD_FREE_HASH(t
)].tf_lock
;
695 thread_free_allow(kthread_t
*t
)
699 lp
= &thread_free_lock
[THREAD_FREE_HASH(t
)].tf_lock
;
704 thread_free_barrier(kthread_t
*t
)
708 lp
= &thread_free_lock
[THREAD_FREE_HASH(t
)].tf_lock
;
714 thread_free(kthread_t
*t
)
716 boolean_t allocstk
= (t
->t_flag
& T_TALLOCSTK
);
717 klwp_t
*lwp
= t
->t_lwp
;
718 caddr_t swap
= t
->t_swap
;
720 ASSERT(t
!= &t0
&& t
->t_state
== TS_FREE
);
721 ASSERT(t
->t_door
== NULL
);
722 ASSERT(t
->t_schedctl
== NULL
);
723 ASSERT(t
->t_pollstate
== NULL
);
730 if (t
->t_cred
!= NULL
) {
735 kmem_free(t
->t_pdmsg
, strlen(t
->t_pdmsg
) + 1);
743 CL_EXITCLASS(t
->t_cid
, (caddr_t
*)t
->t_cldata
);
745 if (t
->t_rprof
!= NULL
) {
746 kmem_free(t
->t_rprof
, sizeof (*t
->t_rprof
));
749 t
->t_lockp
= NULL
; /* nothing should try to lock this thread now */
751 lwp_freeregs(lwp
, 0);
757 lock_clear(&t
->t_lock
);
759 if (t
->t_ts
->ts_waiters
> 0)
760 panic("thread_free: turnstile still active");
762 kmem_cache_free(turnstile_cache
, t
->t_ts
);
764 free_afd(&t
->t_activefd
);
767 * Barrier for the tick accounting code. The tick accounting code
768 * holds this lock to keep the thread from going away while it's
771 thread_free_barrier(t
);
773 ASSERT(ttoproj(t
) == proj0p
);
774 project_rele(ttoproj(t
));
776 lgrp_affinity_free(&t
->t_lgrp_affinity
);
778 mutex_enter(&pidlock
);
780 mutex_exit(&pidlock
);
783 * Free thread, lwp and stack. This needs to be done carefully, since
784 * if T_TALLOCSTK is set, the thread is part of the stack.
790 segkp_release(segkp
, swap
);
793 kmem_cache_free(lwp_cache
, lwp
);
796 kmem_cache_free(thread_cache
, t
);
801 * Removes threads associated with the given zone from a deathrow queue.
802 * tp is a pointer to the head of the deathrow queue, and countp is a
803 * pointer to the current deathrow count. Returns a linked list of
804 * threads removed from the list.
807 thread_zone_cleanup(kthread_t
**tp
, int *countp
, zoneid_t zoneid
)
809 kthread_t
*tmp
, *list
= NULL
;
812 ASSERT(MUTEX_HELD(&reaplock
));
813 while (*tp
!= NULL
) {
814 if ((cr
= (*tp
)->t_cred
) != NULL
&& crgetzoneid(cr
) == zoneid
) {
828 thread_reap_list(kthread_t
*t
)
841 thread_zone_destroy(zoneid_t zoneid
, void *unused
)
845 mutex_enter(&reaplock
);
847 * Pull threads and lwps associated with zone off deathrow lists.
849 t
= thread_zone_cleanup(&thread_deathrow
, &thread_reapcnt
, zoneid
);
850 l
= thread_zone_cleanup(&lwp_deathrow
, &lwp_reapcnt
, zoneid
);
851 mutex_exit(&reaplock
);
854 * Guard against race condition in mutex_owner_running:
855 * thread=owner(mutex)
860 * thread struct freed
861 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
862 * A cross call to all cpus will cause the interrupt handler
863 * to reset the PC if it is in mutex_owner_running, refreshing
864 * stale thread pointers.
866 mutex_sync(); /* sync with mutex code */
880 * cleanup zombie threads that are on deathrow.
889 * Register callback to clean up threads when zone is destroyed.
891 zone_key_create(&zone_thread_key
, NULL
, NULL
, thread_zone_destroy
);
893 CALLB_CPR_INIT(&cprinfo
, &reaplock
, callb_generic_cpr
, "t_reaper");
895 mutex_enter(&reaplock
);
896 while (thread_deathrow
== NULL
&& lwp_deathrow
== NULL
) {
897 CALLB_CPR_SAFE_BEGIN(&cprinfo
);
898 cv_wait(&reaper_cv
, &reaplock
);
899 CALLB_CPR_SAFE_END(&cprinfo
, &reaplock
);
902 * mutex_sync() needs to be called when reaping, but
903 * not too often. We limit reaping rate to once
904 * per second. Reaplimit is max rate at which threads can
905 * be freed. Does not impact thread destruction/creation.
