4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2017, Joyent, Inc.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
29 * DTrace - Dynamic Tracing for Solaris
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
42 * The functions here are ordered roughly as follows:
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
52 * - Predicate functions
55 * - Enabling functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
61 * - Driver cookbook functions
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
67 #include <sys/errno.h>
69 #include <sys/modctl.h>
71 #include <sys/systm.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
98 * DTrace Tunable Variables
100 * The following variables may be tuned by adding a line to /etc/system that
101 * includes both the name of the DTrace module ("dtrace") and the name of the
102 * variable. For example:
104 * set dtrace:dtrace_destructive_disallow = 1
106 * In general, the only variables that one should be tuning this way are those
107 * that affect system-wide DTrace behavior, and for which the default behavior
108 * is undesirable. Most of these variables are tunable on a per-consumer
109 * basis using DTrace options, and need not be tuned on a system-wide basis.
110 * When tuning these variables, avoid pathological values; while some attempt
111 * is made to verify the integrity of these variables, they are not considered
112 * part of the supported interface to DTrace, and they are therefore not
113 * checked comprehensively. Further, these variables should not be tuned
114 * dynamically via "mdb -kw" or other means; they should only be tuned via
117 int dtrace_destructive_disallow
= 0;
118 dtrace_optval_t dtrace_nonroot_maxsize
= (16 * 1024 * 1024);
119 size_t dtrace_difo_maxsize
= (256 * 1024);
120 dtrace_optval_t dtrace_dof_maxsize
= (8 * 1024 * 1024);
121 size_t dtrace_statvar_maxsize
= (16 * 1024);
122 size_t dtrace_actions_max
= (16 * 1024);
123 size_t dtrace_retain_max
= 1024;
124 dtrace_optval_t dtrace_helper_actions_max
= 1024;
125 dtrace_optval_t dtrace_helper_providers_max
= 32;
126 dtrace_optval_t dtrace_dstate_defsize
= (1 * 1024 * 1024);
127 size_t dtrace_strsize_default
= 256;
128 dtrace_optval_t dtrace_cleanrate_default
= 9900990; /* 101 hz */
129 dtrace_optval_t dtrace_cleanrate_min
= 200000; /* 5000 hz */
130 dtrace_optval_t dtrace_cleanrate_max
= (uint64_t)60 * NANOSEC
; /* 1/minute */
131 dtrace_optval_t dtrace_aggrate_default
= NANOSEC
; /* 1 hz */
132 dtrace_optval_t dtrace_statusrate_default
= NANOSEC
; /* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max
= (hrtime_t
)10 * NANOSEC
; /* 6/minute */
134 dtrace_optval_t dtrace_switchrate_default
= NANOSEC
; /* 1 hz */
135 dtrace_optval_t dtrace_nspec_default
= 1;
136 dtrace_optval_t dtrace_specsize_default
= 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default
= 20;
138 dtrace_optval_t dtrace_ustackframes_default
= 20;
139 dtrace_optval_t dtrace_jstackframes_default
= 50;
140 dtrace_optval_t dtrace_jstackstrsize_default
= 512;
141 int dtrace_msgdsize_max
= 128;
142 hrtime_t dtrace_chill_max
= MSEC2NSEC(500); /* 500 ms */
143 hrtime_t dtrace_chill_interval
= NANOSEC
; /* 1000 ms */
144 int dtrace_devdepth_max
= 32;
145 int dtrace_err_verbose
;
146 hrtime_t dtrace_deadman_interval
= NANOSEC
;
147 hrtime_t dtrace_deadman_timeout
= (hrtime_t
)10 * NANOSEC
;
148 hrtime_t dtrace_deadman_user
= (hrtime_t
)30 * NANOSEC
;
149 hrtime_t dtrace_unregister_defunct_reap
= (hrtime_t
)60 * NANOSEC
;
152 * DTrace External Variables
154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155 * available to DTrace consumers via the backtick (`) syntax. One of these,
156 * dtrace_zero, is made deliberately so: it is provided as a source of
157 * well-known, zero-filled memory. While this variable is not documented,
158 * it is used by some translators as an implementation detail.
