Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / lib / libzfs / common / libzfs_import.c
blobccc1120cf531321390728d5a7b14ae1209e4b851
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2017 Nexenta Systems, Inc.
30 * Pool import support functions.
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
36 * pool guid -> toplevel vdev guid -> label txg
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
61 #include <sys/vdev_impl.h>
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
67 * Intermediate structures used to gather configuration information.
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
99 * Go through and fix up any path and/or devid information for the given vdev
100 * configuration.
102 static int
103 fix_paths(nvlist_t *nv, name_entry_t *names)
105 nvlist_t **child;
106 uint_t c, children;
107 uint64_t guid;
108 name_entry_t *ne, *best;
109 char *path, *devid;
110 int matched;
112 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
113 &child, &children) == 0) {
114 for (c = 0; c < children; c++)
115 if (fix_paths(child[c], names) != 0)
116 return (-1);
117 return (0);
121 * This is a leaf (file or disk) vdev. In either case, go through
122 * the name list and see if we find a matching guid. If so, replace
123 * the path and see if we can calculate a new devid.
125 * There may be multiple names associated with a particular guid, in
126 * which case we have overlapping slices or multiple paths to the same
127 * disk. If this is the case, then we want to pick the path that is
128 * the most similar to the original, where "most similar" is the number
129 * of matching characters starting from the end of the path. This will
130 * preserve slice numbers even if the disks have been reorganized, and
131 * will also catch preferred disk names if multiple paths exist.
133 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
134 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
135 path = NULL;
137 matched = 0;
138 best = NULL;
139 for (ne = names; ne != NULL; ne = ne->ne_next) {
140 if (ne->ne_guid == guid) {
141 const char *src, *dst;
142 int count;
144 if (path == NULL) {
145 best = ne;
146 break;
149 src = ne->ne_name + strlen(ne->ne_name) - 1;
150 dst = path + strlen(path) - 1;
151 for (count = 0; src >= ne->ne_name && dst >= path;
152 src--, dst--, count++)
153 if (*src != *dst)
154 break;
157 * At this point, 'count' is the number of characters
158 * matched from the end.
160 if (count > matched || best == NULL) {
161 best = ne;
162 matched = count;
167 if (best == NULL)
168 return (0);
170 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
171 return (-1);
173 if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
174 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
175 } else {
176 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
177 devid_str_free(devid);
178 return (-1);
180 devid_str_free(devid);
183 return (0);
187 * Add the given configuration to the list of known devices.
189 static int
190 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
191 nvlist_t *config)
193 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
194 pool_entry_t *pe;
195 vdev_entry_t *ve;
196 config_entry_t *ce;
197 name_entry_t *ne;
200 * If this is a hot spare not currently in use or level 2 cache
201 * device, add it to the list of names to translate, but don't do
202 * anything else.
204 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
205 &state) == 0 &&
206 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
207 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
208 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
209 return (-1);
211 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
212 free(ne);
213 return (-1);
216 ne->ne_guid = vdev_guid;
217 ne->ne_next = pl->names;
218 pl->names = ne;
220 return (0);
224 * If we have a valid config but cannot read any of these fields, then
225 * it means we have a half-initialized label. In vdev_label_init()
226 * we write a label with txg == 0 so that we can identify the device
227 * in case the user refers to the same disk later on. If we fail to
228 * create the pool, we'll be left with a label in this state
229 * which should not be considered part of a valid pool.
231 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
232 &pool_guid) != 0 ||
233 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
234 &vdev_guid) != 0 ||
235 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
236 &top_guid) != 0 ||
237 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
238 &txg) != 0 || txg == 0) {
239 return (0);
243 * First, see if we know about this pool. If not, then add it to the
244 * list of known pools.
246 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
247 if (pe->pe_guid == pool_guid)
248 break;
251 if (pe == NULL) {
252 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
253 return (-1);
255 pe->pe_guid = pool_guid;
256 pe->pe_next = pl->pools;
257 pl->pools = pe;
261 * Second, see if we know about this toplevel vdev. Add it if its
262 * missing.
264 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
265 if (ve->ve_guid == top_guid)
266 break;
269 if (ve == NULL) {
270 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
271 return (-1);
273 ve->ve_guid = top_guid;
274 ve->ve_next = pe->pe_vdevs;
275 pe->pe_vdevs = ve;
279 * Third, see if we have a config with a matching transaction group. If
280 * so, then we do nothing. Otherwise, add it to the list of known
281 * configs.
283 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
284 if (ce->ce_txg == txg)
285 break;
288 if (ce == NULL) {
289 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
290 return (-1);
292 ce->ce_txg = txg;
293 ce->ce_config = fnvlist_dup(config);
294 ce->ce_next = ve->ve_configs;
295 ve->ve_configs = ce;
299 * At this point we've successfully added our config to the list of
300 * known configs. The last thing to do is add the vdev guid -> path
301 * mappings so that we can fix up the configuration as necessary before
302 * doing the import.