909 thread_deathrow
= NULL
;
913 mutex_exit(&reaplock
);
916 * Guard against race condition in mutex_owner_running:
917 * thread=owner(mutex)
922 * thread struct freed
923 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
924 * A cross call to all cpus will cause the interrupt handler
925 * to reset the PC if it is in mutex_owner_running, refreshing
926 * stale thread pointers.
928 mutex_sync(); /* sync with mutex code */
943 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
944 * thread_deathrow. The thread's state is changed already TS_FREE to indicate
945 * that is reapable. The thread already holds the reaplock, and was already
949 reapq_move_lq_to_tq(kthread_t
*t
)
951 ASSERT(t
->t_state
== TS_FREE
);
952 ASSERT(MUTEX_HELD(&reaplock
));
953 t
->t_forw
= thread_deathrow
;
956 if (lwp_reapcnt
+ thread_reapcnt
> reaplimit
)
957 cv_signal(&reaper_cv
); /* wake the reaper */
961 * This is called by resume() to put a zombie thread onto deathrow.
962 * The thread's state is changed to TS_FREE to indicate that is reapable.
963 * This is called from the idle thread so it must not block - just spin.
966 reapq_add(kthread_t
*t
)
968 mutex_enter(&reaplock
);
971 * lwp_deathrow contains threads with lwp linkage and
972 * swappable thread stacks which have the default stacksize.
973 * These threads' lwps and stacks may be reused by lwp_create().
975 * Anything else goes on thread_deathrow(), where it will eventually
978 if (t
->t_flag
& T_LWPREUSE
) {
979 ASSERT(ttolwp(t
) != NULL
);
980 t
->t_forw
= lwp_deathrow
;
984 t
->t_forw
= thread_deathrow
;
988 if (lwp_reapcnt
+ thread_reapcnt
> reaplimit
)
989 cv_signal(&reaper_cv
); /* wake the reaper */
990 t
->t_state
= TS_FREE
;
991 lock_clear(&t
->t_lock
);
994 * Before we return, we need to grab and drop the thread lock for
995 * the dead thread. At this point, the current thread is the idle
996 * thread, and the dead thread's CPU lock points to the current
997 * CPU -- and we must grab and drop the lock to synchronize with
998 * a racing thread walking a blocking chain that the zombie thread
999 * was recently in. By this point, that blocking chain is (by
1000 * definition) stale: the dead thread is not holding any locks, and
1001 * is therefore not in any blocking chains -- but if we do not regrab
1002 * our lock before freeing the dead thread's data structures, the
1003 * thread walking the (stale) blocking chain will die on memory
1004 * corruption when it attempts to drop the dead thread's lock. We
1005 * only need do this once because there is no way for the dead thread
1006 * to ever again be on a blocking chain: once we have grabbed and
1007 * dropped the thread lock, we are guaranteed that anyone that could
1008 * have seen this thread in a blocking chain can no longer see it.
1013 mutex_exit(&reaplock
);
1017 * Install thread context ops for the current thread.
1023 void (*save
)(void *),
1024 void (*restore
)(void *),
1025 void (*fork
)(void *, void *),
1026 void (*lwp_create
)(void *, void *),
1027 void (*exit
)(void *),
1028 void (*free
)(void *, int))
1032 ctx
= kmem_alloc(sizeof (struct ctxop
), KM_SLEEP
);
1033 ctx
->save_op
= save
;
1034 ctx
->restore_op
= restore
;
1035 ctx
->fork_op
= fork
;
1036 ctx
->lwp_create_op
= lwp_create
;
1037 ctx
->exit_op
= exit
;
1038 ctx
->free_op
= free
;
1040 ctx
->next
= t
->t_ctx
;
1045 * Remove the thread context ops from a thread.
1051 void (*save
)(void *),
1052 void (*restore
)(void *),
1053 void (*fork
)(void *, void *),
1054 void (*lwp_create
)(void *, void *),
1055 void (*exit
)(void *),
1056 void (*free
)(void *, int))
1058 struct ctxop
*ctx
, *prev_ctx
;
1061 * The incoming kthread_t (which is the thread for which the
1062 * context ops will be removed) should be one of the following:
1064 * a) the current thread,
1066 * b) a thread of a process that's being forked (SIDL),
1068 * c) a thread that belongs to the same process as the current
1069 * thread and for which the current thread is the agent thread,
1071 * d) a thread that is TS_STOPPED which is indicative of it
1072 * being (if curthread is not an agent) a thread being created
1073 * as part of an lwp creation.
1075 ASSERT(t
== curthread
|| ttoproc(t
)->p_stat
== SIDL
||
1076 ttoproc(t
)->p_agenttp
== curthread
|| t
->t_state
== TS_STOPPED
);
1079 * Serialize modifications to t->t_ctx to prevent the agent thread
1080 * and the target thread from racing with each other during lwp exit.