160 const char dtrace_zero
[256] = { 0 }; /* zero-filled memory */
163 * DTrace Internal Variables
165 static dev_info_t
*dtrace_devi
; /* device info */
166 static vmem_t
*dtrace_arena
; /* probe ID arena */
167 static vmem_t
*dtrace_minor
; /* minor number arena */
168 static taskq_t
*dtrace_taskq
; /* task queue */
169 static dtrace_probe_t
**dtrace_probes
; /* array of all probes */
170 static int dtrace_nprobes
; /* number of probes */
171 static dtrace_provider_t
*dtrace_provider
; /* provider list */
172 static dtrace_meta_t
*dtrace_meta_pid
; /* user-land meta provider */
173 static int dtrace_opens
; /* number of opens */
174 static int dtrace_helpers
; /* number of helpers */
175 static int dtrace_getf
; /* number of unpriv getf()s */
176 static void *dtrace_softstate
; /* softstate pointer */
177 static dtrace_hash_t
*dtrace_bymod
; /* probes hashed by module */
178 static dtrace_hash_t
*dtrace_byfunc
; /* probes hashed by function */
179 static dtrace_hash_t
*dtrace_byname
; /* probes hashed by name */
180 static dtrace_toxrange_t
*dtrace_toxrange
; /* toxic range array */
181 static int dtrace_toxranges
; /* number of toxic ranges */
182 static int dtrace_toxranges_max
; /* size of toxic range array */
183 static dtrace_anon_t dtrace_anon
; /* anonymous enabling */
184 static kmem_cache_t
*dtrace_state_cache
; /* cache for dynamic state */
185 static uint64_t dtrace_vtime_references
; /* number of vtimestamp refs */
186 static kthread_t
*dtrace_panicked
; /* panicking thread */
187 static dtrace_ecb_t
*dtrace_ecb_create_cache
; /* cached created ECB */
188 static dtrace_genid_t dtrace_probegen
; /* current probe generation */
189 static dtrace_helpers_t
*dtrace_deferred_pid
; /* deferred helper list */
190 static dtrace_enabling_t
*dtrace_retained
; /* list of retained enablings */
191 static dtrace_genid_t dtrace_retained_gen
; /* current retained enab gen */
192 static dtrace_dynvar_t dtrace_dynhash_sink
; /* end of dynamic hash chains */
193 static int dtrace_dynvar_failclean
; /* dynvars failed to clean */
197 * DTrace is protected by three (relatively coarse-grained) locks:
199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 * including enabling state, probes, ECBs, consumer state, helper state,
201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 * probe context is lock-free -- synchronization is handled via the
203 * dtrace_sync() cross call mechanism.
205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 * when provider state must be held constant.
208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 * when meta provider state must be held constant.
211 * The lock ordering between these three locks is dtrace_meta_lock before
212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 * several places where dtrace_provider_lock is held by the framework as it
214 * calls into the providers -- which then call back into the framework,
215 * grabbing dtrace_lock.)
217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
225 static kmutex_t dtrace_lock
; /* probe state lock */
226 static kmutex_t dtrace_provider_lock
; /* provider state lock */
227 static kmutex_t dtrace_meta_lock
; /* meta-provider state lock */
230 * DTrace Provider Variables
232 * These are the variables relating to DTrace as a provider (that is, the
233 * provider of the BEGIN, END, and ERROR probes).
235 static dtrace_pattr_t dtrace_provider_attr
= {
236 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
237 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
238 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
239 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
240 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
248 dtrace_enable_nullop(void)
253 static dtrace_pops_t dtrace_provider_ops
= {
254 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
,
255 (void (*)(void *, struct modctl
*))dtrace_nullop
,
256 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
,
257 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
258 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
259 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
263 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
266 static dtrace_id_t dtrace_probeid_begin
; /* special BEGIN probe */
267 static dtrace_id_t dtrace_probeid_end
; /* special END probe */
268 dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
271 * DTrace Helper Tracing Variables
273 * These variables should be set dynamically to enable helper tracing. The
274 * only variables that should be set are dtrace_helptrace_enable (which should
275 * be set to a non-zero value to allocate helper tracing buffers on the next
276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277 * non-zero value to deallocate helper tracing buffers on the next close of
278 * /dev/dtrace). When (and only when) helper tracing is disabled, the
279 * buffer size may also be set via dtrace_helptrace_bufsize.
