Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / lib / libproc / amd64 / Pisadep.c
blob85791ed52e098d1335dc8aa2244386379d16e315
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/stack.h>
27 #include <sys/regset.h>
28 #include <sys/frame.h>
29 #include <sys/sysmacros.h>
30 #include <sys/trap.h>
31 #include <sys/machelf.h>
33 #include <stdlib.h>
34 #include <unistd.h>
35 #include <sys/types.h>
36 #include <errno.h>
37 #include <string.h>
39 #include <saveargs.h>
40 #include "Pcontrol.h"
41 #include "Pstack.h"
43 static uchar_t int_syscall_instr[] = { 0xCD, T_SYSCALLINT };
44 static uchar_t syscall_instr[] = { 0x0f, 0x05 };
46 const char *
47 Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr)
49 map_info_t *mp = Paddr2mptr(P, pltaddr);
50 file_info_t *fp;
51 size_t i;
52 uintptr_t r_addr;
54 if (mp == NULL || (fp = mp->map_file) == NULL ||
55 fp->file_plt_base == 0 ||
56 pltaddr - fp->file_plt_base >= fp->file_plt_size) {
57 errno = EINVAL;
58 return (NULL);
61 i = (pltaddr - fp->file_plt_base) / M_PLT_ENTSIZE - M_PLT_XNumber;
63 if (P->status.pr_dmodel == PR_MODEL_LP64) {
64 Elf64_Rela r;
66 r_addr = fp->file_jmp_rel + i * sizeof (r);
68 if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
69 (i = ELF64_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
70 Elf_Data *data = fp->file_dynsym.sym_data_pri;
71 Elf64_Sym *symp = &(((Elf64_Sym *)data->d_buf)[i]);
73 return (fp->file_dynsym.sym_strs + symp->st_name);
75 } else {
76 Elf32_Rel r;
78 r_addr = fp->file_jmp_rel + i * sizeof (r);
80 if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) &&
81 (i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) {
82 Elf_Data *data = fp->file_dynsym.sym_data_pri;
83 Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]);
85 return (fp->file_dynsym.sym_strs + symp->st_name);
89 return (NULL);
92 int
93 Pissyscall(struct ps_prochandle *P, uintptr_t addr)
95 uchar_t instr[16];
97 if (P->status.pr_dmodel == PR_MODEL_LP64) {
98 if (Pread(P, instr, sizeof (syscall_instr), addr) !=
99 sizeof (syscall_instr) ||
100 memcmp(instr, syscall_instr, sizeof (syscall_instr)) != 0)
101 return (0);
102 else
103 return (1);
106 if (Pread(P, instr, sizeof (int_syscall_instr), addr) !=
107 sizeof (int_syscall_instr))
108 return (0);
110 if (memcmp(instr, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
111 return (1);
113 return (0);
117 Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst)
119 int ret;
121 if (P->status.pr_dmodel == PR_MODEL_LP64) {
122 if (Pissyscall(P, addr - sizeof (syscall_instr))) {
123 if (dst)
124 *dst = addr - sizeof (syscall_instr);
125 return (1);
127 return (0);
130 if ((ret = Pissyscall(P, addr - sizeof (int_syscall_instr))) != 0) {
131 if (dst)
132 *dst = addr - sizeof (int_syscall_instr);
133 return (ret);
136 return (0);
140 Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen)
142 if (P->status.pr_dmodel == PR_MODEL_LP64) {
143 if (buflen >= sizeof (syscall_instr) &&
144 memcmp(buf, syscall_instr, sizeof (syscall_instr)) == 0)
145 return (1);
146 else
147 return (0);
150 if (buflen < sizeof (int_syscall_instr))
151 return (0);
153 if (memcmp(buf, int_syscall_instr, sizeof (int_syscall_instr)) == 0)
154 return (1);
156 return (0);
159 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */
162 * Given a return address, determine the likely number of arguments
163 * that were pushed on the stack prior to its execution. We do this by
164 * expecting that a typical call sequence consists of pushing arguments on
165 * the stack, executing a call instruction, and then performing an add
166 * on %esp to restore it to the value prior to pushing the arguments for
167 * the call. We attempt to detect such an add, and divide the addend
168 * by the size of a word to determine the number of pushed arguments.