1082 mutex_enter(&t
->t_ctx_lock
);
1085 for (ctx
= t
->t_ctx
; ctx
!= NULL
; ctx
= ctx
->next
) {
1086 if (ctx
->save_op
== save
&& ctx
->restore_op
== restore
&&
1087 ctx
->fork_op
== fork
&& ctx
->lwp_create_op
== lwp_create
&&
1088 ctx
->exit_op
== exit
&& ctx
->free_op
== free
&&
1091 prev_ctx
->next
= ctx
->next
;
1093 t
->t_ctx
= ctx
->next
;
1094 mutex_exit(&t
->t_ctx_lock
);
1095 if (ctx
->free_op
!= NULL
)
1096 (ctx
->free_op
)(ctx
->arg
, 0);
1097 kmem_free(ctx
, sizeof (struct ctxop
));
1103 mutex_exit(&t
->t_ctx_lock
);
1110 savectx(kthread_t
*t
)
1114 ASSERT(t
== curthread
);
1115 for (ctx
= t
->t_ctx
; ctx
!= 0; ctx
= ctx
->next
)
1116 if (ctx
->save_op
!= NULL
)
1117 (ctx
->save_op
)(ctx
->arg
);
1121 restorectx(kthread_t
*t
)
1125 ASSERT(t
== curthread
);
1126 for (ctx
= t
->t_ctx
; ctx
!= 0; ctx
= ctx
->next
)
1127 if (ctx
->restore_op
!= NULL
)
1128 (ctx
->restore_op
)(ctx
->arg
);
1132 forkctx(kthread_t
*t
, kthread_t
*ct
)
1136 for (ctx
= t
->t_ctx
; ctx
!= NULL
; ctx
= ctx
->next
)
1137 if (ctx
->fork_op
!= NULL
)
1138 (ctx
->fork_op
)(t
, ct
);
1142 * Note that this operator is only invoked via the _lwp_create
1143 * system call. The system may have other reasons to create lwps
1144 * e.g. the agent lwp or the doors unreferenced lwp.
1147 lwp_createctx(kthread_t
*t
, kthread_t
*ct
)
1151 for (ctx
= t
->t_ctx
; ctx
!= NULL
; ctx
= ctx
->next
)
1152 if (ctx
->lwp_create_op
!= NULL
)
1153 (ctx
->lwp_create_op
)(t
, ct
);
1157 * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1158 * needed when the thread/LWP leaves the processor for the last time. This
1159 * routine is not intended to deal with freeing memory; freectx() is used for
1160 * that purpose during thread_free(). This routine is provided to allow for
1161 * clean-up that can't wait until thread_free().
1164 exitctx(kthread_t
*t
)
1168 for (ctx
= t
->t_ctx
; ctx
!= NULL
; ctx
= ctx
->next
)
1169 if (ctx
->exit_op
!= NULL
)
1174 * freectx is called from thread_free() and exec() to get
1175 * rid of old thread context ops.
1178 freectx(kthread_t
*t
, int isexec
)
1183 while ((ctx
= t
->t_ctx
) != NULL
) {
1184 t
->t_ctx
= ctx
->next
;
1185 if (ctx
->free_op
!= NULL
)
1186 (ctx
->free_op
)(ctx
->arg
, isexec
);
1187 kmem_free(ctx
, sizeof (struct ctxop
));
1193 * freectx_ctx is called from lwp_create() when lwp is reused from
1194 * lwp_deathrow and its thread structure is added to thread_deathrow.
1195 * The thread structure to which this ctx was attached may be already
1196 * freed by the thread reaper so free_op implementations shouldn't rely
1197 * on thread structure to which this ctx was attached still being around.
1200 freectx_ctx(struct ctxop
*ctx
)
1204 ASSERT(ctx
!= NULL
);
1209 if (ctx
->free_op
!= NULL
)
1210 (ctx
->free_op
)(ctx
->arg
, 0);
1211 kmem_free(ctx
, sizeof (struct ctxop
));
1212 } while ((ctx
= nctx
) != NULL
);
1217 * Set the thread running; arrange for it to be swapped in if necessary.
1220 setrun_locked(kthread_t
*t
)
1222 ASSERT(THREAD_LOCK_HELD(t
));
1223 if (t
->t_state
== TS_SLEEP
) {
1225 * Take off sleep queue.
1227 SOBJ_UNSLEEP(t
->t_sobj_ops
, t
);
1228 } else if (t
->t_state
& (TS_RUN
| TS_ONPROC
)) {
1230 * Already on dispatcher queue.
1233 } else if (t
->t_state
== TS_WAIT
) {
1235 } else if (t
->t_state
== TS_STOPPED
) {
1237 * All of the sending of SIGCONT (TC_XSTART) and /proc
1238 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1239 * requested that the thread be run.
1240 * Just calling setrun() is not sufficient to set a stopped
1241 * thread running. TP_TXSTART is always set if the thread
1242 * is not stopped by a jobcontrol stop signal.
1243 * TP_TPSTART is always set if /proc is not controlling it.
