Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / kernel / vm / vm_seg.c
blobf95f0691a23e3d9ebf405b2d97359c34daa35444
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2015, Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
25 * Copyright (c) 2018, Joyent, Inc.
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
42 * VM - segment management.
45 #include <sys/types.h>
46 #include <sys/inttypes.h>
47 #include <sys/t_lock.h>
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kmem.h>
51 #include <sys/sysmacros.h>
52 #include <sys/vmsystm.h>
53 #include <sys/tuneable.h>
54 #include <sys/debug.h>
55 #include <sys/fs/swapnode.h>
56 #include <sys/cmn_err.h>
57 #include <sys/callb.h>
58 #include <sys/mem_config.h>
59 #include <sys/mman.h>
61 #include <vm/hat.h>
62 #include <vm/as.h>
63 #include <vm/seg.h>
64 #include <vm/seg_kmem.h>
65 #include <vm/seg_spt.h>
66 #include <vm/seg_vn.h>
67 #include <vm/anon.h>
70 * kstats for segment advise
72 segadvstat_t segadvstat = {
73 { "MADV_FREE_hit", KSTAT_DATA_ULONG },
74 { "MADV_FREE_miss", KSTAT_DATA_ULONG },
77 kstat_named_t *segadvstat_ptr = (kstat_named_t *)&segadvstat;
78 uint_t segadvstat_ndata = sizeof (segadvstat) / sizeof (kstat_named_t);
81 * entry in the segment page cache
83 struct seg_pcache {
84 struct seg_pcache *p_hnext; /* list for hashed blocks */
85 struct seg_pcache *p_hprev;
86 pcache_link_t p_plink; /* per segment/amp list */
87 void *p_htag0; /* segment/amp pointer */
88 caddr_t p_addr; /* base address/anon_idx */
89 size_t p_len; /* total bytes */
90 size_t p_wlen; /* writtable bytes at p_addr */
91 struct page **p_pp; /* pp shadow list */
92 seg_preclaim_cbfunc_t p_callback; /* reclaim callback function */
93 clock_t p_lbolt; /* lbolt from last use */
94 struct seg_phash *p_hashp; /* our pcache hash bucket */
95 uint_t p_active; /* active count */
96 uchar_t p_write; /* true if S_WRITE */
97 uchar_t p_ref; /* reference byte */
98 ushort_t p_flags; /* bit flags */
101 struct seg_phash {
102 struct seg_pcache *p_hnext; /* list for hashed blocks */
103 struct seg_pcache *p_hprev;
104 kmutex_t p_hmutex; /* protects hash bucket */
105 pcache_link_t p_halink[2]; /* active bucket linkages */
108 struct seg_phash_wired {
109 struct seg_pcache *p_hnext; /* list for hashed blocks */
110 struct seg_pcache *p_hprev;
111 kmutex_t p_hmutex; /* protects hash bucket */
115 * A parameter to control a maximum number of bytes that can be
116 * purged from pcache at a time.
118 #define P_MAX_APURGE_BYTES (1024 * 1024 * 1024)
121 * log2(fraction of pcache to reclaim at a time).
123 #define P_SHRINK_SHFT (5)
126 * The following variables can be tuned via /etc/system.
129 int segpcache_enabled = 1; /* if 1, shadow lists are cached */
130 pgcnt_t segpcache_maxwindow = 0; /* max # of pages that can be cached */
131 ulong_t segpcache_hashsize_win = 0; /* # of non wired buckets */
132 ulong_t segpcache_hashsize_wired = 0; /* # of wired buckets */
133 int segpcache_reap_sec = 1; /* reap check rate in secs */
134 clock_t segpcache_reap_ticks = 0; /* reap interval in ticks */
135 int segpcache_pcp_maxage_sec = 1; /* pcp max age in secs */
136 clock_t segpcache_pcp_maxage_ticks = 0; /* pcp max age in ticks */
137 int segpcache_shrink_shift = P_SHRINK_SHFT; /* log2 reap fraction */
138 pgcnt_t segpcache_maxapurge_bytes = P_MAX_APURGE_BYTES; /* max purge bytes */
140 static kmutex_t seg_pcache_mtx; /* protects seg_pdisabled counter */
141 static kmutex_t seg_pasync_mtx; /* protects async thread scheduling */
142 static kcondvar_t seg_pasync_cv;
144 #pragma align 64(pctrl1)
145 #pragma align 64(pctrl2)
146 #pragma align 64(pctrl3)
149 * Keep frequently used variables together in one cache line.
151 static struct p_ctrl1 {
152 uint_t p_disabled; /* if not 0, caching temporarily off */
153 pgcnt_t p_maxwin; /* max # of pages that can be cached */
154 size_t p_hashwin_sz; /* # of non wired buckets */
155 struct seg_phash *p_htabwin; /* hash table for non wired entries */
156 size_t p_hashwired_sz; /* # of wired buckets */
157 struct seg_phash_wired *p_htabwired; /* hash table for wired entries */
158 kmem_cache_t *p_kmcache; /* kmem cache for seg_pcache structs */
159 #ifdef _LP64
160 ulong_t pad[1];
161 #endif /* _LP64 */
162 } pctrl1;
164 static struct p_ctrl2 {
165 kmutex_t p_mem_mtx; /* protects window counter and p_halinks */
166 pgcnt_t p_locked_win; /* # pages from window */
167 pgcnt_t p_locked; /* # of pages cached by pagelock */
168 uchar_t p_ahcur; /* current active links for insert/delete */
169 uchar_t p_athr_on; /* async reclaim thread is running. */
170 pcache_link_t p_ahhead[2]; /* active buckets linkages */
171 } pctrl2;
173 static struct p_ctrl3 {
174 clock_t p_pcp_maxage; /* max pcp age in ticks */
175 ulong_t p_athr_empty_ahb; /* athread walk stats */
176 ulong_t p_athr_full_ahb; /* athread walk stats */
177 pgcnt_t p_maxapurge_npages; /* max pages to purge at a time */
178 int p_shrink_shft; /* reap shift factor */
179 #ifdef _LP64
180 ulong_t pad[3];
181 #endif /* _LP64 */
182 } pctrl3;
184 #define seg_pdisabled pctrl1.p_disabled
185 #define seg_pmaxwindow pctrl1.p_maxwin
186 #define seg_phashsize_win pctrl1.p_hashwin_sz
187 #define seg_phashtab_win pctrl1.p_htabwin
188 #define seg_phashsize_wired pctrl1.p_hashwired_sz
189 #define seg_phashtab_wired pctrl1.p_htabwired
190 #define seg_pkmcache pctrl1.p_kmcache
191 #define seg_pmem_mtx pctrl2.p_mem_mtx
192 #define seg_plocked_window pctrl2.p_locked_win
193 #define seg_plocked pctrl2.p_locked
194 #define seg_pahcur pctrl2.p_ahcur
195 #define seg_pathr_on pctrl2.p_athr_on
196 #define seg_pahhead pctrl2.p_ahhead
197 #define seg_pmax_pcpage pctrl3.p_pcp_maxage
198 #define seg_pathr_empty_ahb pctrl3.p_athr_empty_ahb
199 #define seg_pathr_full_ahb pctrl3.p_athr_full_ahb
200 #define seg_pshrink_shift pctrl3.p_shrink_shft
201 #define seg_pmaxapurge_npages pctrl3.p_maxapurge_npages
203 #define P_HASHWIN_MASK (seg_phashsize_win - 1)
204 #define P_HASHWIRED_MASK (seg_phashsize_wired - 1)
205 #define P_BASESHIFT (6)
207 kthread_t *seg_pasync_thr;
209 extern const struct seg_ops segvn_ops;
210 extern const struct seg_ops segspt_shmops;
212 #define IS_PFLAGS_WIRED(flags) ((flags) & SEGP_FORCE_WIRED)
213 #define IS_PCP_WIRED(pcp) IS_PFLAGS_WIRED((pcp)->p_flags)
215 #define LBOLT_DELTA(t) ((ulong_t)(ddi_get_lbolt() - (t)))
217 #define PCP_AGE(pcp) LBOLT_DELTA((pcp)->p_lbolt)
220 * htag0 argument can be a seg or amp pointer.
222 #define P_HASHBP(seg, htag0, addr, flags) \
223 (IS_PFLAGS_WIRED((flags)) ? \
224 ((struct seg_phash *)&seg_phashtab_wired[P_HASHWIRED_MASK & \
225 ((uintptr_t)(htag0) >> P_BASESHIFT)]) : \
226 (&seg_phashtab_win[P_HASHWIN_MASK & \
227 (((uintptr_t)(htag0) >> 3) ^ \
228 ((uintptr_t)(addr) >> ((flags & SEGP_PSHIFT) ? \
229 (flags >> 16) : page_get_shift((seg)->s_szc))))]))
232 * htag0 argument can be a seg or amp pointer.