170 * If we do not find such an add, this does not necessarily imply that the
171 * function took no arguments. It is not possible to reliably detect such a
172 * void function because hand-coded assembler does not always perform an add
173 * to %esp immediately after the "call" instruction (eg. _sys_call()).
174 * Because of this, we default to returning MIN(sz, TR_ARG_MAX) instead of 0
175 * in the absence of an add to %esp.
177 static ulong_t
178 argcount(struct ps_prochandle *P, uint32_t pc, ssize_t sz)
180 uchar_t instr[6];
181 ulong_t count, max;
183 max = MIN(sz / sizeof (uint32_t), TR_ARG_MAX);
186 * Read the instruction at the return location.
188 if (Pread(P, instr, sizeof (instr), (uintptr_t)pc) != sizeof (instr))
189 return (max);
191 if (instr[1] != 0xc4)
192 return (max);
194 switch (instr[0]) {
195 case 0x81: /* count is a longword */
196 count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24);
197 break;
198 case 0x83: /* count is a byte */
199 count = instr[2];
200 break;
201 default:
202 return (max);
205 count /= sizeof (uint32_t);
206 return (MIN(count, max));
209 static void
210 ucontext_32_to_prgregs(const ucontext32_t *uc, prgregset_t dst)
212 const greg32_t *src = &uc->uc_mcontext.gregs[0];
214 dst[REG_DS] = (uint16_t)src[DS];
215 dst[REG_ES] = (uint16_t)src[ES];
217 dst[REG_GS] = (uint16_t)src[GS];
218 dst[REG_FS] = (uint16_t)src[FS];
219 dst[REG_SS] = (uint16_t)src[SS];
220 dst[REG_RSP] = (uint32_t)src[UESP];
221 dst[REG_RFL] = src[EFL];
222 dst[REG_CS] = (uint16_t)src[CS];
223 dst[REG_RIP] = (uint32_t)src[EIP];
224 dst[REG_ERR] = (uint32_t)src[ERR];
225 dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
226 dst[REG_RAX] = (uint32_t)src[EAX];
227 dst[REG_RCX] = (uint32_t)src[ECX];
228 dst[REG_RDX] = (uint32_t)src[EDX];
229 dst[REG_RBX] = (uint32_t)src[EBX];
230 dst[REG_RBP] = (uint32_t)src[EBP];
231 dst[REG_RSI] = (uint32_t)src[ESI];
232 dst[REG_RDI] = (uint32_t)src[EDI];
235 static int
236 Pstack_iter32(struct ps_prochandle *P, const prgregset_t regs,
237 proc_stack_f *func, void *arg)
239 prgreg_t *prevfp = NULL;
240 uint_t pfpsize = 0;
241 int nfp = 0;
242 struct {
243 prgreg32_t fp;
244 prgreg32_t pc;
245 prgreg32_t args[32];
246 } frame;
247 uint_t argc;
248 ssize_t sz;
249 prgregset_t gregs;
250 uint32_t fp, pfp, pc;
251 long args[32];
252 int rv;
253 int i;
256 * Type definition for a structure corresponding to an IA32
257 * signal frame. Refer to the comments in Pstack.c for more info
259 typedef struct {
260 prgreg32_t fp;
261 prgreg32_t pc;
262 int signo;
263 caddr32_t ucp;
264 caddr32_t sip;
265 } sf_t;
267 uclist_t ucl;
268 ucontext32_t uc;
269 uintptr_t uc_addr;
271 init_uclist(&ucl, P);
272 (void) memcpy(gregs, regs, sizeof (gregs));
274 fp = regs[R_FP];
275 pc = regs[R_PC];
277 while (fp != 0 || pc != 0) {
278 if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
279 break;
281 if (fp != 0 &&
282 (sz = Pread(P, &frame, sizeof (frame), (uintptr_t)fp)
283 >= (ssize_t)(2* sizeof (uint32_t)))) {
285 * One more trick for signal frames: the kernel sets
286 * the return pc of the signal frame to 0xffffffff on
287 * Intel IA32, so argcount won't work.