281 int dtrace_helptrace_enable
= 0;
282 int dtrace_helptrace_disable
= 0;
283 int dtrace_helptrace_bufsize
= 16 * 1024 * 1024;
284 uint32_t dtrace_helptrace_nlocals
;
285 static dtrace_helptrace_t
*dtrace_helptrace_buffer
;
286 static uint32_t dtrace_helptrace_next
= 0;
287 static int dtrace_helptrace_wrapped
= 0;
290 * DTrace Error Hashing
292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293 * table. This is very useful for checking coverage of tests that are
294 * expected to induce DIF or DOF processing errors, and may be useful for
295 * debugging problems in the DIF code generator or in DOF generation . The
296 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
299 static dtrace_errhash_t dtrace_errhash
[DTRACE_ERRHASHSZ
];
300 static const char *dtrace_errlast
;
301 static kthread_t
*dtrace_errthread
;
302 static kmutex_t dtrace_errlock
;
306 * DTrace Macros and Constants
308 * These are various macros that are useful in various spots in the
309 * implementation, along with a few random constants that have no meaning
310 * outside of the implementation. There is no real structure to this cpp
311 * mishmash -- but is there ever?
313 #define DTRACE_HASHSTR(hash, probe) \
314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
316 #define DTRACE_HASHNEXT(hash, probe) \
317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
319 #define DTRACE_HASHPREV(hash, probe) \
320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
322 #define DTRACE_HASHEQ(hash, lhs, rhs) \
323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
326 #define DTRACE_AGGHASHSIZE_SLEW 17
328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
331 * The key for a thread-local variable consists of the lower 61 bits of the
332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334 * equal to a variable identifier. This is necessary (but not sufficient) to
335 * assure that global associative arrays never collide with thread-local
336 * variables. To guarantee that they cannot collide, we must also define the
337 * order for keying dynamic variables. That order is:
339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
341 * Because the variable-key and the tls-key are in orthogonal spaces, there is
342 * no way for a global variable key signature to match a thread-local key
345 #define DTRACE_TLS_THRKEY(where) { \
347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 for (; actv; actv >>= 1) \
350 ASSERT(intr < (1 << 3)); \
351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
355 #define DT_BSWAP_8(x) ((x) & 0xff)
356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
362 #define DTRACE_STORE(type, tomax, offset, what) \
363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
366 #define DTRACE_ALIGNCHECK(addr, size, flags) \
367 if (addr & (size - 1)) { \
368 *flags |= CPU_DTRACE_BADALIGN; \
369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
373 #define DTRACE_ALIGNCHECK(addr, size, flags)
377 * Test whether a range of memory starting at testaddr of size testsz falls
378 * within the range of memory described by addr, sz. We take care to avoid
379 * problems with overflow and underflow of the unsigned quantities, and
380 * disallow all negative sizes. Ranges of size 0 are allowed.
382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 (testaddr) + (testsz) >= (testaddr))
387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
389 if ((remp) != NULL) { \
390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
392 _NOTE(CONSTCOND) } while (0)
396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
397 * alloc_sz on the righthand side of the comparison in order to avoid overflow
398 * or underflow in the comparison with it. This is simpler than the INRANGE
399 * check above, because we know that the dtms_scratch_ptr is valid in the
400 * range. Allocations of size zero are allowed.