1244 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1245 * The thread won't be stopped unless one of these
1246 * three mechanisms did it.
1248 * These flags must be set before calling setrun_locked(t).
1249 * They can't be passed as arguments because the streams
1250 * code calls setrun() indirectly and the mechanism for
1251 * doing so admits only one argument. Note that the
1252 * thread must be locked in order to change t_schedflags.
1254 if ((t
->t_schedflag
& TS_ALLSTART
) != TS_ALLSTART
)
1257 * Process is no longer stopped (a thread is running).
1262 * Strictly speaking, we do not have to clear these
1263 * flags here; they are cleared on entry to stop().
1264 * However, they are confusing when doing kernel
1265 * debugging or when they are revealed by ps(1).
1267 t
->t_schedflag
&= ~TS_ALLSTART
;
1268 THREAD_TRANSITION(t
); /* drop stopped-thread lock */
1269 ASSERT(t
->t_lockp
== &transition_lock
);
1270 ASSERT(t
->t_wchan0
== NULL
&& t
->t_wchan
== NULL
);
1272 * Let the class put the process on the dispatcher queue.
1279 setrun(kthread_t
*t
)
1287 * Unpin an interrupted thread.
1288 * When an interrupt occurs, the interrupt is handled on the stack
1289 * of an interrupt thread, taken from a pool linked to the CPU structure.
1291 * When swtch() is switching away from an interrupt thread because it
1292 * blocked or was preempted, this routine is called to complete the
1293 * saving of the interrupted thread state, and returns the interrupted
1294 * thread pointer so it may be resumed.
1296 * Called by swtch() only at high spl.
1301 kthread_t
*t
= curthread
; /* current thread */
1302 kthread_t
*itp
; /* interrupted thread */
1303 int i
; /* interrupt level */
1304 extern int intr_passivate();
1306 ASSERT(t
->t_intr
!= NULL
);
1308 itp
= t
->t_intr
; /* interrupted thread */
1309 t
->t_intr
= NULL
; /* clear interrupt ptr */
1312 * Get state from interrupt thread for the one
1316 i
= intr_passivate(t
, itp
);
1318 TRACE_5(TR_FAC_INTR
, TR_INTR_PASSIVATE
,
1319 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1323 * Dissociate the current thread from the interrupted thread's LWP.
1328 * Interrupt handlers above the level that spinlocks block must
1332 if (i
< 0 || i
> LOCK_LEVEL
)
1333 cmn_err(CE_PANIC
, "thread_unpin: ipl out of range %x", i
);
1337 * Compute the CPU's base interrupt level based on the active
1340 ASSERT(CPU
->cpu_intr_actv
& (1 << i
));
1347 * Create and initialize an interrupt thread.
1348 * Returns non-zero on error.
1349 * Called at spl7() or better.
1352 thread_create_intr(struct cpu
*cp
)
1356 tp
= thread_create(NULL
, 0,
1357 (void (*)())thread_create_intr
, NULL
, 0, &p0
, TS_ONPROC
, 0);
1360 * Set the thread in the TS_FREE state. The state will change
1361 * to TS_ONPROC only while the interrupt is active. Think of these
1362 * as being on a private free list for the CPU. Being TS_FREE keeps
1363 * inactive interrupt threads out of debugger thread lists.
1365 * We cannot call thread_create with TS_FREE because of the current
1366 * checks there for ONPROC. Fix this when thread_create takes flags.
1368 THREAD_FREEINTR(tp
, cp
);
1371 * Nobody should ever reference the credentials of an interrupt
1372 * thread so make it NULL to catch any such references.
1375 tp
->t_flag
|= T_INTR_THREAD
;
1377 tp
->t_bound_cpu
= cp
;
1378 tp
->t_disp_queue
= cp
->cpu_disp
;
1379 tp
->t_affinitycnt
= 1;
1383 * Don't make a user-requested binding on this thread so that
1384 * the processor can be offlined.
1386 tp
->t_bind_cpu
= PBIND_NONE
; /* no USER-requested binding */
1387 tp
->t_bind_pset
= PS_NONE
;
1389 #if defined(__i386) || defined(__amd64)
1390 tp
->t_stk
-= STACK_ALIGN
;
1391 *(tp
->t_stk
) = 0; /* terminate intr thread stack */
1395 * Link onto CPU's interrupt pool.