289 if (frame.pc != -1L) {
290 sz -= 2* sizeof (uint32_t);
291 argc = argcount(P, (uint32_t)frame.pc, sz);
292 } else
293 argc = 3; /* sighandler(signo, sip, ucp) */
294 } else {
295 (void) memset(&frame, 0, sizeof (frame));
296 argc = 0;
299 gregs[R_FP] = fp;
300 gregs[R_PC] = pc;
302 for (i = 0; i < argc; i++)
303 args[i] = (uint32_t)frame.args[i];
305 if ((rv = func(arg, gregs, argc, args)) != 0)
306 break;
309 * In order to allow iteration over java frames (which can have
310 * their own frame pointers), we allow the iterator to change
311 * the contents of gregs. If we detect a change, then we assume
312 * that the new values point to the next frame.
314 if (gregs[R_FP] != fp || gregs[R_PC] != pc) {
315 fp = gregs[R_FP];
316 pc = gregs[R_PC];
317 continue;
320 pfp = fp;
321 fp = frame.fp;
322 pc = frame.pc;
324 if (find_uclink(&ucl, pfp + sizeof (sf_t)))
325 uc_addr = pfp + sizeof (sf_t);
326 else
327 uc_addr = (uintptr_t)NULL;
329 if (uc_addr != (uintptr_t)NULL &&
330 Pread(P, &uc, sizeof (uc), uc_addr) == sizeof (uc)) {
331 ucontext_32_to_prgregs(&uc, gregs);
332 fp = gregs[R_FP];
333 pc = gregs[R_PC];
337 free(prevfp);
339 free_uclist(&ucl);
340 return (rv);
343 static void
344 ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst)
346 (void) memcpy(dst, src->uc_mcontext.gregs, sizeof (gregset_t));
350 * Read arguments from the frame indicated by regs into args, return the
351 * number of arguments successfully read
353 static int
354 read_args(struct ps_prochandle *P, uintptr_t fp, uintptr_t pc, prgreg_t *args,
355 size_t argsize)
357 GElf_Sym sym;
358 ctf_file_t *ctfp = NULL;
359 ctf_funcinfo_t finfo;
360 prsyminfo_t si = {0};
361 uint8_t ins[SAVEARGS_INSN_SEQ_LEN];
362 size_t insnsize;
363 int argc = 0;
364 int rettype = 0;
365 int start_index = 0;
366 int args_style = 0;
367 int i;
368 ctf_id_t args_types[5];
370 if (Pxlookup_by_addr(P, pc, NULL, 0, &sym, &si) != 0)
371 return (0);
373 if ((ctfp = Paddr_to_ctf(P, pc)) == NULL)
374 return (0);
376 if (ctf_func_info(ctfp, si.prs_id, &finfo) == CTF_ERR)
377 return (0);
379 argc = finfo.ctc_argc;
381 if (argc == 0)
382 return (0);
384 rettype = ctf_type_kind(ctfp, finfo.ctc_return);
387 * If the function returns a structure or union greater than 16 bytes
388 * in size %rdi contains the address in which to store the return
389 * value rather than for an argument.
391 if (((rettype == CTF_K_STRUCT) || (rettype == CTF_K_UNION)) &&
392 ctf_type_size(ctfp, finfo.ctc_return) > 16)
393 start_index = 1;
394 else
395 start_index = 0;
398 * If any of the first 5 arguments are a structure less than 16 bytes
399 * in size, it will be passed spread across two argument registers,
400 * and we will not cope.
402 if (ctf_func_args(ctfp, si.prs_id, 5, args_types) == CTF_ERR)
403 return (0);
405 for (i = 0; i < MIN(5, finfo.ctc_argc); i++) {
406 int t = ctf_type_kind(ctfp, args_types[i]);
408 if (((t == CTF_K_STRUCT) || (t == CTF_K_UNION)) &&
409 ctf_type_size(ctfp, args_types[i]) <= 16)
410 return (0);
414 * The number of instructions to search for argument saving is limited
415 * such that only instructions prior to %pc are considered and we
416 * never read arguments from a function where the saving code has not
417 * in fact yet executed.