402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
404 (mstate)->dtms_scratch_ptr >= (alloc_sz))
406 #define DTRACE_LOADFUNC(bits) \
409 dtrace_load##bits(uintptr_t addr) \
411 size_t size = bits / NBBY; \
413 uint##bits##_t rval; \
415 volatile uint16_t *flags = (volatile uint16_t *) \
416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
418 DTRACE_ALIGNCHECK(addr, size, flags); \
420 for (i = 0; i < dtrace_toxranges; i++) { \
421 if (addr >= dtrace_toxrange[i].dtt_limit) \
424 if (addr + size <= dtrace_toxrange[i].dtt_base) \
428 * This address falls within a toxic region; return 0. \
430 *flags |= CPU_DTRACE_BADADDR; \
431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
435 *flags |= CPU_DTRACE_NOFAULT; \
437 rval = *((volatile uint##bits##_t *)addr); \
438 *flags &= ~CPU_DTRACE_NOFAULT; \
440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
444 #define dtrace_loadptr dtrace_load64
446 #define dtrace_loadptr dtrace_load32
449 #define DTRACE_DYNHASH_FREE 0
450 #define DTRACE_DYNHASH_SINK 1
451 #define DTRACE_DYNHASH_VALID 2
453 #define DTRACE_MATCH_FAIL -1
454 #define DTRACE_MATCH_NEXT 0
455 #define DTRACE_MATCH_DONE 1
456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
457 #define DTRACE_STATE_ALIGN 64
459 #define DTRACE_FLAGS2FLT(flags) \
460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
471 #define DTRACEACT_ISSTRING(act) \
472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
475 static size_t dtrace_strlen(const char *, size_t);
476 static dtrace_probe_t
*dtrace_probe_lookup_id(dtrace_id_t id
);
477 static void dtrace_enabling_provide(dtrace_provider_t
*);
478 static int dtrace_enabling_match(dtrace_enabling_t
*, int *);
479 static void dtrace_enabling_matchall(void);
480 static void dtrace_enabling_reap(void);
481 static dtrace_state_t
*dtrace_anon_grab(void);
482 static uint64_t dtrace_helper(int, dtrace_mstate_t
*,
483 dtrace_state_t
*, uint64_t, uint64_t);
484 static dtrace_helpers_t
*dtrace_helpers_create(proc_t
*);
485 static void dtrace_buffer_drop(dtrace_buffer_t
*);
486 static int dtrace_buffer_consumed(dtrace_buffer_t
*, hrtime_t when
);
487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t
*, size_t, size_t,
488 dtrace_state_t
*, dtrace_mstate_t
*);
489 static int dtrace_state_option(dtrace_state_t
*, dtrace_optid_t
,
491 static int dtrace_ecb_create_enable(dtrace_probe_t
*, void *);
492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t
*);
493 static int dtrace_priv_proc(dtrace_state_t
*, dtrace_mstate_t
*);
494 static void dtrace_getf_barrier(void);
495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
496 dtrace_mstate_t
*, dtrace_vstate_t
*);
497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
498 dtrace_mstate_t
*, dtrace_vstate_t
*);
501 * DTrace Probe Context Functions
503 * These functions are called from probe context. Because probe context is
504 * any context in which C may be called, arbitrarily locks may be held,
505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
506 * As a result, functions called from probe context may only call other DTrace
507 * support functions -- they may not interact at all with the system at large.
508 * (Note that the ASSERT macro is made probe-context safe by redefining it in
509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
510 * loads are to be performed from probe context, they _must_ be in terms of
511 * the safe dtrace_load*() variants.
513 * Some functions in this block are not actually called from probe context;
514 * for these functions, there will be a comment above the function reading
515 * "Note: not called from probe context."
518 dtrace_panic(const char *format
, ...)
522 va_start(alist
, format
);
523 dtrace_vpanic(format
, alist
);
528 dtrace_assfail(const char *a
, const char *f
, int l
)
530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a
, f
, l
);
533 * We just need something here that even the most clever compiler
534 * cannot optimize away.
536 return (a
[(uintptr_t)f
]);
540 * Atomically increment a specified error counter from probe context.
543 dtrace_error(uint32_t *counter
)
546 * Most counters stored to in probe context are per-CPU counters.
547 * However, there are some error conditions that are sufficiently
548 * arcane that they don't merit per-CPU storage. If these counters
549 * are incremented concurrently on different CPUs, scalability will be
550 * adversely affected -- but we don't expect them to be white-hot in a
551 * correctly constructed enabling...
558 if ((nval
= oval
+ 1) == 0) {
560 * If the counter would wrap, set it to 1 -- assuring
561 * that the counter is never zero when we have seen
562 * errors. (The counter must be 32-bits because we
563 * aren't guaranteed a 64-bit compare&swap operation.)
564 * To save this code both the infamy of being fingered
565 * by a priggish news story and the indignity of being
566 * the target of a neo-puritan witch trial, we're
567 * carefully avoiding any colorful description of the
568 * likelihood of this condition -- but suffice it to
569 * say that it is only slightly more likely than the
570 * overflow of predicate cache IDs, as discussed in
571 * dtrace_predicate_create().