1397 tp
->t_link
= cp
->cpu_intr_thread
;
1398 cp
->cpu_intr_thread
= tp
;
1402 * TSD -- THREAD SPECIFIC DATA
1404 static kmutex_t tsd_mutex
; /* linked list spin lock */
1405 static uint_t tsd_nkeys
; /* size of destructor array */
1406 /* per-key destructor funcs */
1407 static void (**tsd_destructor
)(void *);
1408 /* list of tsd_thread's */
1409 static struct tsd_thread
*tsd_list
;
1412 * Default destructor
1413 * Needed because NULL destructor means that the key is unused
1417 tsd_defaultdestructor(void *value
)
1421 * Create a key (index into per thread array)
1422 * Locks out tsd_create, tsd_destroy, and tsd_exit
1423 * May allocate memory with lock held
1426 tsd_create(uint_t
*keyp
, void (*destructor
)(void *))
1432 * if key is allocated, do nothing
1434 mutex_enter(&tsd_mutex
);
1436 mutex_exit(&tsd_mutex
);
1440 * find an unused key
1442 if (destructor
== NULL
)
1443 destructor
= tsd_defaultdestructor
;
1445 for (i
= 0; i
< tsd_nkeys
; ++i
)
1446 if (tsd_destructor
[i
] == NULL
)
1450 * if no unused keys, increase the size of the destructor array
1452 if (i
== tsd_nkeys
) {
1453 if ((nkeys
= (tsd_nkeys
<< 1)) == 0)
1456 (void (**)(void *))tsd_realloc((void *)tsd_destructor
,
1457 (size_t)(tsd_nkeys
* sizeof (void (*)(void *))),
1458 (size_t)(nkeys
* sizeof (void (*)(void *))));
1463 * allocate the next available unused key
1465 tsd_destructor
[i
] = destructor
;
1467 mutex_exit(&tsd_mutex
);
1471 * Destroy a key -- this is for unloadable modules
1473 * Assumes that the caller is preventing tsd_set and tsd_get
1474 * Locks out tsd_create, tsd_destroy, and tsd_exit
1475 * May free memory with lock held
1478 tsd_destroy(uint_t
*keyp
)
1481 struct tsd_thread
*tsd
;
1484 * protect the key namespace and our destructor lists
1486 mutex_enter(&tsd_mutex
);
1490 ASSERT(key
<= tsd_nkeys
);
1493 * if the key is valid
1498 * for every thread with TSD, call key's destructor
1500 for (tsd
= tsd_list
; tsd
; tsd
= tsd
->ts_next
) {
1502 * no TSD for key in this thread
1504 if (key
> tsd
->ts_nkeys
)
1507 * call destructor for key
1509 if (tsd
->ts_value
[k
] && tsd_destructor
[k
])
1510 (*tsd_destructor
[k
])(tsd
->ts_value
[k
]);
1512 * reset value for key
1514 tsd
->ts_value
[k
] = NULL
;
1517 * actually free the key (NULL destructor == unused)
1519 tsd_destructor
[k
] = NULL
;
1522 mutex_exit(&tsd_mutex
);
1526 * Quickly return the per thread value that was stored with the specified key
1527 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1532 return (tsd_agent_get(curthread
, key
));
1536 * Set a per thread value indexed with the specified key
1539 tsd_set(uint_t key
, void *value
)
1541 return (tsd_agent_set(curthread
, key
, value
));
1545 * Like tsd_get(), except that the agent lwp can get the tsd of
1546 * another thread in the same process (the agent thread only runs when the
1547 * process is completely stopped by /proc), or syslwp is creating a new lwp.
1550 tsd_agent_get(kthread_t
*t
, uint_t key
)
1552 struct tsd_thread
*tsd
= t
->t_tsd
;
1554 ASSERT(t
== curthread
||
1555 ttoproc(t
)->p_agenttp
== curthread
|| t
->t_state
== TS_STOPPED
);
1557 if (key
&& tsd
!= NULL
&& key
<= tsd
->ts_nkeys
)
1558 return (tsd
->ts_value
[key
- 1]);
1563 * Like tsd_set(), except that the agent lwp can set the tsd of
1564 * another thread in the same process, or syslwp can set the tsd
1565 * of a thread it's in the middle of creating.