304 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
305 return (-1);
307 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
308 free(ne);
309 return (-1);
312 ne->ne_guid = vdev_guid;
313 ne->ne_next = pl->names;
314 pl->names = ne;
316 return (0);
320 * Returns true if the named pool matches the given GUID.
322 static int
323 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
324 boolean_t *isactive)
326 zpool_handle_t *zhp;
327 uint64_t theguid;
329 if (zpool_open_silent(hdl, name, &zhp) != 0)
330 return (-1);
332 if (zhp == NULL) {
333 *isactive = B_FALSE;
334 return (0);
337 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
338 &theguid) == 0);
340 zpool_close(zhp);
342 *isactive = (theguid == guid);
343 return (0);
346 static nvlist_t *
347 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
349 nvlist_t *nvl;
350 zfs_cmd_t zc = { 0 };
351 int err, dstbuf_size;
353 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
354 return (NULL);
356 dstbuf_size = MAX(CONFIG_BUF_MINSIZE, zc.zc_nvlist_conf_size * 4);
358 if (zcmd_alloc_dst_nvlist(hdl, &zc, dstbuf_size) != 0) {
359 zcmd_free_nvlists(&zc);
360 return (NULL);
363 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
364 &zc)) != 0 && errno == ENOMEM) {
365 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
366 zcmd_free_nvlists(&zc);
367 return (NULL);
371 if (err) {
372 zcmd_free_nvlists(&zc);
373 return (NULL);
376 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
377 zcmd_free_nvlists(&zc);
378 return (NULL);
381 zcmd_free_nvlists(&zc);
382 return (nvl);
386 * Determine if the vdev id is a hole in the namespace.
388 boolean_t
389 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
391 for (int c = 0; c < holes; c++) {
393 /* Top-level is a hole */
394 if (hole_array[c] == id)
395 return (B_TRUE);
397 return (B_FALSE);
401 * Convert our list of pools into the definitive set of configurations. We
402 * start by picking the best config for each toplevel vdev. Once that's done,
403 * we assemble the toplevel vdevs into a full config for the pool. We make a
404 * pass to fix up any incorrect paths, and then add it to the main list to
405 * return to the user.
407 static nvlist_t *
408 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
409 nvlist_t *policy)
411 pool_entry_t *pe;
412 vdev_entry_t *ve;
413 config_entry_t *ce;
414 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
415 nvlist_t **spares, **l2cache;
416 uint_t i, nspares, nl2cache;
417 boolean_t config_seen;
418 uint64_t best_txg;
419 char *name, *hostname = NULL;
420 uint64_t guid;
421 uint_t children = 0;
422 nvlist_t **child = NULL;
423 uint_t holes;
424 uint64_t *hole_array, max_id;
425 uint_t c;
426 boolean_t isactive;
427 uint64_t hostid;
428 nvlist_t *nvl;
429 boolean_t found_one = B_FALSE;
430 boolean_t valid_top_config = B_FALSE;
432 if (nvlist_alloc(&ret, 0, 0) != 0)
433 goto nomem;
435 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
436 uint64_t id, max_txg = 0;
438 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
439 goto nomem;
440 config_seen = B_FALSE;
443 * Iterate over all toplevel vdevs. Grab the pool configuration
444 * from the first one we find, and then go through the rest and
445 * add them as necessary to the 'vdevs' member of the config.
447 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
450 * Determine the best configuration for this vdev by
451 * selecting the config with the latest transaction
452 * group.
454 best_txg = 0;
455 for (ce = ve->ve_configs; ce != NULL;
456 ce = ce->ce_next) {
458 if (ce->ce_txg > best_txg) {
459 tmp = ce->ce_config;
460 best_txg = ce->ce_txg;
465 * We rely on the fact that the max txg for the
466 * pool will contain the most up-to-date information
467 * about the valid top-levels in the vdev namespace.