575 } while (dtrace_cas32(counter
, oval
, nval
) != oval
);
579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
580 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
590 dtrace_inscratch(uintptr_t dest
, size_t size
, dtrace_mstate_t
*mstate
)
592 if (dest
< mstate
->dtms_scratch_base
)
595 if (dest
+ size
< dest
)
598 if (dest
+ size
> mstate
->dtms_scratch_ptr
)
605 dtrace_canstore_statvar(uint64_t addr
, size_t sz
, size_t *remain
,
606 dtrace_statvar_t
**svars
, int nsvars
)
609 size_t maxglobalsize
, maxlocalsize
;
614 maxglobalsize
= dtrace_statvar_maxsize
+ sizeof (uint64_t);
615 maxlocalsize
= maxglobalsize
* NCPU
;
617 for (i
= 0; i
< nsvars
; i
++) {
618 dtrace_statvar_t
*svar
= svars
[i
];
622 if (svar
== NULL
|| (size
= svar
->dtsv_size
) == 0)
625 scope
= svar
->dtsv_var
.dtdv_scope
;
628 * We verify that our size is valid in the spirit of providing
629 * defense in depth: we want to prevent attackers from using
630 * DTrace to escalate an orthogonal kernel heap corruption bug
631 * into the ability to store to arbitrary locations in memory.
633 VERIFY((scope
== DIFV_SCOPE_GLOBAL
&& size
<= maxglobalsize
) ||
634 (scope
== DIFV_SCOPE_LOCAL
&& size
<= maxlocalsize
));
636 if (DTRACE_INRANGE(addr
, sz
, svar
->dtsv_data
,
638 DTRACE_RANGE_REMAIN(remain
, addr
, svar
->dtsv_data
,
648 * Check to see if the address is within a memory region to which a store may
649 * be issued. This includes the DTrace scratch areas, and any DTrace variable
650 * region. The caller of dtrace_canstore() is responsible for performing any
651 * alignment checks that are needed before stores are actually executed.
654 dtrace_canstore(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
655 dtrace_vstate_t
*vstate
)
657 return (dtrace_canstore_remains(addr
, sz
, NULL
, mstate
, vstate
));
661 * Implementation of dtrace_canstore which communicates the upper bound of the
662 * allowed memory region.
665 dtrace_canstore_remains(uint64_t addr
, size_t sz
, size_t *remain
,
666 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
669 * First, check to see if the address is in scratch space...
671 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_scratch_base
,
672 mstate
->dtms_scratch_size
)) {
673 DTRACE_RANGE_REMAIN(remain
, addr
, mstate
->dtms_scratch_base
,
674 mstate
->dtms_scratch_size
);
679 * Now check to see if it's a dynamic variable. This check will pick
680 * up both thread-local variables and any global dynamically-allocated
683 if (DTRACE_INRANGE(addr
, sz
, vstate
->dtvs_dynvars
.dtds_base
,
684 vstate
->dtvs_dynvars
.dtds_size
)) {
685 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
686 uintptr_t base
= (uintptr_t)dstate
->dtds_base
+
687 (dstate
->dtds_hashsize
* sizeof (dtrace_dynhash_t
));
689 dtrace_dynvar_t
*dvar
;
692 * Before we assume that we can store here, we need to make
693 * sure that it isn't in our metadata -- storing to our
694 * dynamic variable metadata would corrupt our state. For
695 * the range to not include any dynamic variable metadata,
698 * (1) Start above the hash table that is at the base of
699 * the dynamic variable space
701 * (2) Have a starting chunk offset that is beyond the
702 * dtrace_dynvar_t that is at the base of every chunk
704 * (3) Not span a chunk boundary
706 * (4) Not be in the tuple space of a dynamic variable
712 chunkoffs
= (addr
- base
) % dstate
->dtds_chunksize
;
714 if (chunkoffs
< sizeof (dtrace_dynvar_t
))
717 if (chunkoffs
+ sz
> dstate
->dtds_chunksize
)
720 dvar
= (dtrace_dynvar_t
*)((uintptr_t)addr
- chunkoffs
);
722 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
)
725 if (chunkoffs
< sizeof (dtrace_dynvar_t
) +
726 ((dvar
->dtdv_tuple
.dtt_nkeys
- 1) * sizeof (dtrace_key_t
)))
729 DTRACE_RANGE_REMAIN(remain
, addr
, dvar
, dstate
->dtds_chunksize
);
734 * Finally, check the static local and global variables. These checks
735 * take the longest, so we perform them last.