419 insnsize = MIN(MIN(sym.st_size, SAVEARGS_INSN_SEQ_LEN),
420 pc - sym.st_value);
422 if (Pread(P, ins, insnsize, sym.st_value) != insnsize)
423 return (0);
425 if ((argc != 0) &&
426 ((args_style = saveargs_has_args(ins, insnsize, argc,
427 start_index)) != SAVEARGS_NO_ARGS)) {
428 int regargs = MIN((6 - start_index), argc);
429 size_t size = regargs * sizeof (long);
430 int i;
433 * If Studio pushed a structure return address as an argument,
434 * we need to read one more argument than actually exists (the
435 * addr) to make everything line up.
437 if (args_style == SAVEARGS_STRUCT_ARGS)
438 size += sizeof (long);
440 if (Pread(P, args, size, (fp - size)) != size)
441 return (0);
443 for (i = 0; i < (regargs / 2); i++) {
444 prgreg_t t = args[i];
446 args[i] = args[regargs - i - 1];
447 args[regargs - i - 1] = t;
450 if (argc > regargs) {
451 size = MIN((argc - regargs) * sizeof (long),
452 argsize - (regargs * sizeof (long)));
454 if (Pread(P, &args[regargs], size, fp +
455 (sizeof (uintptr_t) * 2)) != size)
456 return (6);
459 return (argc);
460 } else {
461 return (0);
466 Pstack_iter(struct ps_prochandle *P, const prgregset_t regs,
467 proc_stack_f *func, void *arg)
469 struct {
470 uintptr_t fp;
471 uintptr_t pc;
472 } frame;
474 uint_t pfpsize = 0;
475 prgreg_t *prevfp = NULL;
476 prgreg_t fp, pfp;
477 prgreg_t pc;
479 prgregset_t gregs;
480 int nfp = 0;
482 uclist_t ucl;
483 int rv = 0;
484 int argc;
486 uintptr_t uc_addr;
487 ucontext_t uc;
490 * Type definition for a structure corresponding to an IA32
491 * signal frame. Refer to the comments in Pstack.c for more info
493 typedef struct {
494 prgreg_t fp;
495 prgreg_t pc;
496 prgreg_t signo;
497 siginfo_t *sip;
498 } sigframe_t;
499 prgreg_t args[32] = {0};
501 if (P->status.pr_dmodel != PR_MODEL_LP64)
502 return (Pstack_iter32(P, regs, func, arg));
504 init_uclist(&ucl, P);
505 (void) memcpy(gregs, regs, sizeof (gregs));
507 fp = gregs[R_FP];
508 pc = gregs[R_PC];
510 while (fp != 0 || pc != 0) {
512 if (stack_loop(fp, &prevfp, &nfp, &pfpsize))
513 break;
515 if (fp != 0 &&
516 Pread(P, &frame, sizeof (frame), (uintptr_t)fp) ==
517 sizeof (frame)) {
518 if (frame.pc == -1) {
519 argc = 3;
520 args[2] = fp + sizeof (sigframe_t);
521 if (Pread(P, &args, 2 * sizeof (prgreg_t),
522 fp + 2 * sizeof (prgreg_t)) !=
523 2 * sizeof (prgreg_t))
524 argc = 0;
525 } else {
526 argc = read_args(P, fp, pc, args,
527 sizeof (args));
529 } else {
530 (void) memset(&frame, 0, sizeof (frame));
531 argc = 0;
534 gregs[R_FP] = fp;
535 gregs[R_PC] = pc;
537 if ((rv = func(arg, gregs, argc, args)) != 0)
538 break;
540 pfp = fp;
541 fp = frame.fp;
542 pc = frame.pc;
544 if (pc == -1 && find_uclink(&ucl, pfp + sizeof (sigframe_t))) {
545 uc_addr = pfp + sizeof (sigframe_t);
547 if (Pread(P, &uc, sizeof (uc), uc_addr)
548 == sizeof (uc)) {
549 ucontext_n_to_prgregs(&uc, gregs);
550 fp = gregs[R_FP];
551 pc = gregs[R_PC];
556 free(prevfp);
558 free_uclist(&ucl);
560 return (rv);
563 uintptr_t
564 Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp)
566 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
567 sp -= sizeof (int) * (nargs+2);