234 #define P_MATCH(pcp, htag0, addr, len) \
235 ((pcp)->p_htag0 == (htag0) && \
236 (pcp)->p_addr == (addr) && \
237 (pcp)->p_len >= (len))
239 #define P_MATCH_PP(pcp, htag0, addr, len, pp) \
240 ((pcp)->p_pp == (pp) && \
241 (pcp)->p_htag0 == (htag0) && \
242 (pcp)->p_addr == (addr) && \
243 (pcp)->p_len >= (len))
245 #define plink2pcache(pl) ((struct seg_pcache *)((uintptr_t)(pl) - \
246 offsetof(struct seg_pcache, p_plink)))
248 #define hlink2phash(hl, l) ((struct seg_phash *)((uintptr_t)(hl) - \
249 offsetof(struct seg_phash, p_halink[l])))
252 * seg_padd_abuck()/seg_premove_abuck() link and unlink hash buckets from
253 * active hash bucket lists. We maintain active bucket lists to reduce the
254 * overhead of finding active buckets during asynchronous purging since there
255 * can be 10s of millions of buckets on a large system but only a small subset
256 * of them in actual use.
258 * There're 2 active bucket lists. Current active list (as per seg_pahcur) is
259 * used by seg_pinsert()/seg_pinactive()/seg_ppurge() to add and delete
260 * buckets. The other list is used by asynchronous purge thread. This allows
261 * the purge thread to walk its active list without holding seg_pmem_mtx for a
262 * long time. When asynchronous thread is done with its list it switches to
263 * current active list and makes the list it just finished processing as
264 * current active list.
266 * seg_padd_abuck() only adds the bucket to current list if the bucket is not
267 * yet on any list. seg_premove_abuck() may remove the bucket from either
268 * list. If the bucket is on current list it will be always removed. Otherwise
269 * the bucket is only removed if asynchronous purge thread is not currently
270 * running or seg_premove_abuck() is called by asynchronous purge thread
271 * itself. A given bucket can only be on one of active lists at a time. These
272 * routines should be called with per bucket lock held. The routines use
273 * seg_pmem_mtx to protect list updates. seg_padd_abuck() must be called after
274 * the first entry is added to the bucket chain and seg_premove_abuck() must
275 * be called after the last pcp entry is deleted from its chain. Per bucket
276 * lock should be held by the callers. This avoids a potential race condition
277 * when seg_premove_abuck() removes a bucket after pcp entries are added to
278 * its list after the caller checked that the bucket has no entries. (this
279 * race would cause a loss of an active bucket from the active lists).
281 * Both lists are circular doubly linked lists anchored at seg_pahhead heads.
282 * New entries are added to the end of the list since LRU is used as the
283 * purging policy.
285 static void
286 seg_padd_abuck(struct seg_phash *hp)
288 int lix;
290 ASSERT(MUTEX_HELD(&hp->p_hmutex));
291 ASSERT((struct seg_phash *)hp->p_hnext != hp);
292 ASSERT((struct seg_phash *)hp->p_hprev != hp);
293 ASSERT(hp->p_hnext == hp->p_hprev);
294 ASSERT(!IS_PCP_WIRED(hp->p_hnext));
295 ASSERT(hp->p_hnext->p_hnext == (struct seg_pcache *)hp);
296 ASSERT(hp->p_hprev->p_hprev == (struct seg_pcache *)hp);
297 ASSERT(hp >= seg_phashtab_win &&
298 hp < &seg_phashtab_win[seg_phashsize_win]);
301 * This bucket can already be on one of active lists
302 * since seg_premove_abuck() may have failed to remove it
303 * before.
305 mutex_enter(&seg_pmem_mtx);
306 lix = seg_pahcur;
307 ASSERT(lix >= 0 && lix <= 1);
308 if (hp->p_halink[lix].p_lnext != NULL) {
309 ASSERT(hp->p_halink[lix].p_lprev != NULL);
310 ASSERT(hp->p_halink[!lix].p_lnext == NULL);
311 ASSERT(hp->p_halink[!lix].p_lprev == NULL);
312 mutex_exit(&seg_pmem_mtx);
313 return;
315 ASSERT(hp->p_halink[lix].p_lprev == NULL);
318 * If this bucket is still on list !lix async thread can't yet remove
319 * it since we hold here per bucket lock. In this case just return
320 * since async thread will eventually find and process this bucket.
322 if (hp->p_halink[!lix].p_lnext != NULL) {
323 ASSERT(hp->p_halink[!lix].p_lprev != NULL);
324 mutex_exit(&seg_pmem_mtx);
325 return;
327 ASSERT(hp->p_halink[!lix].p_lprev == NULL);
329 * This bucket is not on any active bucket list yet.
330 * Add the bucket to the tail of current active list.
332 hp->p_halink[lix].p_lnext = &seg_pahhead[lix];
333 hp->p_halink[lix].p_lprev = seg_pahhead[lix].p_lprev;
334 seg_pahhead[lix].p_lprev->p_lnext = &hp->p_halink[lix];
335 seg_pahhead[lix].p_lprev = &hp->p_halink[lix];
336 mutex_exit(&seg_pmem_mtx);
339 static void
340 seg_premove_abuck(struct seg_phash *hp, int athr)
342 int lix;
344 ASSERT(MUTEX_HELD(&hp->p_hmutex));
345 ASSERT((struct seg_phash *)hp->p_hnext == hp);
346 ASSERT((struct seg_phash *)hp->p_hprev == hp);
347 ASSERT(hp >= seg_phashtab_win &&
348 hp < &seg_phashtab_win[seg_phashsize_win]);
350 if (athr) {
351 ASSERT(seg_pathr_on);
352 ASSERT(seg_pahcur <= 1);
354 * We are called by asynchronous thread that found this bucket
355 * on not currently active (i.e. !seg_pahcur) list. Remove it
356 * from there. Per bucket lock we are holding makes sure
357 * seg_pinsert() can't sneak in and add pcp entries to this
358 * bucket right before we remove the bucket from its list.
360 lix = !seg_pahcur;
361 ASSERT(hp->p_halink[lix].p_lnext != NULL);
362 ASSERT(hp->p_halink[lix].p_lprev != NULL);
363 ASSERT(hp->p_halink[!lix].p_lnext == NULL);
364 ASSERT(hp->p_halink[!lix].p_lprev == NULL);
365 hp->p_halink[lix].p_lnext->p_lprev = hp->p_halink[lix].p_lprev;
366 hp->p_halink[lix].p_lprev->p_lnext = hp->p_halink[lix].p_lnext;
367 hp->p_halink[lix].p_lnext = NULL;
368 hp->p_halink[lix].p_lprev = NULL;
369 return;
372 mutex_enter(&seg_pmem_mtx);
373 lix = seg_pahcur;
374 ASSERT(lix >= 0 && lix <= 1);
377 * If the bucket is on currently active list just remove it from
378 * there.
380 if (hp->p_halink[lix].p_lnext != NULL) {
381 ASSERT(hp->p_halink[lix].p_lprev != NULL);
382 ASSERT(hp->p_halink[!lix].p_lnext == NULL);
383 ASSERT(hp->p_halink[!lix].p_lprev == NULL);
384 hp->p_halink[lix].p_lnext->p_lprev = hp->p_halink[lix].p_lprev;
385 hp->p_halink[lix].p_lprev->p_lnext = hp->p_halink[lix].p_lnext;
386 hp->p_halink[lix].p_lnext = NULL;
387 hp->p_halink[lix].p_lprev = NULL;
388 mutex_exit(&seg_pmem_mtx);
389 return;
391 ASSERT(hp->p_halink[lix].p_lprev == NULL);
394 * If asynchronous thread is not running we can remove the bucket from
395 * not currently active list. The bucket must be on this list since we
396 * already checked that it's not on the other list and the bucket from
397 * which we just deleted the last pcp entry must be still on one of the
398 * active bucket lists.
400 lix = !lix;
401 ASSERT(hp->p_halink[lix].p_lnext != NULL);
402 ASSERT(hp->p_halink[lix].p_lprev != NULL);
404 if (!seg_pathr_on) {
405 hp->p_halink[lix].p_lnext->p_lprev = hp->p_halink[lix].p_lprev;
406 hp->p_halink[lix].p_lprev->p_lnext = hp->p_halink[lix].p_lnext;
407 hp->p_halink[lix].p_lnext = NULL;
408 hp->p_halink[lix].p_lprev = NULL;
410 mutex_exit(&seg_pmem_mtx);
414 * Check if bucket pointed by hp already has a pcp entry that matches request
415 * htag0, addr and len. Set *found to 1 if match is found and to 0 otherwise.
416 * Also delete matching entries that cover smaller address range but start
417 * at the same address as addr argument. Return the list of deleted entries if
418 * any. This is an internal helper function called from seg_pinsert() only
419 * for non wired shadow lists. The caller already holds a per seg/amp list
420 * lock.