469 if (best_txg > max_txg) {
470 (void) nvlist_remove(config,
471 ZPOOL_CONFIG_VDEV_CHILDREN,
472 DATA_TYPE_UINT64);
473 (void) nvlist_remove(config,
474 ZPOOL_CONFIG_HOLE_ARRAY,
475 DATA_TYPE_UINT64_ARRAY);
477 max_txg = best_txg;
478 hole_array = NULL;
479 holes = 0;
480 max_id = 0;
481 valid_top_config = B_FALSE;
483 if (nvlist_lookup_uint64(tmp,
484 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
485 verify(nvlist_add_uint64(config,
486 ZPOOL_CONFIG_VDEV_CHILDREN,
487 max_id) == 0);
488 valid_top_config = B_TRUE;
491 if (nvlist_lookup_uint64_array(tmp,
492 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
493 &holes) == 0) {
494 verify(nvlist_add_uint64_array(config,
495 ZPOOL_CONFIG_HOLE_ARRAY,
496 hole_array, holes) == 0);
500 if (!config_seen) {
502 * Copy the relevant pieces of data to the pool
503 * configuration:
505 * version
506 * pool guid
507 * name
508 * comment (if available)
509 * pool state
510 * hostid (if available)
511 * hostname (if available)
513 uint64_t state, version;
514 char *comment = NULL;
516 version = fnvlist_lookup_uint64(tmp,
517 ZPOOL_CONFIG_VERSION);
518 fnvlist_add_uint64(config,
519 ZPOOL_CONFIG_VERSION, version);
520 guid = fnvlist_lookup_uint64(tmp,
521 ZPOOL_CONFIG_POOL_GUID);
522 fnvlist_add_uint64(config,
523 ZPOOL_CONFIG_POOL_GUID, guid);
524 name = fnvlist_lookup_string(tmp,
525 ZPOOL_CONFIG_POOL_NAME);
526 fnvlist_add_string(config,
527 ZPOOL_CONFIG_POOL_NAME, name);
529 if (nvlist_lookup_string(tmp,
530 ZPOOL_CONFIG_COMMENT, &comment) == 0)
531 fnvlist_add_string(config,
532 ZPOOL_CONFIG_COMMENT, comment);
534 state = fnvlist_lookup_uint64(tmp,
535 ZPOOL_CONFIG_POOL_STATE);
536 fnvlist_add_uint64(config,
537 ZPOOL_CONFIG_POOL_STATE, state);
539 hostid = 0;
540 if (nvlist_lookup_uint64(tmp,
541 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
542 fnvlist_add_uint64(config,
543 ZPOOL_CONFIG_HOSTID, hostid);
544 hostname = fnvlist_lookup_string(tmp,
545 ZPOOL_CONFIG_HOSTNAME);
546 fnvlist_add_string(config,
547 ZPOOL_CONFIG_HOSTNAME, hostname);
550 config_seen = B_TRUE;
554 * Add this top-level vdev to the child array.
556 verify(nvlist_lookup_nvlist(tmp,
557 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
558 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
559 &id) == 0);
561 if (id >= children) {
562 nvlist_t **newchild;
564 newchild = zfs_alloc(hdl, (id + 1) *
565 sizeof (nvlist_t *));
566 if (newchild == NULL)
567 goto nomem;
569 for (c = 0; c < children; c++)
570 newchild[c] = child[c];
572 free(child);
573 child = newchild;
574 children = id + 1;
576 if (nvlist_dup(nvtop, &child[id], 0) != 0)
577 goto nomem;
582 * If we have information about all the top-levels then
583 * clean up the nvlist which we've constructed. This
584 * means removing any extraneous devices that are
585 * beyond the valid range or adding devices to the end
586 * of our array which appear to be missing.
588 if (valid_top_config) {
589 if (max_id < children) {
590 for (c = max_id; c < children; c++)
591 nvlist_free(child[c]);
592 children = max_id;
593 } else if (max_id > children) {
594 nvlist_t **newchild;
596 newchild = zfs_alloc(hdl, (max_id) *
597 sizeof (nvlist_t *));
598 if (newchild == NULL)
599 goto nomem;
601 for (c = 0; c < children; c++)
602 newchild[c] = child[c];
604 free(child);
605 child = newchild;
606 children = max_id;
610 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
611 &guid) == 0);
614 * The vdev namespace may contain holes as a result of
615 * device removal. We must add them back into the vdev
616 * tree before we process any missing devices.
618 if (holes > 0) {
619 ASSERT(valid_top_config);
621 for (c = 0; c < children; c++) {
622 nvlist_t *holey;
624 if (child[c] != NULL ||
625 !vdev_is_hole(hole_array, holes, c))
626 continue;
628 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
629 0) != 0)
630 goto nomem;
633 * Holes in the namespace are treated as
634 * "hole" top-level vdevs and have a
635 * special flag set on them.
637 if (nvlist_add_string(holey,
638 ZPOOL_CONFIG_TYPE,
639 VDEV_TYPE_HOLE) != 0 ||
640 nvlist_add_uint64(holey,
641 ZPOOL_CONFIG_ID, c) != 0 ||
642 nvlist_add_uint64(holey,
643 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
644 nvlist_free(holey);
645 goto nomem;
647 child[c] = holey;
652 * Look for any missing top-level vdevs. If this is the case,
653 * create a faked up 'missing' vdev as a placeholder. We cannot
654 * simply compress the child array, because the kernel performs
655 * certain checks to make sure the vdev IDs match their location
656 * in the configuration.
658 for (c = 0; c < children; c++) {
659 if (child[c] == NULL) {
660 nvlist_t *missing;
661 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
662 0) != 0)
663 goto nomem;
664 if (nvlist_add_string(missing,
665 ZPOOL_CONFIG_TYPE,
666 VDEV_TYPE_MISSING) != 0 ||
667 nvlist_add_uint64(missing,
668 ZPOOL_CONFIG_ID, c) != 0 ||
669 nvlist_add_uint64(missing,
670 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
671 nvlist_free(missing);
672 goto nomem;
674 child[c] = missing;
679 * Put all of this pool's top-level vdevs into a root vdev.
681 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
682 goto nomem;
683 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
684 VDEV_TYPE_ROOT) != 0 ||
685 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
686 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
687 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
688 child, children) != 0) {
689 nvlist_free(nvroot);
690 goto nomem;
693 for (c = 0; c < children; c++)
694 nvlist_free(child[c]);
695 free(child);
696 children = 0;
697 child = NULL;
700 * Go through and fix up any paths and/or devids based on our
701 * known list of vdev GUID -> path mappings.