569 P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
570 P->status.pr_lwp.pr_reg[REG_RSP] = sp;
571 P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
572 } else {
573 int pusharg = (nargs > 6) ? nargs - 6: 0;
575 sp -= sizeof (int64_t) * (pusharg+2);
577 P->status.pr_lwp.pr_reg[REG_RAX] = sysindex;
578 P->status.pr_lwp.pr_reg[REG_RSP] = sp;
579 P->status.pr_lwp.pr_reg[REG_RIP] = P->sysaddr;
582 return (sp);
586 Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
587 uintptr_t ap)
589 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
590 int32_t arglist[MAXARGS+2];
591 int i;
592 argdes_t *adp;
594 for (i = 0, adp = argp; i < nargs; i++, adp++)
595 arglist[1 + i] = (int32_t)adp->arg_value;
597 arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
598 if (Pwrite(P, &arglist[0], sizeof (int) * (nargs+1),
599 (uintptr_t)ap) != sizeof (int) * (nargs+1))
600 return (-1);
601 } else {
602 int64_t arglist[MAXARGS+2];
603 int i;
604 argdes_t *adp;
605 int pusharg = (nargs > 6) ? nargs - 6: 0;
607 for (i = 0, adp = argp; i < nargs; i++, adp++) {
608 switch (i) {
609 case 0:
610 (void) Pputareg(P, REG_RDI, adp->arg_value);
611 break;
612 case 1:
613 (void) Pputareg(P, REG_RSI, adp->arg_value);
614 break;
615 case 2:
616 (void) Pputareg(P, REG_RDX, adp->arg_value);
617 break;
618 case 3:
619 (void) Pputareg(P, REG_RCX, adp->arg_value);
620 break;
621 case 4:
622 (void) Pputareg(P, REG_R8, adp->arg_value);
623 break;
624 case 5:
625 (void) Pputareg(P, REG_R9, adp->arg_value);
626 break;
627 default:
628 arglist[i - 5] = (uint64_t)adp->arg_value;
629 break;
633 arglist[0] = P->status.pr_lwp.pr_reg[REG_RIP];
635 if (Pwrite(P, &arglist[0],
636 sizeof (int64_t) * (pusharg + 1), ap) !=
637 sizeof (int64_t) * (pusharg + 1))
638 return (-1);
641 return (0);
645 Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp,
646 uintptr_t ap)
648 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
649 uint32_t arglist[MAXARGS + 2];
650 int i;
651 argdes_t *adp;
653 if (Pread(P, &arglist[0], sizeof (int) * (nargs+1),
654 (uintptr_t)ap) != sizeof (int) * (nargs+1))
655 return (-1);
657 for (i = 0, adp = argp; i < nargs; i++, adp++)
658 adp->arg_value = arglist[i];
659 } else {
660 int pusharg = (nargs > 6) ? nargs - 6: 0;
661 int64_t arglist[MAXARGS+2];
662 int i;
663 argdes_t *adp;
665 if (pusharg > 0 &&
666 Pread(P, &arglist[0], sizeof (int64_t) * (pusharg + 1),
667 ap) != sizeof (int64_t) * (pusharg + 1))
668 return (-1);
670 for (i = 0, adp = argp; i < nargs; i++, adp++) {
671 switch (i) {
672 case 0:
673 adp->arg_value =
674 P->status.pr_lwp.pr_reg[REG_RDI];
675 break;
676 case 1:
677 adp->arg_value =
678 P->status.pr_lwp.pr_reg[REG_RSI];
679 break;
680 case 2:
681 adp->arg_value =
682 P->status.pr_lwp.pr_reg[REG_RDX];
683 break;
684 case 3:
685 adp->arg_value =
686 P->status.pr_lwp.pr_reg[REG_RCX];
687 break;
688 case 4:
689 adp->arg_value =
690 P->status.pr_lwp.pr_reg[REG_R8];
691 break;
692 case 5:
693 adp->arg_value =
694 P->status.pr_lwp.pr_reg[REG_R9];
695 break;
696 default:
697 adp->arg_value = arglist[i - 6];
698 break;
702 return (0);
705 return (0);