422 static struct seg_pcache *
423 seg_plookup_checkdup(struct seg_phash *hp, void *htag0,
424 caddr_t addr, size_t len, int *found)
426 struct seg_pcache *pcp;
427 struct seg_pcache *delcallb_list = NULL;
429 ASSERT(MUTEX_HELD(&hp->p_hmutex));
431 *found = 0;
432 for (pcp = hp->p_hnext; pcp != (struct seg_pcache *)hp;
433 pcp = pcp->p_hnext) {
434 ASSERT(pcp->p_hashp == hp);
435 if (pcp->p_htag0 == htag0 && pcp->p_addr == addr) {
436 ASSERT(!IS_PCP_WIRED(pcp));
437 if (pcp->p_len < len) {
438 pcache_link_t *plinkp;
439 if (pcp->p_active) {
440 continue;
442 plinkp = &pcp->p_plink;
443 plinkp->p_lprev->p_lnext = plinkp->p_lnext;
444 plinkp->p_lnext->p_lprev = plinkp->p_lprev;
445 pcp->p_hprev->p_hnext = pcp->p_hnext;
446 pcp->p_hnext->p_hprev = pcp->p_hprev;
447 pcp->p_hprev = delcallb_list;
448 delcallb_list = pcp;
449 } else {
450 *found = 1;
451 break;
455 return (delcallb_list);
459 * lookup an address range in pagelock cache. Return shadow list and bump up
460 * active count. If amp is not NULL use amp as a lookup tag otherwise use seg
461 * as a lookup tag.
463 struct page **
464 seg_plookup(struct seg *seg, struct anon_map *amp, caddr_t addr, size_t len,
465 enum seg_rw rw, uint_t flags)
467 struct seg_pcache *pcp;
468 struct seg_phash *hp;
469 void *htag0;
471 ASSERT(seg != NULL);
472 ASSERT(rw == S_READ || rw == S_WRITE);
475 * Skip pagelock cache, while DR is in progress or
476 * seg_pcache is off.
478 if (seg_pdisabled) {
479 return (NULL);
481 ASSERT(seg_phashsize_win != 0);
483 htag0 = (amp == NULL ? (void *)seg : (void *)amp);
484 hp = P_HASHBP(seg, htag0, addr, flags);
485 mutex_enter(&hp->p_hmutex);
486 for (pcp = hp->p_hnext; pcp != (struct seg_pcache *)hp;
487 pcp = pcp->p_hnext) {
488 ASSERT(pcp->p_hashp == hp);
489 if (P_MATCH(pcp, htag0, addr, len)) {
490 ASSERT(IS_PFLAGS_WIRED(flags) == IS_PCP_WIRED(pcp));
492 * If this request wants to write pages
493 * but write permissions starting from
494 * addr don't cover the entire length len
495 * return lookup failure back to the caller.
496 * It will check protections and fail this
497 * pagelock operation with EACCESS error.
499 if (rw == S_WRITE && pcp->p_wlen < len) {
500 break;
502 if (pcp->p_active == UINT_MAX) {
503 break;
505 pcp->p_active++;
506 if (rw == S_WRITE && !pcp->p_write) {
507 pcp->p_write = 1;
509 mutex_exit(&hp->p_hmutex);
510 return (pcp->p_pp);
513 mutex_exit(&hp->p_hmutex);
514 return (NULL);
518 * mark address range inactive. If the cache is off or the address range is
519 * not in the cache or another shadow list that covers bigger range is found
520 * we call the segment driver to reclaim the pages. Otherwise just decrement
521 * active count and set ref bit. If amp is not NULL use amp as a lookup tag
522 * otherwise use seg as a lookup tag.
524 void
525 seg_pinactive(struct seg *seg, struct anon_map *amp, caddr_t addr,
526 size_t len, struct page **pp, enum seg_rw rw, uint_t flags,
527 seg_preclaim_cbfunc_t callback)
529 struct seg_pcache *pcp;
530 struct seg_phash *hp;
531 kmutex_t *pmtx = NULL;
532 pcache_link_t *pheadp;
533 void *htag0;
534 pgcnt_t npages = 0;
535 int keep = 0;
537 ASSERT(seg != NULL);
538 ASSERT(rw == S_READ || rw == S_WRITE);
540 htag0 = (amp == NULL ? (void *)seg : (void *)amp);
543 * Skip lookup if pcache is not configured.
545 if (seg_phashsize_win == 0) {
546 goto out;
550 * Grab per seg/amp lock before hash lock if we are going to remove
551 * inactive entry from pcache.
553 if (!IS_PFLAGS_WIRED(flags) && seg_pdisabled) {
554 if (amp == NULL) {
555 pheadp = &seg->s_phead;
556 pmtx = &seg->s_pmtx;
557 } else {
558 pheadp = &amp->a_phead;
559 pmtx = &amp->a_pmtx;
561 mutex_enter(pmtx);
564 hp = P_HASHBP(seg, htag0, addr, flags);
565 mutex_enter(&hp->p_hmutex);
566 again:
567 for (pcp = hp->p_hnext; pcp != (struct seg_pcache *)hp;
568 pcp = pcp->p_hnext) {
569 ASSERT(pcp->p_hashp == hp);
570 if (P_MATCH_PP(pcp, htag0, addr, len, pp)) {
571 ASSERT(IS_PFLAGS_WIRED(flags) == IS_PCP_WIRED(pcp));
572 ASSERT(pcp->p_active);
573 if (keep) {
575 * Don't remove this pcp entry
576 * if we didn't find duplicate
577 * shadow lists on second search.
578 * Somebody removed those duplicates
579 * since we dropped hash lock after first
580 * search.
582 ASSERT(pmtx != NULL);
583 ASSERT(!IS_PFLAGS_WIRED(flags));
584 mutex_exit(pmtx);
585 pmtx = NULL;
587 pcp->p_active--;
588 if (pcp->p_active == 0 && (pmtx != NULL ||
589 (seg_pdisabled && IS_PFLAGS_WIRED(flags)))) {
592 * This entry is no longer active. Remove it
593 * now either because pcaching is temporarily
594 * disabled or there're other pcp entries that
595 * can match this pagelock request (i.e. this
596 * entry is a duplicate).
599 ASSERT(callback == pcp->p_callback);
600 if (pmtx != NULL) {
601 pcache_link_t *plinkp = &pcp->p_plink;
602 ASSERT(!IS_PCP_WIRED(pcp));
603 ASSERT(pheadp->p_lnext != pheadp);
604 ASSERT(pheadp->p_lprev != pheadp);
605 plinkp->p_lprev->p_lnext =
606 plinkp->p_lnext;
607 plinkp->p_lnext->p_lprev =
608 plinkp->p_lprev;
610 pcp->p_hprev->p_hnext = pcp->p_hnext;
611 pcp->p_hnext->p_hprev = pcp->p_hprev;
612 if (!IS_PCP_WIRED(pcp) &&
613 hp->p_hnext == (struct seg_pcache *)hp) {
615 * We removed the last entry from this
616 * bucket. Now remove the bucket from
617 * its active list.
619 seg_premove_abuck(hp, 0);
621 mutex_exit(&hp->p_hmutex);
622 if (pmtx != NULL) {
623 mutex_exit(pmtx);
625 len = pcp->p_len;
626 npages = btop(len);
627 if (rw != S_WRITE && pcp->p_write) {
628 rw = S_WRITE;
630 kmem_cache_free(seg_pkmcache, pcp);
631 goto out;
632 } else {
634 * We found a matching pcp entry but will not
635 * free it right away even if it's no longer
636 * active.
638 if (!pcp->p_active && !IS_PCP_WIRED(pcp)) {
640 * Set the reference bit and mark the
641 * time of last access to this pcp
642 * so that asynchronous thread doesn't
643 * free it immediately since
644 * it may be reactivated very soon.
646 pcp->p_lbolt = ddi_get_lbolt();
647 pcp->p_ref = 1;
649 mutex_exit(&hp->p_hmutex);
650 if (pmtx != NULL) {
651 mutex_exit(pmtx);
653 return;
655 } else if (!IS_PFLAGS_WIRED(flags) &&
656 P_MATCH(pcp, htag0, addr, len)) {
658 * This is a duplicate pcp entry. This situation may
659 * happen if a bigger shadow list that covers our
660 * range was added while our entry was still active.
661 * Now we can free our pcp entry if it becomes
662 * inactive.
664 if (!pcp->p_active) {
666 * Mark this entry as referenced just in case
667 * we'll free our own pcp entry soon.
669 pcp->p_lbolt = ddi_get_lbolt();
670 pcp->p_ref = 1;
672 if (pmtx != NULL) {
674 * we are already holding pmtx and found a
675 * duplicate. Don't keep our own pcp entry.
677 keep = 0;
678 continue;
681 * We have to use mutex_tryenter to attempt to lock
682 * seg/amp list lock since we already hold hash lock
683 * and seg/amp list lock is above hash lock in lock
684 * order. If mutex_tryenter fails drop hash lock and
685 * retake both locks in correct order and research
686 * this hash chain.
688 ASSERT(keep == 0);
689 if (amp == NULL) {
690 pheadp = &seg->s_phead;
691 pmtx = &seg->s_pmtx;
692 } else {
693 pheadp = &amp->a_phead;
694 pmtx = &amp->a_pmtx;
696 if (!mutex_tryenter(pmtx)) {
697 mutex_exit(&hp->p_hmutex);
698 mutex_enter(pmtx);
699 mutex_enter(&hp->p_hmutex);
701 * If we don't find bigger shadow list on
702 * second search (it may happen since we
703 * dropped bucket lock) keep the entry that
704 * matches our own shadow list.