1567 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1568 * May lock out tsd_destroy (and tsd_create), may allocate memory with
1572 tsd_agent_set(kthread_t
*t
, uint_t key
, void *value
)
1574 struct tsd_thread
*tsd
= t
->t_tsd
;
1576 ASSERT(t
== curthread
||
1577 ttoproc(t
)->p_agenttp
== curthread
|| t
->t_state
== TS_STOPPED
);
1582 tsd
= t
->t_tsd
= kmem_zalloc(sizeof (*tsd
), KM_SLEEP
);
1583 if (key
<= tsd
->ts_nkeys
) {
1584 tsd
->ts_value
[key
- 1] = value
;
1588 ASSERT(key
<= tsd_nkeys
);
1591 * lock out tsd_destroy()
1593 mutex_enter(&tsd_mutex
);
1594 if (tsd
->ts_nkeys
== 0) {
1596 * Link onto list of threads with TSD
1598 if ((tsd
->ts_next
= tsd_list
) != NULL
)
1599 tsd_list
->ts_prev
= tsd
;
1604 * Allocate thread local storage and set the value for key
1606 tsd
->ts_value
= tsd_realloc(tsd
->ts_value
,
1607 tsd
->ts_nkeys
* sizeof (void *),
1608 key
* sizeof (void *));
1609 tsd
->ts_nkeys
= key
;
1610 tsd
->ts_value
[key
- 1] = value
;
1611 mutex_exit(&tsd_mutex
);
1618 * Return the per thread value that was stored with the specified key
1619 * If necessary, create the key and the value
1620 * Assumes the caller is protecting *keyp from tsd_destroy
1623 tsd_getcreate(uint_t
*keyp
, void (*destroy
)(void *), void *(*allocate
)(void))
1627 struct tsd_thread
*tsd
= curthread
->t_tsd
;
1630 tsd
= curthread
->t_tsd
= kmem_zalloc(sizeof (*tsd
), KM_SLEEP
);
1631 if (key
&& key
<= tsd
->ts_nkeys
&& (value
= tsd
->ts_value
[key
- 1]))
1634 tsd_create(keyp
, destroy
);
1635 (void) tsd_set(*keyp
, value
= (*allocate
)());
1641 * Called from thread_exit() to run the destructor function for each tsd
1642 * Locks out tsd_create and tsd_destroy
1643 * Assumes that the destructor *DOES NOT* use tsd
1649 struct tsd_thread
*tsd
= curthread
->t_tsd
;
1654 if (tsd
->ts_nkeys
== 0) {
1655 kmem_free(tsd
, sizeof (*tsd
));
1656 curthread
->t_tsd
= NULL
;
1661 * lock out tsd_create and tsd_destroy, call
1662 * the destructor, and mark the value as destroyed.
1664 mutex_enter(&tsd_mutex
);
1666 for (i
= 0; i
< tsd
->ts_nkeys
; i
++) {
1667 if (tsd
->ts_value
[i
] && tsd_destructor
[i
])
1668 (*tsd_destructor
[i
])(tsd
->ts_value
[i
]);
1669 tsd
->ts_value
[i
] = NULL
;
1673 * remove from linked list of threads with TSD
1676 tsd
->ts_next
->ts_prev
= tsd
->ts_prev
;
1678 tsd
->ts_prev
->ts_next
= tsd
->ts_next
;
1679 if (tsd_list
== tsd
)
1680 tsd_list
= tsd
->ts_next
;
1682 mutex_exit(&tsd_mutex
);
1687 kmem_free(tsd
->ts_value
, tsd
->ts_nkeys
* sizeof (void *));
1688 kmem_free(tsd
, sizeof (struct tsd_thread
));
1689 curthread
->t_tsd
= NULL
;
1696 tsd_realloc(void *old
, size_t osize
, size_t nsize
)
1700 new = kmem_zalloc(nsize
, KM_SLEEP
);
1702 bcopy(old
, new, osize
);
1703 kmem_free(old
, osize
);
1709 * Return non-zero if an interrupt is being serviced.
1712 servicing_interrupt()
1716 /* Are we an interrupt thread */
1717 if (curthread
->t_flag
& T_INTR_THREAD
)
1719 /* Are we servicing a high level interrupt? */
1720 if (CPU_ON_INTR(CPU
)) {
1722 onintr
= CPU_ON_INTR(CPU
);
1730 * Change the dispatch priority of a thread in the system.
1731 * Used when raising or lowering a thread's priority.
1732 * (E.g., priority inheritance)
1734 * Since threads are queued according to their priority, we
1735 * we must check the thread's state to determine whether it
1736 * is on a queue somewhere. If it is, we've got to:
1738 * o Dequeue the thread.
1739 * o Change its effective priority.
1740 * o Enqueue the thread.
1742 * Assumptions: The thread whose priority we wish to change
1743 * must be locked before we call thread_change_(e)pri().
1744 * The thread_change(e)pri() function doesn't drop the thread
1745 * lock--that must be done by its caller.
1748 thread_change_epri(kthread_t
*t
, pri_t disp_pri
)
1752 ASSERT(THREAD_LOCK_HELD(t
));
1755 * If the inherited priority hasn't actually changed,
1758 if (t
->t_epri
== disp_pri
)
1764 * If it's not on a queue, change the priority with impunity.
1766 if ((state
& (TS_SLEEP
| TS_RUN
| TS_WAIT
)) == 0) {
1767 t
->t_epri
= disp_pri
;
1768 if (state
== TS_ONPROC
) {
1769 cpu_t
*cp
= t
->t_disp_queue
->disp_cpu
;
1771 if (t
== cp
->cpu_dispthread
)
1772 cp
->cpu_dispatch_pri
= DISP_PRIO(t
);
1774 } else if (state
== TS_SLEEP
) {
1776 * Take the thread out of its sleep queue.
1777 * Change the inherited priority.
1778 * Re-enqueue the thread.
1779 * Each synchronization object exports a function
1780 * to do this in an appropriate manner.
1782 SOBJ_CHANGE_EPRI(t
->t_sobj_ops
, t
, disp_pri
);
1783 } else if (state
== TS_WAIT
) {
1785 * Re-enqueue a thread on the wait queue if its
1786 * effective priority needs to change.