703 if (fix_paths(nvroot, pl->names) != 0) {
704 nvlist_free(nvroot);
705 goto nomem;
709 * Add the root vdev to this pool's configuration.
711 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
712 nvroot) != 0) {
713 nvlist_free(nvroot);
714 goto nomem;
716 nvlist_free(nvroot);
719 * zdb uses this path to report on active pools that were
720 * imported or created using -R.
722 if (active_ok)
723 goto add_pool;
726 * Determine if this pool is currently active, in which case we
727 * can't actually import it.
729 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
730 &name) == 0);
731 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
732 &guid) == 0);
734 if (pool_active(hdl, name, guid, &isactive) != 0)
735 goto error;
737 if (isactive) {
738 nvlist_free(config);
739 config = NULL;
740 continue;
743 if (policy != NULL) {
744 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
745 policy) != 0)
746 goto nomem;
749 if ((nvl = refresh_config(hdl, config)) == NULL) {
750 nvlist_free(config);
751 config = NULL;
752 continue;
755 nvlist_free(config);
756 config = nvl;
759 * Go through and update the paths for spares, now that we have
760 * them.
762 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
763 &nvroot) == 0);
764 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
765 &spares, &nspares) == 0) {
766 for (i = 0; i < nspares; i++) {
767 if (fix_paths(spares[i], pl->names) != 0)
768 goto nomem;
773 * Update the paths for l2cache devices.
775 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
776 &l2cache, &nl2cache) == 0) {
777 for (i = 0; i < nl2cache; i++) {
778 if (fix_paths(l2cache[i], pl->names) != 0)
779 goto nomem;
784 * Restore the original information read from the actual label.
786 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
787 DATA_TYPE_UINT64);
788 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
789 DATA_TYPE_STRING);
790 if (hostid != 0) {
791 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
792 hostid) == 0);
793 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
794 hostname) == 0);
797 add_pool:
799 * Add this pool to the list of configs.
801 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
802 &name) == 0);
803 if (nvlist_add_nvlist(ret, name, config) != 0)
804 goto nomem;
806 found_one = B_TRUE;
807 nvlist_free(config);
808 config = NULL;
811 if (!found_one) {
812 nvlist_free(ret);
813 ret = NULL;
816 return (ret);
818 nomem:
819 (void) no_memory(hdl);
820 error:
821 nvlist_free(config);
822 nvlist_free(ret);
823 for (c = 0; c < children; c++)
824 nvlist_free(child[c]);
825 free(child);
827 return (NULL);
831 * Return the offset of the given label.
833 static uint64_t
834 label_offset(uint64_t size, int l)
836 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
837 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
838 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
842 * Given a file descriptor, read the label information and return an nvlist
843 * describing the configuration, if there is one.
844 * Return 0 on success, or -1 on failure
847 zpool_read_label(int fd, nvlist_t **config)
849 struct stat statbuf;
850 int l;
851 vdev_label_t *label;
852 uint64_t state, txg, size;
854 *config = NULL;
856 if (fstat(fd, &statbuf) == -1)
857 return (-1);
858 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
860 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
861 return (-1);
863 for (l = 0; l < VDEV_LABELS; l++) {
864 if (pread(fd, label, sizeof (vdev_label_t),
865 label_offset(size, l)) != sizeof (vdev_label_t))
866 continue;
868 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
869 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
870 continue;
872 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
873 &state) != 0 || state > POOL_STATE_L2CACHE) {
874 nvlist_free(*config);
875 continue;
878 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
879 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
880 &txg) != 0 || txg == 0)) {
881 nvlist_free(*config);
882 continue;
885 free(label);
886 return (0);
889 free(label);
890 *config = NULL;
891 errno = ENOENT;
892 return (-1);
895 typedef struct rdsk_node {
896 char *rn_name;
897 int rn_dfd;
898 libzfs_handle_t *rn_hdl;
899 nvlist_t *rn_config;
900 avl_tree_t *rn_avl;
901 avl_node_t rn_node;
902 boolean_t rn_nozpool;
903 } rdsk_node_t;
905 static int
906 slice_cache_compare(const void *arg1, const void *arg2)
908 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
909 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
910 char *nm1slice, *nm2slice;
911 int rv;
914 * slices zero and two are the most likely to provide results,