706 keep = 1;
707 goto again;
711 mutex_exit(&hp->p_hmutex);
712 if (pmtx != NULL) {
713 mutex_exit(pmtx);
715 out:
716 (*callback)(htag0, addr, len, pp, rw, 0);
717 if (npages) {
718 mutex_enter(&seg_pmem_mtx);
719 ASSERT(seg_plocked >= npages);
720 seg_plocked -= npages;
721 if (!IS_PFLAGS_WIRED(flags)) {
722 ASSERT(seg_plocked_window >= npages);
723 seg_plocked_window -= npages;
725 mutex_exit(&seg_pmem_mtx);
730 #ifdef DEBUG
731 static uint32_t p_insert_chk_mtbf = 0;
732 #endif
735 * The seg_pinsert_check() is used by segment drivers to predict whether
736 * a call to seg_pinsert will fail and thereby avoid wasteful pre-processing.
738 /*ARGSUSED*/
740 seg_pinsert_check(struct seg *seg, struct anon_map *amp, caddr_t addr,
741 size_t len, uint_t flags)
743 ASSERT(seg != NULL);
745 #ifdef DEBUG
746 if (p_insert_chk_mtbf && !(gethrtime() % p_insert_chk_mtbf)) {
747 return (SEGP_FAIL);
749 #endif
751 if (seg_pdisabled) {
752 return (SEGP_FAIL);
754 ASSERT(seg_phashsize_win != 0);
756 if (IS_PFLAGS_WIRED(flags)) {
757 return (SEGP_SUCCESS);
760 if (seg_plocked_window + btop(len) > seg_pmaxwindow) {
761 return (SEGP_FAIL);
764 if (freemem < desfree) {
765 return (SEGP_FAIL);
768 return (SEGP_SUCCESS);
771 #ifdef DEBUG
772 static uint32_t p_insert_mtbf = 0;
773 #endif
776 * Insert address range with shadow list into pagelock cache if there's no
777 * shadow list already cached for this address range. If the cache is off or
778 * caching is temporarily disabled or the allowed 'window' is exceeded return
779 * SEGP_FAIL. Otherwise return SEGP_SUCCESS.
781 * For non wired shadow lists (segvn case) include address in the hashing
782 * function to avoid linking all the entries from the same segment or amp on
783 * the same bucket. amp is used instead of seg if amp is not NULL. Non wired
784 * pcache entries are also linked on a per segment/amp list so that all
785 * entries can be found quickly during seg/amp purge without walking the
786 * entire pcache hash table. For wired shadow lists (segspt case) we
787 * don't use address hashing and per segment linking because the caller
788 * currently inserts only one entry per segment that covers the entire
789 * segment. If we used per segment linking even for segspt it would complicate
790 * seg_ppurge_wiredpp() locking.
792 * Both hash bucket and per seg/amp locks need to be held before adding a non
793 * wired entry to hash and per seg/amp lists. per seg/amp lock should be taken
794 * first.
796 * This function will also remove from pcache old inactive shadow lists that
797 * overlap with this request but cover smaller range for the same start
798 * address.
801 seg_pinsert(struct seg *seg, struct anon_map *amp, caddr_t addr, size_t len,
802 size_t wlen, struct page **pp, enum seg_rw rw, uint_t flags,
803 seg_preclaim_cbfunc_t callback)
805 struct seg_pcache *pcp;
806 struct seg_phash *hp;
807 pgcnt_t npages;
808 pcache_link_t *pheadp;
809 kmutex_t *pmtx;
810 struct seg_pcache *delcallb_list = NULL;
812 ASSERT(seg != NULL);
813 ASSERT(rw == S_READ || rw == S_WRITE);
814 ASSERT(rw == S_READ || wlen == len);
815 ASSERT(rw == S_WRITE || wlen <= len);
816 ASSERT(amp == NULL || wlen == len);
818 #ifdef DEBUG
819 if (p_insert_mtbf && !(gethrtime() % p_insert_mtbf)) {
820 return (SEGP_FAIL);
822 #endif
824 if (seg_pdisabled) {
825 return (SEGP_FAIL);
827 ASSERT(seg_phashsize_win != 0);
829 ASSERT((len & PAGEOFFSET) == 0);
830 npages = btop(len);
831 mutex_enter(&seg_pmem_mtx);
832 if (!IS_PFLAGS_WIRED(flags)) {
833 if (seg_plocked_window + npages > seg_pmaxwindow) {
834 mutex_exit(&seg_pmem_mtx);
835 return (SEGP_FAIL);
837 seg_plocked_window += npages;
839 seg_plocked += npages;
840 mutex_exit(&seg_pmem_mtx);
842 pcp = kmem_cache_alloc(seg_pkmcache, KM_SLEEP);
844 * If amp is not NULL set htag0 to amp otherwise set it to seg.
846 if (amp == NULL) {
847 pcp->p_htag0 = (void *)seg;
848 pcp->p_flags = flags & 0xffff;
849 } else {
850 pcp->p_htag0 = (void *)amp;
851 pcp->p_flags = (flags & 0xffff) | SEGP_AMP;
853 pcp->p_addr = addr;
854 pcp->p_len = len;
855 pcp->p_wlen = wlen;
856 pcp->p_pp = pp;
857 pcp->p_write = (rw == S_WRITE);
858 pcp->p_callback = callback;
859 pcp->p_active = 1;
861 hp = P_HASHBP(seg, pcp->p_htag0, addr, flags);
862 if (!IS_PFLAGS_WIRED(flags)) {
863 int found;
864 void *htag0;
865 if (amp == NULL) {
866 pheadp = &seg->s_phead;
867 pmtx = &seg->s_pmtx;
868 htag0 = (void *)seg;
869 } else {
870 pheadp = &amp->a_phead;
871 pmtx = &amp->a_pmtx;
872 htag0 = (void *)amp;
874 mutex_enter(pmtx);
875 mutex_enter(&hp->p_hmutex);
876 delcallb_list = seg_plookup_checkdup(hp, htag0, addr,
877 len, &found);
878 if (found) {
879 mutex_exit(&hp->p_hmutex);
880 mutex_exit(pmtx);
881 mutex_enter(&seg_pmem_mtx);
882 seg_plocked -= npages;
883 seg_plocked_window -= npages;
884 mutex_exit(&seg_pmem_mtx);
885 kmem_cache_free(seg_pkmcache, pcp);
886 goto out;
888 pcp->p_plink.p_lnext = pheadp->p_lnext;
889 pcp->p_plink.p_lprev = pheadp;
890 pheadp->p_lnext->p_lprev = &pcp->p_plink;
891 pheadp->p_lnext = &pcp->p_plink;
892 } else {
893 mutex_enter(&hp->p_hmutex);
895 pcp->p_hashp = hp;
896 pcp->p_hnext = hp->p_hnext;
897 pcp->p_hprev = (struct seg_pcache *)hp;
898 hp->p_hnext->p_hprev = pcp;
899 hp->p_hnext = pcp;
900 if (!IS_PFLAGS_WIRED(flags) &&
901 hp->p_hprev == pcp) {
902 seg_padd_abuck(hp);
904 mutex_exit(&hp->p_hmutex);
905 if (!IS_PFLAGS_WIRED(flags)) {
906 mutex_exit(pmtx);
909 out:
910 npages = 0;
911 while (delcallb_list != NULL) {
912 pcp = delcallb_list;
913 delcallb_list = pcp->p_hprev;
914 ASSERT(!IS_PCP_WIRED(pcp) && !pcp->p_active);
915 (void) (*pcp->p_callback)(pcp->p_htag0, pcp->p_addr,
916 pcp->p_len, pcp->p_pp, pcp->p_write ? S_WRITE : S_READ, 0);
917 npages += btop(pcp->p_len);
918 kmem_cache_free(seg_pkmcache, pcp);
920 if (npages) {
921 ASSERT(!IS_PFLAGS_WIRED(flags));
922 mutex_enter(&seg_pmem_mtx);
923 ASSERT(seg_plocked >= npages);
924 ASSERT(seg_plocked_window >= npages);
925 seg_plocked -= npages;
926 seg_plocked_window -= npages;
927 mutex_exit(&seg_pmem_mtx);
930 return (SEGP_SUCCESS);
934 * purge entries from the pagelock cache if not active
935 * and not recently used.