1788 if (disp_pri
!= t
->t_epri
)
1789 waitq_change_pri(t
, disp_pri
);
1792 * The thread is on a run queue.
1793 * Note: setbackdq() may not put the thread
1794 * back on the same run queue where it originally
1798 t
->t_epri
= disp_pri
;
1801 schedctl_set_cidpri(t
);
1805 * Function: Change the t_pri field of a thread.
1806 * Side Effects: Adjust the thread ordering on a run queue
1807 * or sleep queue, if necessary.
1808 * Returns: 1 if the thread was on a run queue, else 0.
1811 thread_change_pri(kthread_t
*t
, pri_t disp_pri
, int front
)
1816 ASSERT(THREAD_LOCK_HELD(t
));
1819 THREAD_WILLCHANGE_PRI(t
, disp_pri
);
1822 * If it's not on a queue, change the priority with impunity.
1824 if ((state
& (TS_SLEEP
| TS_RUN
| TS_WAIT
)) == 0) {
1825 t
->t_pri
= disp_pri
;
1827 if (state
== TS_ONPROC
) {
1828 cpu_t
*cp
= t
->t_disp_queue
->disp_cpu
;
1830 if (t
== cp
->cpu_dispthread
)
1831 cp
->cpu_dispatch_pri
= DISP_PRIO(t
);
1833 } else if (state
== TS_SLEEP
) {
1835 * If the priority has changed, take the thread out of
1836 * its sleep queue and change the priority.
1837 * Re-enqueue the thread.
1838 * Each synchronization object exports a function
1839 * to do this in an appropriate manner.
1841 if (disp_pri
!= t
->t_pri
)
1842 SOBJ_CHANGE_PRI(t
->t_sobj_ops
, t
, disp_pri
);
1843 } else if (state
== TS_WAIT
) {
1845 * Re-enqueue a thread on the wait queue if its
1846 * priority needs to change.
1848 if (disp_pri
!= t
->t_pri
)
1849 waitq_change_pri(t
, disp_pri
);
1852 * The thread is on a run queue.
1853 * Note: setbackdq() may not put the thread
1854 * back on the same run queue where it originally
1857 * We still requeue the thread even if the priority
1858 * is unchanged to preserve round-robin (and other)
1859 * effects between threads of the same priority.
1863 t
->t_pri
= disp_pri
;
1870 schedctl_set_cidpri(t
);
1875 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1879 stkinfo_begin(kthread_t
*t
)
1881 caddr_t start
; /* stack start */
1882 caddr_t end
; /* stack end */
1883 uint64_t *ptr
; /* pattern pointer */
1886 * Stack grows up or down, see thread_create(),
1887 * compute stack memory area start and end (start < end).
1889 if (t
->t_stk
> t
->t_stkbase
) {
1890 /* stack grows down */
1891 start
= t
->t_stkbase
;
1894 /* stack grows up */
1900 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1901 * alignement for start and end in stack area boundaries
1902 * (protection against corrupt t_stkbase/t_stk data).
1904 if ((((uintptr_t)start
) & 0x7) != 0) {
1905 start
= (caddr_t
)((((uintptr_t)start
) & (~0x7)) + 8);
1907 end
= (caddr_t
)(((uintptr_t)end
) & (~0x7));
1909 if ((end
<= start
) || (end
- start
) > (1024 * 1024)) {
1910 /* negative or stack size > 1 meg, assume bogus */
1914 /* fill stack area with a pattern (instead of zeros) */
1915 ptr
= (uint64_t *)((void *)start
);
1916 while (ptr
< (uint64_t *)((void *)end
)) {
1917 *ptr
++ = KMEM_STKINFO_PATTERN
;
1923 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1924 * compute the percentage of kernel stack really used, and set in the log
1925 * if it's the latest highest percentage.
1928 stkinfo_end(kthread_t
*t
)
1930 caddr_t start
; /* stack start */
1931 caddr_t end
; /* stack end */
1932 uint64_t *ptr
; /* pattern pointer */
1933 size_t stksz
; /* stack size */
1934 size_t smallest
= 0;
1938 static size_t smallest_percent
= (size_t)-1;
1939 static uint_t full
= 0;
1941 /* create the stackinfo log, if doesn't already exist */
1942 mutex_enter(&kmem_stkinfo_lock
);
1943 if (kmem_stkinfo_log
== NULL
) {
1944 kmem_stkinfo_log
= (kmem_stkinfo_t
*)
1945 kmem_zalloc(KMEM_STKINFO_LOG_SIZE
*
1946 (sizeof (kmem_stkinfo_t
)), KM_NOSLEEP
);
1947 if (kmem_stkinfo_log
== NULL
) {
1948 mutex_exit(&kmem_stkinfo_lock
);
1952 mutex_exit(&kmem_stkinfo_lock
);
1955 * Stack grows up or down, see thread_create(),
1956 * compute stack memory area start and end (start < end).