915 * so put those first
917 nm1slice = strstr(nm1, "s0");
918 nm2slice = strstr(nm2, "s0");
919 if (nm1slice && !nm2slice) {
920 return (-1);
922 if (!nm1slice && nm2slice) {
923 return (1);
925 nm1slice = strstr(nm1, "s2");
926 nm2slice = strstr(nm2, "s2");
927 if (nm1slice && !nm2slice) {
928 return (-1);
930 if (!nm1slice && nm2slice) {
931 return (1);
934 rv = strcmp(nm1, nm2);
935 if (rv == 0)
936 return (0);
937 return (rv > 0 ? 1 : -1);
940 static void
941 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
942 diskaddr_t size, uint_t blksz)
944 rdsk_node_t tmpnode;
945 rdsk_node_t *node;
946 char sname[MAXNAMELEN];
948 tmpnode.rn_name = &sname[0];
949 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
950 diskname, partno);
952 * protect against division by zero for disk labels that
953 * contain a bogus sector size
955 if (blksz == 0)
956 blksz = DEV_BSIZE;
957 /* too small to contain a zpool? */
958 if ((size < (SPA_MINDEVSIZE / blksz)) &&
959 (node = avl_find(r, &tmpnode, NULL)))
960 node->rn_nozpool = B_TRUE;
963 static void
964 nozpool_all_slices(avl_tree_t *r, const char *sname)
966 char diskname[MAXNAMELEN];
967 char *ptr;
968 int i;
970 (void) strncpy(diskname, sname, MAXNAMELEN);
971 if (((ptr = strrchr(diskname, 's')) == NULL) &&
972 ((ptr = strrchr(diskname, 'p')) == NULL))
973 return;
974 ptr[0] = 's';
975 ptr[1] = '\0';
976 for (i = 0; i < NDKMAP; i++)
977 check_one_slice(r, diskname, i, 0, 1);
978 ptr[0] = 'p';
979 for (i = 0; i <= FD_NUMPART; i++)
980 check_one_slice(r, diskname, i, 0, 1);
983 static void
984 check_slices(avl_tree_t *r, int fd, const char *sname)
986 struct extvtoc vtoc;
987 struct dk_gpt *gpt;
988 char diskname[MAXNAMELEN];
989 char *ptr;
990 int i;
992 (void) strncpy(diskname, sname, MAXNAMELEN);
993 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
994 return;
995 ptr[1] = '\0';
997 if (read_extvtoc(fd, &vtoc) >= 0) {
998 for (i = 0; i < NDKMAP; i++)
999 check_one_slice(r, diskname, i,
1000 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1001 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1003 * on x86 we'll still have leftover links that point
1004 * to slices s[9-15], so use NDKMAP instead
1006 for (i = 0; i < NDKMAP; i++)
1007 check_one_slice(r, diskname, i,
1008 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1009 /* nodes p[1-4] are never used with EFI labels */
1010 ptr[0] = 'p';
1011 for (i = 1; i <= FD_NUMPART; i++)
1012 check_one_slice(r, diskname, i, 0, 1);
1013 efi_free(gpt);
1017 static void
1018 zpool_open_func(void *arg)
1020 rdsk_node_t *rn = arg;
1021 struct stat statbuf;
1022 nvlist_t *config;
1023 int fd;
1025 if (rn->rn_nozpool)
1026 return;
1027 if ((fd = openat(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1028 /* symlink to a device that's no longer there */
1029 if (errno == ENOENT)
1030 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1031 return;
1034 * Ignore failed stats. We only want regular
1035 * files, character devs and block devs.
1037 if (fstat(fd, &statbuf) != 0 ||
1038 (!S_ISREG(statbuf.st_mode) &&
1039 !S_ISCHR(statbuf.st_mode) &&
1040 !S_ISBLK(statbuf.st_mode))) {
1041 (void) close(fd);
1042 return;
1044 /* this file is too small to hold a zpool */
1045 if (S_ISREG(statbuf.st_mode) &&
1046 statbuf.st_size < SPA_MINDEVSIZE) {
1047 (void) close(fd);
1048 return;
1049 } else if (!S_ISREG(statbuf.st_mode)) {
1051 * Try to read the disk label first so we don't have to
1052 * open a bunch of minor nodes that can't have a zpool.
1054 check_slices(rn->rn_avl, fd, rn->rn_name);
1057 if ((zpool_read_label(fd, &config)) != 0 && errno == ENOMEM) {
1058 (void) close(fd);
1059 (void) no_memory(rn->rn_hdl);
1060 return;
1062 (void) close(fd);
1064 rn->rn_config = config;
1068 * Given a file descriptor, clear (zero) the label information.
1071 zpool_clear_label(int fd)
1073 struct stat statbuf;
1074 int l;
1075 vdev_label_t *label;
1076 uint64_t size;
1078 if (fstat(fd, &statbuf) == -1)
1079 return (0);
1080 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1082 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1083 return (-1);
1085 for (l = 0; l < VDEV_LABELS; l++) {
1086 if (pwrite(fd, label, sizeof (vdev_label_t),
1087 label_offset(size, l)) != sizeof (vdev_label_t)) {
1088 free(label);
1089 return (-1);
1093 free(label);
1094 return (0);
1098 * Given a list of directories to search, find all pools stored on disk. This
1099 * includes partial pools which are not available to import. If no args are
1100 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1101 * poolname or guid (but not both) are provided by the caller when trying
1102 * to import a specific pool.