937 static void
938 seg_ppurge_async(int force)
940 struct seg_pcache *delcallb_list = NULL;
941 struct seg_pcache *pcp;
942 struct seg_phash *hp;
943 pgcnt_t npages = 0;
944 pgcnt_t npages_window = 0;
945 pgcnt_t npgs_to_purge;
946 pgcnt_t npgs_purged = 0;
947 int hlinks = 0;
948 int hlix;
949 pcache_link_t *hlinkp;
950 pcache_link_t *hlnextp = NULL;
951 int lowmem;
952 int trim;
954 ASSERT(seg_phashsize_win != 0);
957 * if the cache is off or empty, return
959 if (seg_plocked == 0 || (!force && seg_plocked_window == 0)) {
960 return;
963 if (!force) {
964 lowmem = 0;
965 trim = 0;
966 if (freemem < lotsfree + needfree) {
967 spgcnt_t fmem = MAX((spgcnt_t)(freemem - needfree), 0);
968 if (fmem <= 5 * (desfree >> 2)) {
969 lowmem = 1;
970 } else if (fmem <= 7 * (lotsfree >> 3)) {
971 if (seg_plocked_window >=
972 (availrmem_initial >> 1)) {
973 lowmem = 1;
975 } else if (fmem < lotsfree) {
976 if (seg_plocked_window >=
977 3 * (availrmem_initial >> 2)) {
978 lowmem = 1;
982 if (seg_plocked_window >= 7 * (seg_pmaxwindow >> 3)) {
983 trim = 1;
985 if (!lowmem && !trim) {
986 return;
988 npgs_to_purge = seg_plocked_window >>
989 seg_pshrink_shift;
990 if (lowmem) {
991 npgs_to_purge = MIN(npgs_to_purge,
992 MAX(seg_pmaxapurge_npages, desfree));
993 } else {
994 npgs_to_purge = MIN(npgs_to_purge,
995 seg_pmaxapurge_npages);
997 if (npgs_to_purge == 0) {
998 return;
1000 } else {
1001 struct seg_phash_wired *hpw;
1003 ASSERT(seg_phashsize_wired != 0);
1005 for (hpw = seg_phashtab_wired;
1006 hpw < &seg_phashtab_wired[seg_phashsize_wired]; hpw++) {
1008 if (hpw->p_hnext == (struct seg_pcache *)hpw) {
1009 continue;
1012 mutex_enter(&hpw->p_hmutex);
1014 for (pcp = hpw->p_hnext;
1015 pcp != (struct seg_pcache *)hpw;
1016 pcp = pcp->p_hnext) {
1018 ASSERT(IS_PCP_WIRED(pcp));
1019 ASSERT(pcp->p_hashp ==
1020 (struct seg_phash *)hpw);
1022 if (pcp->p_active) {
1023 continue;
1025 pcp->p_hprev->p_hnext = pcp->p_hnext;
1026 pcp->p_hnext->p_hprev = pcp->p_hprev;
1027 pcp->p_hprev = delcallb_list;
1028 delcallb_list = pcp;
1030 mutex_exit(&hpw->p_hmutex);
1034 mutex_enter(&seg_pmem_mtx);
1035 if (seg_pathr_on) {
1036 mutex_exit(&seg_pmem_mtx);
1037 goto runcb;
1039 seg_pathr_on = 1;
1040 mutex_exit(&seg_pmem_mtx);
1041 ASSERT(seg_pahcur <= 1);
1042 hlix = !seg_pahcur;
1044 again:
1045 for (hlinkp = seg_pahhead[hlix].p_lnext; hlinkp != &seg_pahhead[hlix];
1046 hlinkp = hlnextp) {
1048 hlnextp = hlinkp->p_lnext;
1049 ASSERT(hlnextp != NULL);
1051 hp = hlink2phash(hlinkp, hlix);
1052 if (hp->p_hnext == (struct seg_pcache *)hp) {
1053 seg_pathr_empty_ahb++;
1054 continue;
1056 seg_pathr_full_ahb++;
1057 mutex_enter(&hp->p_hmutex);
1059 for (pcp = hp->p_hnext; pcp != (struct seg_pcache *)hp;
1060 pcp = pcp->p_hnext) {
1061 pcache_link_t *pheadp;
1062 pcache_link_t *plinkp;
1063 void *htag0;
1064 kmutex_t *pmtx;
1066 ASSERT(!IS_PCP_WIRED(pcp));
1067 ASSERT(pcp->p_hashp == hp);
1069 if (pcp->p_active) {
1070 continue;
1072 if (!force && pcp->p_ref &&
1073 PCP_AGE(pcp) < seg_pmax_pcpage) {
1074 pcp->p_ref = 0;
1075 continue;
1077 plinkp = &pcp->p_plink;
1078 htag0 = pcp->p_htag0;
1079 if (pcp->p_flags & SEGP_AMP) {
1080 pheadp = &((amp_t *)htag0)->a_phead;
1081 pmtx = &((amp_t *)htag0)->a_pmtx;
1082 } else {
1083 pheadp = &((seg_t *)htag0)->s_phead;
1084 pmtx = &((seg_t *)htag0)->s_pmtx;
1086 if (!mutex_tryenter(pmtx)) {
1087 continue;
1089 ASSERT(pheadp->p_lnext != pheadp);
1090 ASSERT(pheadp->p_lprev != pheadp);
1091 plinkp->p_lprev->p_lnext =
1092 plinkp->p_lnext;
1093 plinkp->p_lnext->p_lprev =
1094 plinkp->p_lprev;
1095 pcp->p_hprev->p_hnext = pcp->p_hnext;
1096 pcp->p_hnext->p_hprev = pcp->p_hprev;
1097 mutex_exit(pmtx);
1098 pcp->p_hprev = delcallb_list;
1099 delcallb_list = pcp;
1100 npgs_purged += btop(pcp->p_len);
1102 if (hp->p_hnext == (struct seg_pcache *)hp) {
1103 seg_premove_abuck(hp, 1);
1105 mutex_exit(&hp->p_hmutex);
1106 if (npgs_purged >= seg_plocked_window) {
1107 break;
1109 if (!force) {
1110 if (npgs_purged >= npgs_to_purge) {
1111 break;
1113 if (!trim && !(seg_pathr_full_ahb & 15)) {
1114 ASSERT(lowmem);
1115 if (freemem >= lotsfree + needfree) {
1116 break;
1122 if (hlinkp == &seg_pahhead[hlix]) {
1124 * We processed the entire hlix active bucket list
1125 * but didn't find enough pages to reclaim.
1126 * Switch the lists and walk the other list
1127 * if we haven't done it yet.
1129 mutex_enter(&seg_pmem_mtx);
1130 ASSERT(seg_pathr_on);
1131 ASSERT(seg_pahcur == !hlix);
1132 seg_pahcur = hlix;
1133 mutex_exit(&seg_pmem_mtx);
1134 if (++hlinks < 2) {
1135 hlix = !hlix;
1136 goto again;
1138 } else if ((hlinkp = hlnextp) != &seg_pahhead[hlix] &&
1139 seg_pahhead[hlix].p_lnext != hlinkp) {
1140 ASSERT(hlinkp != NULL);
1141 ASSERT(hlinkp->p_lprev != &seg_pahhead[hlix]);
1142 ASSERT(seg_pahhead[hlix].p_lnext != &seg_pahhead[hlix]);
1143 ASSERT(seg_pahhead[hlix].p_lprev != &seg_pahhead[hlix]);
1146 * Reinsert the header to point to hlinkp
1147 * so that we start from hlinkp bucket next time around.
1149 seg_pahhead[hlix].p_lnext->p_lprev = seg_pahhead[hlix].p_lprev;
1150 seg_pahhead[hlix].p_lprev->p_lnext = seg_pahhead[hlix].p_lnext;
1151 seg_pahhead[hlix].p_lnext = hlinkp;
1152 seg_pahhead[hlix].p_lprev = hlinkp->p_lprev;
1153 hlinkp->p_lprev->p_lnext = &seg_pahhead[hlix];
1154 hlinkp->p_lprev = &seg_pahhead[hlix];
1157 mutex_enter(&seg_pmem_mtx);
1158 ASSERT(seg_pathr_on);
1159 seg_pathr_on = 0;
1160 mutex_exit(&seg_pmem_mtx);
1162 runcb:
1164 * Run the delayed callback list. segments/amps can't go away until
1165 * callback is executed since they must have non 0 softlockcnt. That's
1166 * why we don't need to hold as/seg/amp locks to execute the callback.
1168 while (delcallb_list != NULL) {
1169 pcp = delcallb_list;
1170 delcallb_list = pcp->p_hprev;
1171 ASSERT(!pcp->p_active);
1172 (void) (*pcp->p_callback)(pcp->p_htag0, pcp->p_addr,
1173 pcp->p_len, pcp->p_pp, pcp->p_write ? S_WRITE : S_READ, 1);
1174 npages += btop(pcp->p_len);
1175 if (!IS_PCP_WIRED(pcp)) {
1176 npages_window += btop(pcp->p_len);
1178 kmem_cache_free(seg_pkmcache, pcp);
1180 if (npages) {
1181 mutex_enter(&seg_pmem_mtx);
1182 ASSERT(seg_plocked >= npages);
1183 ASSERT(seg_plocked_window >= npages_window);
1184 seg_plocked -= npages;
1185 seg_plocked_window -= npages_window;
1186 mutex_exit(&seg_pmem_mtx);
1191 * Remove cached pages for segment(s) entries from hashtable. The segments
1192 * are identified by pp array. This is useful for multiple seg's cached on
1193 * behalf of dummy segment (ISM/DISM) with common pp array.