1958 if (t
->t_stk
> t
->t_stkbase
) {
1959 /* stack grows down */
1960 start
= t
->t_stkbase
;
1963 /* stack grows up */
1968 /* stack size as found in kthread_t */
1969 stksz
= end
- start
;
1972 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1973 * alignement for start and end in stack area boundaries
1974 * (protection against corrupt t_stkbase/t_stk data).
1976 if ((((uintptr_t)start
) & 0x7) != 0) {
1977 start
= (caddr_t
)((((uintptr_t)start
) & (~0x7)) + 8);
1979 end
= (caddr_t
)(((uintptr_t)end
) & (~0x7));
1981 if ((end
<= start
) || (end
- start
) > (1024 * 1024)) {
1982 /* negative or stack size > 1 meg, assume bogus */
1986 /* search until no pattern in the stack */
1987 if (t
->t_stk
> t
->t_stkbase
) {
1988 /* stack grows down */
1989 #if defined(__i386) || defined(__amd64)
1991 * 6 longs are pushed on stack, see thread_load(). Skip
1992 * them, so if kthread has never run, percent is zero.
1993 * 8 bytes alignement is preserved for a 32 bit kernel,
1994 * 6 x 4 = 24, 24 is a multiple of 8.
1997 end
-= (6 * sizeof (long));
1999 ptr
= (uint64_t *)((void *)start
);
2000 while (ptr
< (uint64_t *)((void *)end
)) {
2001 if (*ptr
!= KMEM_STKINFO_PATTERN
) {
2002 percent
= stkinfo_percent(end
,
2003 start
, (caddr_t
)ptr
);
2009 /* stack grows up */
2010 ptr
= (uint64_t *)((void *)end
);
2012 while (ptr
>= (uint64_t *)((void *)start
)) {
2013 if (*ptr
!= KMEM_STKINFO_PATTERN
) {
2014 percent
= stkinfo_percent(start
,
2022 DTRACE_PROBE3(stack__usage
, kthread_t
*, t
,
2023 size_t, stksz
, size_t, percent
);
2029 mutex_enter(&kmem_stkinfo_lock
);
2030 if (full
== KMEM_STKINFO_LOG_SIZE
&& percent
< smallest_percent
) {
2032 * The log is full and already contains the highest values
2034 mutex_exit(&kmem_stkinfo_lock
);
2038 /* keep a log of the highest used stack */
2039 for (i
= 0; i
< KMEM_STKINFO_LOG_SIZE
; i
++) {
2040 if (kmem_stkinfo_log
[i
].percent
== 0) {
2045 if (smallest
== 0) {
2046 smallest
= kmem_stkinfo_log
[i
].percent
;
2050 if (kmem_stkinfo_log
[i
].percent
< smallest
) {
2051 smallest
= kmem_stkinfo_log
[i
].percent
;
2056 if (percent
>= kmem_stkinfo_log
[index
].percent
) {
2057 kmem_stkinfo_log
[index
].kthread
= (caddr_t
)t
;
2058 kmem_stkinfo_log
[index
].t_startpc
= (caddr_t
)t
->t_startpc
;
2059 kmem_stkinfo_log
[index
].start
= start
;
2060 kmem_stkinfo_log
[index
].stksz
= stksz
;
2061 kmem_stkinfo_log
[index
].percent
= percent
;
2062 kmem_stkinfo_log
[index
].t_tid
= t
->t_tid
;
2063 kmem_stkinfo_log
[index
].cmd
[0] = '\0';
2064 if (t
->t_tid
!= 0) {
2065 stksz
= strlen((t
->t_procp
)->p_user
.u_comm
);
2066 if (stksz
>= KMEM_STKINFO_STR_SIZE
) {
2067 stksz
= KMEM_STKINFO_STR_SIZE
- 1;
2068 kmem_stkinfo_log
[index
].cmd
[stksz
] = '\0';
2072 (void) memcpy(kmem_stkinfo_log
[index
].cmd
,
2073 (t
->t_procp
)->p_user
.u_comm
, stksz
);
2075 if (percent
< smallest_percent
) {
2076 smallest_percent
= percent
;
2079 mutex_exit(&kmem_stkinfo_lock
);
2083 * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2086 stkinfo_percent(caddr_t t_stk
, caddr_t t_stkbase
, caddr_t sp
)
2091 if (t_stk
> t_stkbase
) {
2092 /* stack grows down */
2096 if (sp
< t_stkbase
) {
2099 percent
= t_stk
- sp
+ 1;
2100 s
= t_stk
- t_stkbase
+ 1;
2102 /* stack grows up */
2106 if (sp
> t_stkbase
) {
2109 percent
= sp
- t_stk
+ 1;
2110 s
= t_stkbase
- t_stk
+ 1;
2112 percent
= ((100 * percent
) / s
) + 1;
2113 if (percent
> 100) {