737 if (dtrace_canstore_statvar(addr
, sz
, remain
,
738 vstate
->dtvs_locals
, vstate
->dtvs_nlocals
))
741 if (dtrace_canstore_statvar(addr
, sz
, remain
,
742 vstate
->dtvs_globals
, vstate
->dtvs_nglobals
))
750 * Convenience routine to check to see if the address is within a memory
751 * region in which a load may be issued given the user's privilege level;
752 * if not, it sets the appropriate error flags and loads 'addr' into the
753 * illegal value slot.
755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
756 * appropriate memory access protection.
759 dtrace_canload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
760 dtrace_vstate_t
*vstate
)
762 return (dtrace_canload_remains(addr
, sz
, NULL
, mstate
, vstate
));
766 * Implementation of dtrace_canload which communicates the upper bound of the
767 * allowed memory region.
770 dtrace_canload_remains(uint64_t addr
, size_t sz
, size_t *remain
,
771 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
773 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
777 * If we hold the privilege to read from kernel memory, then
778 * everything is readable.
780 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
781 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
786 * You can obviously read that which you can store.
788 if (dtrace_canstore_remains(addr
, sz
, remain
, mstate
, vstate
))
792 * We're allowed to read from our own string table.
794 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_difo
->dtdo_strtab
,
795 mstate
->dtms_difo
->dtdo_strlen
)) {
796 DTRACE_RANGE_REMAIN(remain
, addr
,
797 mstate
->dtms_difo
->dtdo_strtab
,
798 mstate
->dtms_difo
->dtdo_strlen
);
802 if (vstate
->dtvs_state
!= NULL
&&
803 dtrace_priv_proc(vstate
->dtvs_state
, mstate
)) {
807 * When we have privileges to the current process, there are
808 * several context-related kernel structures that are safe to
809 * read, even absent the privilege to read from kernel memory.
810 * These reads are safe because these structures contain only
811 * state that (1) we're permitted to read, (2) is harmless or
812 * (3) contains pointers to additional kernel state that we're
813 * not permitted to read (and as such, do not present an
814 * opportunity for privilege escalation). Finally (and
815 * critically), because of the nature of their relation with
816 * the current thread context, the memory associated with these
817 * structures cannot change over the duration of probe context,
818 * and it is therefore impossible for this memory to be
819 * deallocated and reallocated as something else while it's
820 * being operated upon.
822 if (DTRACE_INRANGE(addr
, sz
, curthread
, sizeof (kthread_t
))) {
823 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
,
828 if ((p
= curthread
->t_procp
) != NULL
&& DTRACE_INRANGE(addr
,
829 sz
, curthread
->t_procp
, sizeof (proc_t
))) {
830 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_procp
,
835 if (curthread
->t_cred
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
836 curthread
->t_cred
, sizeof (cred_t
))) {
837 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_cred
,
842 if (p
!= NULL
&& p
->p_pidp
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
843 &(p
->p_pidp
->pid_id
), sizeof (pid_t
))) {
844 DTRACE_RANGE_REMAIN(remain
, addr
, &(p
->p_pidp
->pid_id
),
849 if (curthread
->t_cpu
!= NULL
&& DTRACE_INRANGE(addr
, sz
,
850 curthread
->t_cpu
, offsetof(cpu_t
, cpu_pause_thread
))) {
851 DTRACE_RANGE_REMAIN(remain
, addr
, curthread
->t_cpu
,
852 offsetof(cpu_t
, cpu_pause_thread
));
857 if ((fp
= mstate
->dtms_getf
) != NULL
) {
858 uintptr_t psz
= sizeof (void *);
859 const struct vnodeops
*op
;
863 * When getf() returns a file_t, the enabling is implicitly
864 * granted the (transient) right to read the returned file_t
865 * as well as the v_path and v_op->vnop_name of the underlying
866 * vnode. These accesses are allowed after a successful
867 * getf() because the members that they refer to cannot change
868 * once set -- and the barrier logic in the kernel's closef()
869 * path assures that the file_t and its referenced vode_t
870 * cannot themselves be stale (that is, it impossible for
871 * either dtms_getf itself or its f_vnode member to reference
874 if (DTRACE_INRANGE(addr
, sz
, fp
, sizeof (file_t