1195 void
1196 seg_ppurge_wiredpp(struct page **pp)
1198 struct seg_pcache *pcp;
1199 struct seg_phash_wired *hp;
1200 pgcnt_t npages = 0;
1201 struct seg_pcache *delcallb_list = NULL;
1204 * if the cache is empty, return
1206 if (seg_plocked == 0) {
1207 return;
1209 ASSERT(seg_phashsize_wired != 0);
1211 for (hp = seg_phashtab_wired;
1212 hp < &seg_phashtab_wired[seg_phashsize_wired]; hp++) {
1213 if (hp->p_hnext == (struct seg_pcache *)hp) {
1214 continue;
1216 mutex_enter(&hp->p_hmutex);
1217 pcp = hp->p_hnext;
1218 while (pcp != (struct seg_pcache *)hp) {
1219 ASSERT(pcp->p_hashp == (struct seg_phash *)hp);
1220 ASSERT(IS_PCP_WIRED(pcp));
1222 * purge entries which are not active
1224 if (!pcp->p_active && pcp->p_pp == pp) {
1225 ASSERT(pcp->p_htag0 != NULL);
1226 pcp->p_hprev->p_hnext = pcp->p_hnext;
1227 pcp->p_hnext->p_hprev = pcp->p_hprev;
1228 pcp->p_hprev = delcallb_list;
1229 delcallb_list = pcp;
1231 pcp = pcp->p_hnext;
1233 mutex_exit(&hp->p_hmutex);
1235 * segments can't go away until callback is executed since
1236 * they must have non 0 softlockcnt. That's why we don't
1237 * need to hold as/seg locks to execute the callback.
1239 while (delcallb_list != NULL) {
1240 int done;
1241 pcp = delcallb_list;
1242 delcallb_list = pcp->p_hprev;
1243 ASSERT(!pcp->p_active);
1244 done = (*pcp->p_callback)(pcp->p_htag0, pcp->p_addr,
1245 pcp->p_len, pcp->p_pp,
1246 pcp->p_write ? S_WRITE : S_READ, 1);
1247 npages += btop(pcp->p_len);
1248 ASSERT(IS_PCP_WIRED(pcp));
1249 kmem_cache_free(seg_pkmcache, pcp);
1250 if (done) {
1251 ASSERT(delcallb_list == NULL);
1252 goto out;
1257 out:
1258 mutex_enter(&seg_pmem_mtx);
1259 ASSERT(seg_plocked >= npages);
1260 seg_plocked -= npages;
1261 mutex_exit(&seg_pmem_mtx);
1265 * purge all entries for a given segment. Since we
1266 * callback into the segment driver directly for page
1267 * reclaim the caller needs to hold the right locks.
1269 void
1270 seg_ppurge(struct seg *seg, struct anon_map *amp, uint_t flags)
1272 struct seg_pcache *delcallb_list = NULL;
1273 struct seg_pcache *pcp;
1274 struct seg_phash *hp;
1275 pgcnt_t npages = 0;
1276 void *htag0;
1278 if (seg_plocked == 0) {
1279 return;
1281 ASSERT(seg_phashsize_win != 0);
1284 * If amp is not NULL use amp as a lookup tag otherwise use seg
1285 * as a lookup tag.
1287 htag0 = (amp == NULL ? (void *)seg : (void *)amp);
1288 ASSERT(htag0 != NULL);
1289 if (IS_PFLAGS_WIRED(flags)) {
1290 hp = P_HASHBP(seg, htag0, 0, flags);
1291 mutex_enter(&hp->p_hmutex);
1292 pcp = hp->p_hnext;
1293 while (pcp != (struct seg_pcache *)hp) {
1294 ASSERT(pcp->p_hashp == hp);
1295 ASSERT(IS_PCP_WIRED(pcp));
1296 if (pcp->p_htag0 == htag0) {
1297 if (pcp->p_active) {
1298 break;
1300 pcp->p_hprev->p_hnext = pcp->p_hnext;
1301 pcp->p_hnext->p_hprev = pcp->p_hprev;
1302 pcp->p_hprev = delcallb_list;
1303 delcallb_list = pcp;
1305 pcp = pcp->p_hnext;
1307 mutex_exit(&hp->p_hmutex);
1308 } else {
1309 pcache_link_t *plinkp;
1310 pcache_link_t *pheadp;
1311 kmutex_t *pmtx;
1313 if (amp == NULL) {
1314 ASSERT(seg != NULL);
1315 pheadp = &seg->s_phead;
1316 pmtx = &seg->s_pmtx;
1317 } else {
1318 pheadp = &amp->a_phead;
1319 pmtx = &amp->a_pmtx;
1321 mutex_enter(pmtx);
1322 while ((plinkp = pheadp->p_lnext) != pheadp) {
1323 pcp = plink2pcache(plinkp);
1324 ASSERT(!IS_PCP_WIRED(pcp));
1325 ASSERT(pcp->p_htag0 == htag0);
1326 hp = pcp->p_hashp;
1327 mutex_enter(&hp->p_hmutex);
1328 if (pcp->p_active) {
1329 mutex_exit(&hp->p_hmutex);
1330 break;
1332 ASSERT(plinkp->p_lprev == pheadp);
1333 pheadp->p_lnext = plinkp->p_lnext;
1334 plinkp->p_lnext->p_lprev = pheadp;
1335 pcp->p_hprev->p_hnext = pcp->p_hnext;
1336 pcp->p_hnext->p_hprev = pcp->p_hprev;
1337 pcp->p_hprev = delcallb_list;
1338 delcallb_list = pcp;
1339 if (hp->p_hnext == (struct seg_pcache *)hp) {
1340 seg_premove_abuck(hp, 0);
1342 mutex_exit(&hp->p_hmutex);
1344 mutex_exit(pmtx);
1346 while (delcallb_list != NULL) {
1347 pcp = delcallb_list;
1348 delcallb_list = pcp->p_hprev;
1349 ASSERT(!pcp->p_active);
1350 (void) (*pcp->p_callback)(pcp->p_htag0, pcp->p_addr, pcp->p_len,
1351 pcp->p_pp, pcp->p_write ? S_WRITE : S_READ, 0);
1352 npages += btop(pcp->p_len);
1353 kmem_cache_free(seg_pkmcache, pcp);
1355 mutex_enter(&seg_pmem_mtx);
1356 ASSERT(seg_plocked >= npages);
1357 seg_plocked -= npages;
1358 if (!IS_PFLAGS_WIRED(flags)) {
1359 ASSERT(seg_plocked_window >= npages);
1360 seg_plocked_window -= npages;
1362 mutex_exit(&seg_pmem_mtx);
1365 static void seg_pinit_mem_config(void);
1368 * setup the pagelock cache
1370 static void
1371 seg_pinit(void)
1373 struct seg_phash *hp;
1374 ulong_t i;
1375 pgcnt_t physmegs;
1377 seg_plocked = 0;
1378 seg_plocked_window = 0;
1380 if (segpcache_enabled == 0) {
1381 seg_phashsize_win = 0;
1382 seg_phashsize_wired = 0;
1383 seg_pdisabled = 1;
1384 return;
1387 seg_pdisabled = 0;
1388 seg_pkmcache = kmem_cache_create("seg_pcache",
1389 sizeof (struct seg_pcache), 0, NULL, NULL, NULL, NULL, NULL, 0);
1390 if (segpcache_pcp_maxage_ticks <= 0) {
1391 segpcache_pcp_maxage_ticks = segpcache_pcp_maxage_sec * hz;
1393 seg_pmax_pcpage = segpcache_pcp_maxage_ticks;
1394 seg_pathr_empty_ahb = 0;
1395 seg_pathr_full_ahb = 0;
1396 seg_pshrink_shift = segpcache_shrink_shift;
1397 seg_pmaxapurge_npages = btop(segpcache_maxapurge_bytes);
1399 mutex_init(&seg_pcache_mtx, NULL, MUTEX_DEFAULT, NULL);
1400 mutex_init(&seg_pmem_mtx, NULL, MUTEX_DEFAULT, NULL);
1401 mutex_init(&seg_pasync_mtx, NULL, MUTEX_DEFAULT, NULL);
1402 cv_init(&seg_pasync_cv, NULL, CV_DEFAULT, NULL);
1404 physmegs = physmem >> (20 - PAGESHIFT);
1407 * If segpcache_hashsize_win was not set in /etc/system or it has
1408 * absurd value set it to a default.
1410 if (segpcache_hashsize_win == 0 || segpcache_hashsize_win > physmem) {
1412 * Create one bucket per 32K (or at least per 8 pages) of
1413 * available memory.