1104 static nvlist_t *
1105 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1107 int i, dirs = iarg->paths;
1108 struct dirent *dp;
1109 char path[MAXPATHLEN];
1110 char *end, **dir = iarg->path;
1111 size_t pathleft;
1112 nvlist_t *ret = NULL;
1113 static char *default_dir = ZFS_DISK_ROOT;
1114 pool_list_t pools = { 0 };
1115 pool_entry_t *pe, *penext;
1116 vdev_entry_t *ve, *venext;
1117 config_entry_t *ce, *cenext;
1118 name_entry_t *ne, *nenext;
1119 avl_tree_t slice_cache;
1120 rdsk_node_t *slice;
1121 void *cookie;
1123 if (dirs == 0) {
1124 dirs = 1;
1125 dir = &default_dir;
1129 * Go through and read the label configuration information from every
1130 * possible device, organizing the information according to pool GUID
1131 * and toplevel GUID.
1133 for (i = 0; i < dirs; i++) {
1134 tpool_t *t;
1135 char rdsk[MAXPATHLEN];
1136 int dfd;
1137 boolean_t config_failed = B_FALSE;
1138 DIR *dirp;
1140 /* use realpath to normalize the path */
1141 if (realpath(dir[i], path) == 0) {
1142 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1143 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1144 goto error;
1146 end = &path[strlen(path)];
1147 *end++ = '/';
1148 *end = 0;
1149 pathleft = &path[sizeof (path)] - end;
1152 * Using raw devices instead of block devices when we're
1153 * reading the labels skips a bunch of slow operations during
1154 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1156 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1157 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1158 else
1159 (void) strlcpy(rdsk, path, sizeof (rdsk));
1161 if ((dfd = open(rdsk, O_RDONLY)) < 0 ||
1162 (dirp = fdopendir(dfd)) == NULL) {
1163 if (dfd >= 0)
1164 (void) close(dfd);
1165 zfs_error_aux(hdl, strerror(errno));
1166 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1167 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1168 rdsk);
1169 goto error;
1172 avl_create(&slice_cache, slice_cache_compare,
1173 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1175 * This is not MT-safe, but we have no MT consumers of libzfs
1177 while ((dp = readdir(dirp)) != NULL) {
1178 const char *name = dp->d_name;
1179 if (name[0] == '.' &&
1180 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1181 continue;
1183 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1184 slice->rn_name = zfs_strdup(hdl, name);
1185 slice->rn_avl = &slice_cache;
1186 slice->rn_dfd = dfd;
1187 slice->rn_hdl = hdl;
1188 slice->rn_nozpool = B_FALSE;
1189 avl_add(&slice_cache, slice);
1192 * create a thread pool to do all of this in parallel;
1193 * rn_nozpool is not protected, so this is racy in that
1194 * multiple tasks could decide that the same slice can
1195 * not hold a zpool, which is benign. Also choose
1196 * double the number of processors; we hold a lot of
1197 * locks in the kernel, so going beyond this doesn't
1198 * buy us much.
1200 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1201 0, NULL);
1202 for (slice = avl_first(&slice_cache); slice;
1203 (slice = avl_walk(&slice_cache, slice,
1204 AVL_AFTER)))
1205 (void) tpool_dispatch(t, zpool_open_func, slice);
1206 tpool_wait(t);
1207 tpool_destroy(t);
1209 cookie = NULL;
1210 while ((slice = avl_destroy_nodes(&slice_cache,
1211 &cookie)) != NULL) {
1212 if (slice->rn_config != NULL && !config_failed) {
1213 nvlist_t *config = slice->rn_config;
1214 boolean_t matched = B_TRUE;
1216 if (iarg->poolname != NULL) {
1217 char *pname;
1219 matched = nvlist_lookup_string(config,
1220 ZPOOL_CONFIG_POOL_NAME,
1221 &pname) == 0 &&
1222 strcmp(iarg->poolname, pname) == 0;
1223 } else if (iarg->guid != 0) {
1224 uint64_t this_guid;
1226 matched = nvlist_lookup_uint64(config,
1227 ZPOOL_CONFIG_POOL_GUID,
1228 &this_guid) == 0 &&
1229 iarg->guid == this_guid;
1231 if (matched) {
1233 * use the non-raw path for the config
1235 (void) strlcpy(end, slice->rn_name,
1236 pathleft);
1237 if (add_config(hdl, &pools, path,
1238 config) != 0)
1239 config_failed = B_TRUE;
1241 nvlist_free(config);
1243 free(slice->rn_name);
1244 free(slice);
1246 avl_destroy(&slice_cache);
1248 (void) closedir(dirp);
1250 if (config_failed)
1251 goto error;
1254 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1256 error:
1257 for (pe = pools.pools; pe != NULL; pe = penext) {
1258 penext = pe->pe_next;
1259 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1260 venext = ve->ve_next;
1261 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1262 cenext = ce->ce_next;
1263 nvlist_free(ce->ce_config);
1264 free(ce);
1266 free(ve);
1268 free(pe);
1271 for (ne = pools.names; ne != NULL; ne = nenext) {
1272 nenext = ne->ne_next;
1273 free(ne->ne_name);
1274 free(ne);
1277 return (ret);
1280 nvlist_t *
1281 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1283 importargs_t iarg = { 0 };
1285 iarg.paths = argc;
1286 iarg.path = argv;
1288 return (zpool_find_import_impl(hdl, &iarg));
1292 * Given a cache file, return the contents as a list of importable pools.
