4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
30 #pragma weak __asin = asin
36 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37 * we approximate asin(x) on [0,0.5] by
38 * asin(x) = x + x*x^2*R(x^2)
40 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
41 * and its remez error is bounded by
42 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
45 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
46 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
48 * asin(x) = pi/2 - 2*(s+s*z*R(z))
49 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
50 * For x<=0.98, let pio4_hi = pio2_hi/2, then
52 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
54 * asin(x) = pi/2 - 2*(s+s*z*R(z))
55 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
56 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
59 * if x is NaN, return x itself;
60 * if |x|>1, return NaN with invalid signal.
65 #include "libm_protos.h" /* _SVID_libm_error */
66 #include "libm_macros.h"
70 static const double xxx
[] = {
71 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
72 /* huge */ 1.000e+300,
73 /* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */
74 /* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */
75 /* pio4_hi */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
76 /* coefficient for R(x^2) */
77 /* pS0 */ 1.66666666666666657415e-01, /* 3FC55555, 55555555 */
78 /* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */
79 /* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */
80 /* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */
81 /* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */
82 /* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */
83 /* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */
84 /* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */
85 /* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */
86 /* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */
90 #define pio2_hi xxx[2]
91 #define pio2_lo xxx[3]
92 #define pio4_hi xxx[4]
107 double t
, w
, p
, q
, c
, r
, s
;
110 hx
= ((int *) &x
)[HIWORD
];
111 ix
= hx
& 0x7fffffff;
112 if (ix
>= 0x3ff00000) { /* |x| >= 1 */
113 if (((ix
- 0x3ff00000) | ((int *) &x
)[LOWORD
]) == 0)
114 /* asin(1)=+-pi/2 with inexact */
115 return (x
* pio2_hi
+ x
* pio2_lo
);
117 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
118 return (ix
>= 0x7ff80000 ? x
: (x
- x
) / (x
- x
));
119 /* assumes sparc-like QNaN */
121 return (x
- x
) / (x
- x
); /* asin(|x|>1) is NaN */
124 return (_SVID_libm_err(x
, x
, 2));
125 } else if (ix
< 0x3fe00000) { /* |x| < 0.5 */
126 if (ix
< 0x3e400000) { /* if |x| < 2**-27 */
127 if ((i
= (int) x
) == 0)
128 /* return x with inexact if x != 0 */
132 p
= t
* (pS0
+ t
* (pS1
+ t
* (pS2
+ t
* (pS3
+
133 t
* (pS4
+ t
* pS5
)))));
134 q
= one
+ t
* (qS1
+ t
* (qS2
+ t
* (qS3
+ t
* qS4
)));
141 p
= t
* (pS0
+ t
* (pS1
+ t
* (pS2
+ t
* (pS3
+ t
* (pS4
+ t
* pS5
)))));
142 q
= one
+ t
* (qS1
+ t
* (qS2
+ t
* (qS3
+ t
* qS4
)));
144 if (ix
>= 0x3FEF3333) { /* if |x| > 0.975 */
146 t
= pio2_hi
- (2.0 * (s
+ s
* w
) - pio2_lo
);
149 ((int *) &w
)[LOWORD
] = 0;
150 c
= (t
- w
* w
) / (s
+ w
);
152 p
= 2.0 * s
* r
- (pio2_lo
- 2.0 * c
);
153 q
= pio4_hi
- 2.0 * w
;
154 t
= pio4_hi
- (p
- q
);
156 return (hx
> 0 ? t
: -t
);