4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
29 #pragma weak __cos = cos
34 * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
36 * Algorithm: see sincos.c
41 static const double sc
[] = {
45 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
47 /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567,
48 /* PP2 = */ .008333315652997472323564894248466758248475374977974017927,
50 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
51 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
54 /* P1 = */ -1.666666666666629669805215138920301589656e-0001,
55 /* P2 = */ 8.333333332390951295683993455280336376663e-0003,
56 /* P3 = */ -1.984126237997976692791551778230098403960e-0004,
57 /* P4 = */ 2.753403624854277237649987622848330351110e-0006,
59 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
61 /* QQ1 = */ -0.4999999999975492381842911981948418542742729,
62 /* QQ2 = */ 0.041666542904352059294545209158357640398771740,
64 /* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
65 /* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
66 /* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
67 /* PIO2_H = */ 1.570796326794896557999,
68 /* PIO2_L = */ 6.123233995736765886130e-17,
69 /* PIO2_L0 = */ 6.123233995727922165564e-17,
70 /* PIO2_L1 = */ 8.843720566135701120255e-29,
71 /* PI3O2_H = */ 4.712388980384689673997,
72 /* PI3O2_L = */ 1.836970198721029765839e-16,
73 /* PI3O2_L0 = */ 1.836970198720396133587e-16,
74 /* PI3O2_L1 = */ 6.336322524749201142226e-29,
75 /* PI5O2_H = */ 7.853981633974482789995,
76 /* PI5O2_L = */ 3.061616997868382943065e-16,
77 /* PI5O2_L0 = */ 3.061616997861941598865e-16,
78 /* PI5O2_L1 = */ 6.441344200433640781982e-28,
97 #define PIO2_L0 sc[16]
98 #define PIO2_L1 sc[17]
99 #define PI3O2_H sc[18]
100 #define PI3O2_L sc[19]
101 #define PI3O2_L0 sc[20]
102 #define PI3O2_L1 sc[21]
103 #define PI5O2_H sc[22]
104 #define PI5O2_L sc[23]
105 #define PI5O2_L0 sc[24]
106 #define PI5O2_L1 sc[25]
108 extern const double _TBL_sincos
[], _TBL_sincosx
[];
112 double z
, y
[2], w
, s
, v
, p
, q
;
113 int i
, j
, n
, hx
, ix
, lx
;
115 hx
= ((int *)&x
)[HIWORD
];
116 lx
= ((int *)&x
)[LOWORD
];
117 ix
= hx
& ~0x80000000;
119 if (ix
<= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
120 if (ix
< 0x3e400000) { /* |x| < 2**-27 */
125 if (ix
< 0x3f800000) /* |x| < 0.008 */
126 w
= z
* (QQ1
+ z
* QQ2
);
128 w
= z
* ((Q1
+ z
* Q2
) + (z
* z
) * (Q3
+ z
* Q4
));
132 /* for 0.164062500 < x < M, */
134 if (n
< 0x402) { /* x < 8 */
135 i
= (((ix
>> 12) & 0xff) | 0x100) >> (0x401 - n
);
138 v
= x
- _TBL_sincosx
[j
];
139 if (((j
- 81) ^ (j
- 101)) < 0) {
140 /* near pi/2, cos(pi/2-x)=sin(x) */
144 if ((i
| ((lx
- 0x54442D00) & 0xffffff00)) == 0) {
145 /* very close to pi/2 */
147 return (x
+ PIO2_L1
);
150 if (((ix
- 0x3ff92000) >> 12) == 0) {
152 w
= PIO2_L
+ (z
* x
) * (PP1
+ z
* PP2
);
154 w
= PIO2_L
+ (z
* x
) * ((P1
+ z
* P2
) +
155 (z
* z
) * (P3
+ z
* P4
));
160 if (((j
- 282) ^ (j
- 302)) < 0) {
161 /* near 3/2pi, cos(x-3/2pi)=sin(x) */
165 if ((i
| ((lx
- 0x7f332100) & 0xffffff00)) == 0) {
166 /* very close to 3/2pi */
168 return (x
- PI3O2_L1
);
171 if (((ix
- 0x4012D800) >> 9) == 0) {
172 /* |x-3/2pi|<2**-8 */
173 w
= (z
* x
) * (PP1
+ z
* PP2
) - PI3O2_L
;
175 w
= (z
* x
) * ((P1
+ z
* P2
) + (z
* z
)
176 * (P3
+ z
* P4
)) - PI3O2_L
;
180 if (((j
- 483) ^ (j
- 503)) < 0) {
181 /* near 5pi/2, cos(5pi/2-x)=sin(x) */
185 if ((i
| ((lx
- 0x29553800) & 0xffffff00)) == 0) {
186 /* very close to pi/2 */
188 return (x
+ PI5O2_L1
);
191 if (((ix
- 0x401F6A7A) >> 7) == 0) {
193 w
= PI5O2_L
+ (z
* x
) * (PP1
+ z
* PP2
);
195 w
= PI5O2_L
+ (z
* x
) * ((P1
+ z
* P2
) +
196 (z
* z
) * (P3
+ z
* P4
));
202 z
= _TBL_sincos
[j
+1];
203 p
= v
+ (v
* s
) * (PP1
+ s
* PP2
);
204 q
= s
* (QQ1
+ s
* QQ2
);
205 return (z
- (w
* p
- z
* q
));
208 if (ix
>= 0x7ff00000) /* cos(Inf or NaN) is NaN */
211 /* argument reduction needed */
212 n
= __rem_pio2(x
, y
);
215 return (__k_cos(y
[0], y
[1]));
217 return (-__k_sin(y
[0], y
[1]));
219 return (-__k_cos(y
[0], y
[1]));
221 return (__k_sin(y
[0], y
[1]));