1415 pgcnt_t pages_per_bucket = MAX(btop(32 * 1024), 8);
1416 segpcache_hashsize_win = MAX(1024, physmem / pages_per_bucket);
1418 if (!ISP2(segpcache_hashsize_win)) {
1419 ulong_t rndfac = ~(1UL <<
1420 (highbit(segpcache_hashsize_win) - 1));
1421 rndfac &= segpcache_hashsize_win;
1422 segpcache_hashsize_win += rndfac;
1423 segpcache_hashsize_win = 1 <<
1424 (highbit(segpcache_hashsize_win) - 1);
1426 seg_phashsize_win = segpcache_hashsize_win;
1427 seg_phashtab_win = kmem_zalloc(
1428 seg_phashsize_win * sizeof (struct seg_phash),
1429 KM_SLEEP);
1430 for (i = 0; i < seg_phashsize_win; i++) {
1431 hp = &seg_phashtab_win[i];
1432 hp->p_hnext = (struct seg_pcache *)hp;
1433 hp->p_hprev = (struct seg_pcache *)hp;
1434 mutex_init(&hp->p_hmutex, NULL, MUTEX_DEFAULT, NULL);
1437 seg_pahcur = 0;
1438 seg_pathr_on = 0;
1439 seg_pahhead[0].p_lnext = &seg_pahhead[0];
1440 seg_pahhead[0].p_lprev = &seg_pahhead[0];
1441 seg_pahhead[1].p_lnext = &seg_pahhead[1];
1442 seg_pahhead[1].p_lprev = &seg_pahhead[1];
1445 * If segpcache_hashsize_wired was not set in /etc/system or it has
1446 * absurd value set it to a default.
1448 if (segpcache_hashsize_wired == 0 ||
1449 segpcache_hashsize_wired > physmem / 4) {
1451 * Choose segpcache_hashsize_wired based on physmem.
1452 * Create a bucket per 128K bytes upto 256K buckets.
1454 if (physmegs < 20 * 1024) {
1455 segpcache_hashsize_wired = MAX(1024, physmegs << 3);
1456 } else {
1457 segpcache_hashsize_wired = 256 * 1024;
1460 if (!ISP2(segpcache_hashsize_wired)) {
1461 segpcache_hashsize_wired = 1 <<
1462 highbit(segpcache_hashsize_wired);
1464 seg_phashsize_wired = segpcache_hashsize_wired;
1465 seg_phashtab_wired = kmem_zalloc(
1466 seg_phashsize_wired * sizeof (struct seg_phash_wired), KM_SLEEP);
1467 for (i = 0; i < seg_phashsize_wired; i++) {
1468 hp = (struct seg_phash *)&seg_phashtab_wired[i];
1469 hp->p_hnext = (struct seg_pcache *)hp;
1470 hp->p_hprev = (struct seg_pcache *)hp;
1471 mutex_init(&hp->p_hmutex, NULL, MUTEX_DEFAULT, NULL);
1474 if (segpcache_maxwindow == 0) {
1475 if (physmegs < 64) {
1476 /* 3% of memory */
1477 segpcache_maxwindow = availrmem >> 5;
1478 } else if (physmegs < 512) {
1479 /* 12% of memory */
1480 segpcache_maxwindow = availrmem >> 3;
1481 } else if (physmegs < 1024) {
1482 /* 25% of memory */
1483 segpcache_maxwindow = availrmem >> 2;
1484 } else if (physmegs < 2048) {
1485 /* 50% of memory */
1486 segpcache_maxwindow = availrmem >> 1;
1487 } else {
1488 /* no limit */
1489 segpcache_maxwindow = (pgcnt_t)-1;
1492 seg_pmaxwindow = segpcache_maxwindow;
1493 seg_pinit_mem_config();
1497 * called by pageout if memory is low
1499 void
1500 seg_preap(void)
1503 * if the cache is off or empty, return
1505 if (seg_plocked_window == 0) {
1506 return;
1508 ASSERT(seg_phashsize_win != 0);
1511 * If somebody is already purging pcache
1512 * just return.
1514 if (seg_pdisabled) {
1515 return;
1518 cv_signal(&seg_pasync_cv);
1522 * run as a backgroud thread and reclaim pagelock
1523 * pages which have not been used recently
1525 void
1526 seg_pasync_thread(void)
1528 callb_cpr_t cpr_info;
1530 if (seg_phashsize_win == 0) {
1531 thread_exit();
1532 /*NOTREACHED*/
1535 seg_pasync_thr = curthread;
1537 CALLB_CPR_INIT(&cpr_info, &seg_pasync_mtx,
1538 callb_generic_cpr, "seg_pasync");
1540 if (segpcache_reap_ticks <= 0) {
1541 segpcache_reap_ticks = segpcache_reap_sec * hz;
1544 mutex_enter(&seg_pasync_mtx);
1545 for (;;) {
1546 CALLB_CPR_SAFE_BEGIN(&cpr_info);
1547 (void) cv_reltimedwait(&seg_pasync_cv, &seg_pasync_mtx,
1548 segpcache_reap_ticks, TR_CLOCK_TICK);
1549 CALLB_CPR_SAFE_END(&cpr_info, &seg_pasync_mtx);
1550 if (seg_pdisabled == 0) {
1551 seg_ppurge_async(0);
1556 static struct kmem_cache *seg_cache;
1559 * Initialize segment management data structures.
1561 void
1562 seg_init(void)
1564 kstat_t *ksp;
1566 seg_cache = kmem_cache_create("seg_cache", sizeof (struct seg),
1567 0, NULL, NULL, NULL, NULL, NULL, 0);
1569 ksp = kstat_create("unix", 0, "segadvstat", "vm", KSTAT_TYPE_NAMED,
1570 segadvstat_ndata, KSTAT_FLAG_VIRTUAL);
1571 if (ksp) {
1572 ksp->ks_data = (void *)segadvstat_ptr;
1573 kstat_install(ksp);
1576 seg_pinit();
1580 * Allocate a segment to cover [base, base+size]
1581 * and attach it to the specified address space.
1583 struct seg *
1584 seg_alloc(struct as *as, caddr_t base, size_t size)
1586 struct seg *new;
1587 caddr_t segbase;
1588 size_t segsize;
1590 segbase = (caddr_t)((uintptr_t)base & (uintptr_t)PAGEMASK);
1591 segsize = (((uintptr_t)(base + size) + PAGEOFFSET) & PAGEMASK) -
1592 (uintptr_t)segbase;
1594 if (!valid_va_range(&segbase, &segsize, segsize, AH_LO))
1595 return (NULL); /* bad virtual addr range */
1597 if (as != &kas &&
1598 valid_usr_range(segbase, segsize, 0, as,
1599 as->a_userlimit) != RANGE_OKAY)
1600 return (NULL); /* bad virtual addr range */
1602 new = kmem_cache_alloc(seg_cache, KM_SLEEP);
1603 new->s_ops = NULL;
1604 new->s_data = NULL;
1605 new->s_szc = 0;
1606 new->s_flags = 0;
1607 mutex_init(&new->s_pmtx, NULL, MUTEX_DEFAULT, NULL);
1608 new->s_phead.p_lnext = &new->s_phead;
1609 new->s_phead.p_lprev = &new->s_phead;
1610 if (seg_attach(as, segbase, segsize, new) < 0) {
1611 kmem_cache_free(seg_cache, new);
1612 return (NULL);
1614 /* caller must fill in ops, data */
1615 return (new);
1619 * Attach a segment to the address space. Used by seg_alloc()
1620 * and for kernel startup to attach to static segments.
1623 seg_attach(struct as *as, caddr_t base, size_t size, struct seg *seg)
1625 seg->s_as = as;
1626 seg->s_base = base;
1627 seg->s_size = size;
1630 * as_addseg() will add the segment at the appropraite point
1631 * in the list. It will return -1 if there is overlap with
1632 * an already existing segment.
1634 return (as_addseg(as, seg));
1638 * Unmap a segment and free it from its associated address space.
1639 * This should be called by anybody who's finished with a whole segment's
1640 * mapping. Just calls segop_unmap() on the whole mapping . It is the
1641 * responsibility of the segment driver to unlink the the segment
1642 * from the address space, and to free public and private data structures
1643 * associated with the segment. (This is typically done by a call to
1644 * seg_free()).
1646 void
1647 seg_unmap(struct seg *seg)
1649 #ifdef DEBUG
1650 int ret;
1651 #endif /* DEBUG */
1653 ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as));
1655 /* Shouldn't have called seg_unmap if mapping isn't yet established */
1656 ASSERT(seg->s_data != NULL);
1658 /* Unmap the whole mapping */
1659 #ifdef DEBUG
1660 ret = segop_unmap(seg, seg->s_base, seg->s_size);
1661 ASSERT(ret == 0);
1662 #else
1663 (void) segop_unmap(seg, seg->s_base, seg->s_size);
1664 #endif /* DEBUG */
1668 * Free the segment from its associated as. This should only be called
1669 * if a mapping to the segment has not yet been established (e.g., if
1670 * an error occurs in the middle of doing an as_map when the segment
1671 * has already been partially set up) or if it has already been deleted
1672 * (e.g., from a segment driver unmap routine if the unmap applies to the
1673 * entire segment). If the mapping is currently set up then seg_unmap() should
1674 * be called instead.
1676 void
1677 seg_free(struct seg *seg)
1679 register struct as *as = seg->s_as;
1680 struct seg *tseg = as_removeseg(as, seg);
1682 ASSERT(tseg == seg);
1685 * If the segment private data field is NULL,
1686 * then segment driver is not attached yet.