1293 * poolname or guid (but not both) are provided by the caller when trying
1294 * to import a specific pool.
1296 nvlist_t *
1297 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1298 char *poolname, uint64_t guid)
1300 char *buf;
1301 int fd;
1302 struct stat statbuf;
1303 nvlist_t *raw, *src, *dst;
1304 nvlist_t *pools;
1305 nvpair_t *elem;
1306 char *name;
1307 uint64_t this_guid;
1308 boolean_t active;
1310 verify(poolname == NULL || guid == 0);
1312 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1313 zfs_error_aux(hdl, "%s", strerror(errno));
1314 (void) zfs_error(hdl, EZFS_BADCACHE,
1315 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1316 return (NULL);
1319 if (fstat(fd, &statbuf) != 0) {
1320 zfs_error_aux(hdl, "%s", strerror(errno));
1321 (void) close(fd);
1322 (void) zfs_error(hdl, EZFS_BADCACHE,
1323 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1324 return (NULL);
1327 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1328 (void) close(fd);
1329 return (NULL);
1332 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1333 (void) close(fd);
1334 free(buf);
1335 (void) zfs_error(hdl, EZFS_BADCACHE,
1336 dgettext(TEXT_DOMAIN,
1337 "failed to read cache file contents"));
1338 return (NULL);
1341 (void) close(fd);
1343 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1344 free(buf);
1345 (void) zfs_error(hdl, EZFS_BADCACHE,
1346 dgettext(TEXT_DOMAIN,
1347 "invalid or corrupt cache file contents"));
1348 return (NULL);
1351 free(buf);
1354 * Go through and get the current state of the pools and refresh their
1355 * state.
1357 if (nvlist_alloc(&pools, 0, 0) != 0) {
1358 (void) no_memory(hdl);
1359 nvlist_free(raw);
1360 return (NULL);
1363 elem = NULL;
1364 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1365 src = fnvpair_value_nvlist(elem);
1367 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1368 if (poolname != NULL && strcmp(poolname, name) != 0)
1369 continue;
1371 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1372 if (guid != 0 && guid != this_guid)
1373 continue;
1375 if (pool_active(hdl, name, this_guid, &active) != 0) {
1376 nvlist_free(raw);
1377 nvlist_free(pools);
1378 return (NULL);
1381 if (active)
1382 continue;
1384 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1385 cachefile) != 0) {
1386 (void) no_memory(hdl);
1387 nvlist_free(raw);
1388 nvlist_free(pools);
1389 return (NULL);
1392 if ((dst = refresh_config(hdl, src)) == NULL) {
1393 nvlist_free(raw);
1394 nvlist_free(pools);
1395 return (NULL);
1398 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1399 (void) no_memory(hdl);
1400 nvlist_free(dst);
1401 nvlist_free(raw);
1402 nvlist_free(pools);
1403 return (NULL);
1405 nvlist_free(dst);
1408 nvlist_free(raw);
1409 return (pools);
1412 static int
1413 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1415 importargs_t *import = data;
1416 int found = 0;
1418 if (import->poolname != NULL) {
1419 char *pool_name;
1421 verify(nvlist_lookup_string(zhp->zpool_config,
1422 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1423 if (strcmp(pool_name, import->poolname) == 0)
1424 found = 1;
1425 } else {
1426 uint64_t pool_guid;
1428 verify(nvlist_lookup_uint64(zhp->zpool_config,
1429 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1430 if (pool_guid == import->guid)
1431 found = 1;
1434 zpool_close(zhp);
1435 return (found);
1438 nvlist_t *
1439 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1441 verify(import->poolname == NULL || import->guid == 0);
1443 if (import->unique)
1444 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1446 if (import->cachefile != NULL)
1447 return (zpool_find_import_cached(hdl, import->cachefile,
1448 import->poolname, import->guid));
1450 return (zpool_find_import_impl(hdl, import));
1453 boolean_t
1454 find_guid(nvlist_t *nv, uint64_t guid)
1456 uint64_t tmp;
1457 nvlist_t **child;
1458 uint_t c, children;
1460 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1461 if (tmp == guid)
1462 return (B_TRUE);
1464 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1465 &child, &children) == 0) {
1466 for (c = 0; c < children; c++)
1467 if (find_guid(child[c], guid))
1468 return (B_TRUE);
1471 return (B_FALSE);
1474 typedef struct aux_cbdata {
1475 const char *cb_type;
1476 uint64_t cb_guid;
1477 zpool_handle_t *cb_zhp;
1478 } aux_cbdata_t;
1480 static int
1481 find_aux(zpool_handle_t *zhp, void *data)
1483 aux_cbdata_t *cbp = data;
1484 nvlist_t **list;
1485 uint_t i, count;
1486 uint64_t guid;
1487 nvlist_t *nvroot;
1489 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1490 &nvroot) == 0);
1492 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1493 &list, &count) == 0) {
1494 for (i = 0; i < count; i++) {
1495 verify(nvlist_lookup_uint64(list[i],
1496 ZPOOL_CONFIG_GUID, &guid) == 0);
1497 if (guid == cbp->cb_guid) {
1498 cbp->cb_zhp = zhp;
1499 return (1);
1504 zpool_close(zhp);
1505 return (0);
1509 * Determines if the pool is in use. If so, it returns true and the state of
1510 * the pool as well as the name of the pool. Both strings are allocated and
1511 * must be freed by the caller.