1688 if (seg->s_data != NULL)
1689 segop_free(seg);
1691 mutex_destroy(&seg->s_pmtx);
1692 ASSERT(seg->s_phead.p_lnext == &seg->s_phead);
1693 ASSERT(seg->s_phead.p_lprev == &seg->s_phead);
1694 kmem_cache_free(seg_cache, seg);
1697 /*ARGSUSED*/
1698 static void
1699 seg_p_mem_config_post_add(
1700 void *arg,
1701 pgcnt_t delta_pages)
1703 /* Nothing to do. */
1706 void
1707 seg_p_enable(void)
1709 mutex_enter(&seg_pcache_mtx);
1710 ASSERT(seg_pdisabled != 0);
1711 seg_pdisabled--;
1712 mutex_exit(&seg_pcache_mtx);
1716 * seg_p_disable - disables seg_pcache, and then attempts to empty the
1717 * cache.
1718 * Returns SEGP_SUCCESS if the cache was successfully emptied, or
1719 * SEGP_FAIL if the cache could not be emptied.
1722 seg_p_disable(void)
1724 pgcnt_t old_plocked;
1725 int stall_count = 0;
1727 mutex_enter(&seg_pcache_mtx);
1728 seg_pdisabled++;
1729 ASSERT(seg_pdisabled != 0);
1730 mutex_exit(&seg_pcache_mtx);
1733 * Attempt to empty the cache. Terminate if seg_plocked does not
1734 * diminish with SEGP_STALL_THRESHOLD consecutive attempts.
1736 while (seg_plocked != 0) {
1737 ASSERT(seg_phashsize_win != 0);
1738 old_plocked = seg_plocked;
1739 seg_ppurge_async(1);
1740 if (seg_plocked == old_plocked) {
1741 if (stall_count++ > SEGP_STALL_THRESHOLD) {
1742 return (SEGP_FAIL);
1744 } else
1745 stall_count = 0;
1746 if (seg_plocked != 0)
1747 delay(hz/SEGP_PREDEL_DELAY_FACTOR);
1749 return (SEGP_SUCCESS);
1753 * Attempt to purge seg_pcache. May need to return before this has
1754 * completed to allow other pre_del callbacks to unlock pages. This is
1755 * ok because:
1756 * 1) The seg_pdisabled flag has been set so at least we won't
1757 * cache anymore locks and the locks we couldn't purge
1758 * will not be held if they do get released by a subsequent
1759 * pre-delete callback.
1761 * 2) The rest of the memory delete thread processing does not
1762 * depend on the changes made in this pre-delete callback. No
1763 * panics will result, the worst that will happen is that the
1764 * DR code will timeout and cancel the delete.
1766 /*ARGSUSED*/
1767 static int
1768 seg_p_mem_config_pre_del(
1769 void *arg,
1770 pgcnt_t delta_pages)
1772 if (seg_phashsize_win == 0) {
1773 return (0);
1775 if (seg_p_disable() != SEGP_SUCCESS)
1776 cmn_err(CE_NOTE,
1777 "!Pre-delete couldn't purge"" pagelock cache - continuing");
1778 return (0);
1781 /*ARGSUSED*/
1782 static void
1783 seg_p_mem_config_post_del(
1784 void *arg,
1785 pgcnt_t delta_pages,
1786 int cancelled)
1788 if (seg_phashsize_win == 0) {
1789 return;
1791 seg_p_enable();
1794 static kphysm_setup_vector_t seg_p_mem_config_vec = {
1795 KPHYSM_SETUP_VECTOR_VERSION,
1796 seg_p_mem_config_post_add,
1797 seg_p_mem_config_pre_del,
1798 seg_p_mem_config_post_del,
1801 static void
1802 seg_pinit_mem_config(void)
1804 int ret;
1806 ret = kphysm_setup_func_register(&seg_p_mem_config_vec, NULL);
1808 * Want to catch this in the debug kernel. At run time, if the
1809 * callbacks don't get run all will be OK as the disable just makes
1810 * it more likely that the pages can be collected.
1812 ASSERT(ret == 0);
1816 * Verify that segment is not a shared anonymous segment which reserves
1817 * swap. zone.max-swap accounting (zone->zone_max_swap) cannot be transfered
1818 * from one zone to another if any segments are shared. This is because the
1819 * last process to exit will credit the swap reservation. This could lead
1820 * to the swap being reserved by one zone, and credited to another.
1822 boolean_t
1823 seg_can_change_zones(struct seg *seg)
1825 struct segvn_data *svd;
1827 if (seg->s_ops == &segspt_shmops)
1828 return (B_FALSE);
1830 if (seg->s_ops == &segvn_ops) {
1831 svd = (struct segvn_data *)seg->s_data;
1832 if (svd->type == MAP_SHARED &&
1833 svd->amp != NULL &&
1834 svd->amp->swresv > 0)
1835 return (B_FALSE);
1837 return (B_TRUE);
1841 * Return swap reserved by a segment backing a private mapping.
1843 size_t
1844 seg_swresv(struct seg *seg)
1846 struct segvn_data *svd;
1847 size_t swap = 0;
1849 if (seg->s_ops == &segvn_ops) {
1850 svd = (struct segvn_data *)seg->s_data;
1851 if (svd->type == MAP_PRIVATE && svd->swresv > 0)
1852 swap = svd->swresv;
1854 return (swap);
1858 * segop wrappers
1861 segop_dup(struct seg *seg, struct seg *new)
1863 return (seg->s_ops->dup(seg, new));
1867 segop_unmap(struct seg *seg, caddr_t addr, size_t len)
1869 return (seg->s_ops->unmap(seg, addr, len));
1872 void
1873 segop_free(struct seg *seg)
1875 seg->s_ops->free(seg);
1878 faultcode_t
1879 segop_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
1880 enum fault_type type, enum seg_rw rw)
1882 return (seg->s_ops->fault(hat, seg, addr, len, type, rw));
1885 faultcode_t
1886 segop_faulta(struct seg *seg, caddr_t addr)
1888 return (seg->s_ops->faulta(seg, addr));
1892 segop_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1894 return (seg->s_ops->setprot(seg, addr, len, prot));
1898 segop_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1900 return (seg->s_ops->checkprot(seg, addr, len, prot));
1904 segop_kluster(struct seg *seg, caddr_t addr, ssize_t d)
1906 return (seg->s_ops->kluster(seg, addr, d));
1910 segop_sync(struct seg *seg, caddr_t addr, size_t len, int atr, uint_t f)
1912 return (seg->s_ops->sync(seg, addr, len, atr, f));
1915 size_t
1916 segop_incore(struct seg *seg, caddr_t addr, size_t len, char *v)
1918 return (seg->s_ops->incore(seg, addr, len, v));
1922 segop_lockop(struct seg *seg, caddr_t addr, size_t len, int atr, int op,
1923 ulong_t *b, size_t p)
1925 return (seg->s_ops->lockop(seg, addr, len, atr, op, b, p));
1929 segop_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *p)
1931 return (seg->s_ops->getprot(seg, addr, len, p));
1934 uoff_t
1935 segop_getoffset(struct seg *seg, caddr_t addr)
1937 return (seg->s_ops->getoffset(seg, addr));
1941 segop_gettype(struct seg *seg, caddr_t addr)
1943 return (seg->s_ops->gettype(seg, addr));
1947 segop_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
1949 return (seg->s_ops->getvp(seg, addr, vpp));
1953 segop_advise(struct seg *seg, caddr_t addr, size_t len, uint_t b)
1955 return (seg->s_ops->advise(seg, addr, len, b));
1958 void
1959 segop_dump(struct seg *seg)
1961 if (seg->s_ops->dump == NULL)
1962 return;
1964 seg->s_ops->dump(seg);
1968 segop_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***page,
1969 enum lock_type type, enum seg_rw rw)
1971 if (seg->s_ops->pagelock == NULL)
1972 return (ENOTSUP);
1974 return (seg->s_ops->pagelock(seg, addr, len, page, type, rw));
1978 segop_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
1980 if (seg->s_ops->setpagesize == NULL)
1981 return (ENOTSUP);
1983 return (seg->s_ops->setpagesize(seg, addr, len, szc));
1987 segop_getmemid(struct seg *seg, caddr_t addr, memid_t *mp)
1989 if (seg->s_ops->getmemid == NULL)
1990 return (ENODEV);
1992 return (seg->s_ops->getmemid(seg, addr, mp));
1995 struct lgrp_mem_policy_info *
1996 segop_getpolicy(struct seg *seg, caddr_t addr)
1998 if (seg->s_ops->getpolicy == NULL)
1999 return (NULL);
2001 return (seg->s_ops->getpolicy(seg, addr));
2005 segop_capable(struct seg *seg, segcapability_t cap)
2007 if (seg->s_ops->capable == NULL)
2008 return (0);
2010 return (seg->s_ops->capable(seg, cap));
2014 segop_inherit(struct seg *seg, caddr_t addr, size_t len, uint_t op)
2016 if (seg->s_ops->inherit == NULL)
2017 return (ENOTSUP);
2019 return (seg->s_ops->inherit(seg, addr, len, op));