1514 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1515 boolean_t *inuse)
1517 nvlist_t *config;
1518 char *name;
1519 boolean_t ret;
1520 uint64_t guid, vdev_guid;
1521 zpool_handle_t *zhp;
1522 nvlist_t *pool_config;
1523 uint64_t stateval, isspare;
1524 aux_cbdata_t cb = { 0 };
1525 boolean_t isactive;
1527 *inuse = B_FALSE;
1529 if (zpool_read_label(fd, &config) != 0 && errno == ENOMEM) {
1530 (void) no_memory(hdl);
1531 return (-1);
1534 if (config == NULL)
1535 return (0);
1537 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1538 &stateval) == 0);
1539 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1540 &vdev_guid) == 0);
1542 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1543 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1544 &name) == 0);
1545 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1546 &guid) == 0);
1549 switch (stateval) {
1550 case POOL_STATE_EXPORTED:
1552 * A pool with an exported state may in fact be imported
1553 * read-only, so check the in-core state to see if it's
1554 * active and imported read-only. If it is, set
1555 * its state to active.
1557 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1558 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1559 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1560 stateval = POOL_STATE_ACTIVE;
1563 * All we needed the zpool handle for is the
1564 * readonly prop check.
1566 zpool_close(zhp);
1569 ret = B_TRUE;
1570 break;
1572 case POOL_STATE_ACTIVE:
1574 * For an active pool, we have to determine if it's really part
1575 * of a currently active pool (in which case the pool will exist
1576 * and the guid will be the same), or whether it's part of an
1577 * active pool that was disconnected without being explicitly
1578 * exported.
1580 if (pool_active(hdl, name, guid, &isactive) != 0) {
1581 nvlist_free(config);
1582 return (-1);
1585 if (isactive) {
1587 * Because the device may have been removed while
1588 * offlined, we only report it as active if the vdev is
1589 * still present in the config. Otherwise, pretend like
1590 * it's not in use.
1592 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1593 (pool_config = zpool_get_config(zhp, NULL))
1594 != NULL) {
1595 nvlist_t *nvroot;
1597 verify(nvlist_lookup_nvlist(pool_config,
1598 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1599 ret = find_guid(nvroot, vdev_guid);
1600 } else {
1601 ret = B_FALSE;
1605 * If this is an active spare within another pool, we
1606 * treat it like an unused hot spare. This allows the
1607 * user to create a pool with a hot spare that currently
1608 * in use within another pool. Since we return B_TRUE,
1609 * libdiskmgt will continue to prevent generic consumers
1610 * from using the device.
1612 if (ret && nvlist_lookup_uint64(config,
1613 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1614 stateval = POOL_STATE_SPARE;
1616 if (zhp != NULL)
1617 zpool_close(zhp);
1618 } else {
1619 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1620 ret = B_TRUE;
1622 break;
1624 case POOL_STATE_SPARE:
1626 * For a hot spare, it can be either definitively in use, or
1627 * potentially active. To determine if it's in use, we iterate
1628 * over all pools in the system and search for one with a spare
1629 * with a matching guid.
1631 * Due to the shared nature of spares, we don't actually report
1632 * the potentially active case as in use. This means the user
1633 * can freely create pools on the hot spares of exported pools,
1634 * but to do otherwise makes the resulting code complicated, and
1635 * we end up having to deal with this case anyway.
1637 cb.cb_zhp = NULL;
1638 cb.cb_guid = vdev_guid;
1639 cb.cb_type = ZPOOL_CONFIG_SPARES;
1640 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1641 name = (char *)zpool_get_name(cb.cb_zhp);
1642 ret = B_TRUE;
1643 } else {
1644 ret = B_FALSE;
1646 break;
1648 case POOL_STATE_L2CACHE:
1651 * Check if any pool is currently using this l2cache device.
1653 cb.cb_zhp = NULL;
1654 cb.cb_guid = vdev_guid;
1655 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1656 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1657 name = (char *)zpool_get_name(cb.cb_zhp);
1658 ret = B_TRUE;
1659 } else {
1660 ret = B_FALSE;
1662 break;
1664 default:
1665 ret = B_FALSE;
1669 if (ret) {
1670 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1671 if (cb.cb_zhp)
1672 zpool_close(cb.cb_zhp);
1673 nvlist_free(config);
1674 return (-1);
1676 *state = (pool_state_t)stateval;
1679 if (cb.cb_zhp)
1680 zpool_close(cb.cb_zhp);
1682 nvlist_free(config);
1683 *inuse = ret;
1684 return (0);