))) {
875 DTRACE_RANGE_REMAIN(remain
, addr
, fp
, sizeof (file_t
));
879 if ((vp
= fp
->f_vnode
) != NULL
) {
882 if (DTRACE_INRANGE(addr
, sz
, &vp
->v_path
, psz
)) {
883 DTRACE_RANGE_REMAIN(remain
, addr
, &vp
->v_path
,
888 slen
= strlen(vp
->v_path
) + 1;
889 if (DTRACE_INRANGE(addr
, sz
, vp
->v_path
, slen
)) {
890 DTRACE_RANGE_REMAIN(remain
, addr
, vp
->v_path
,
895 if (DTRACE_INRANGE(addr
, sz
, &vp
->v_op
, psz
)) {
896 DTRACE_RANGE_REMAIN(remain
, addr
, &vp
->v_op
,
901 if ((op
= vp
->v_op
) != NULL
&&
902 DTRACE_INRANGE(addr
, sz
, &op
->vnop_name
, psz
)) {
903 DTRACE_RANGE_REMAIN(remain
, addr
,
904 &op
->vnop_name
, psz
);
908 if (op
!= NULL
&& op
->vnop_name
!= NULL
&&
909 DTRACE_INRANGE(addr
, sz
, op
->vnop_name
,
910 (slen
= strlen(op
->vnop_name
) + 1))) {
911 DTRACE_RANGE_REMAIN(remain
, addr
,
912 op
->vnop_name
, slen
);
918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
924 * Convenience routine to check to see if a given string is within a memory
925 * region in which a load may be issued given the user's privilege level;
926 * this exists so that we don't need to issue unnecessary dtrace_strlen()
927 * calls in the event that the user has all privileges.
930 dtrace_strcanload(uint64_t addr
, size_t sz
, size_t *remain
,
931 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
936 * If we hold the privilege to read from kernel memory, then
937 * everything is readable.
939 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
940 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
945 * Even if the caller is uninterested in querying the remaining valid
946 * range, it is required to ensure that the access is allowed.
948 if (remain
== NULL
) {
951 if (dtrace_canload_remains(addr
, 0, remain
, mstate
, vstate
)) {
954 * Perform the strlen after determining the length of the
955 * memory region which is accessible. This prevents timing
956 * information from being used to find NULs in memory which is
957 * not accessible to the caller.
959 strsz
= 1 + dtrace_strlen((char *)(uintptr_t)addr
,
961 if (strsz
<= *remain
) {
970 * Convenience routine to check to see if a given variable is within a memory
971 * region in which a load may be issued given the user's privilege level.
974 dtrace_vcanload(void *src
, dtrace_diftype_t
*type
, size_t *remain
,
975 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
978 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
981 * Calculate the max size before performing any checks since even
982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
983 * return the max length via 'remain'.
985 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
986 dtrace_state_t
*state
= vstate
->dtvs_state
;
989 sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
992 * In helper context, we have a NULL state; fall back
993 * to using the system-wide default for the string size
996 sz
= dtrace_strsize_default
;
999 sz
= type
->dtdt_size
;
1003 * If we hold the privilege to read from kernel memory, then
1004 * everything is readable.
1006 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1007 DTRACE_RANGE_REMAIN(remain
, (uintptr_t)src
, src
, sz
);
1011 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1012 return (dtrace_strcanload((uintptr_t)src
, sz
, remain
, mstate
,
1015 return (dtrace_canload_remains((uintptr_t)src
, sz
, remain
, mstate
,
1020 * Convert a string to a signed integer using safe loads.
1022 * NOTE: This function uses various macros from strtolctype.h to manipulate
1023 * digit values, etc -- these have all been checked to ensure they make
1024 * no additional function calls.
1027 dtrace_strtoll(char *input
, int base
, size_t limit
)
1029 uintptr_t pos
= (uintptr_t)input
;
1032 boolean_t neg
= B_FALSE
;
1034 uintptr_t end
= pos
+ limit
;
1037 * Consume any whitespace preceding digits.
1039 while ((c
= dtrace_load8(pos
)) == ' ' || c
== '\t')
1043 * Handle an explicit sign if one is present.
1045 if (c
== '-' || c
== '+') {
1048 c
= dtrace_load8(++pos
);
1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1055 if (base
== 16 && c
== '0' && ((cc
= dtrace_load8(pos
+ 1)) == 'x' ||
1056 cc
== 'X') && isxdigit(ccc
= dtrace_load8(pos
+ 2))) {
1062 * Read in contiguous digits until the first non-digit character.
1064 for (; pos
< end
&& c
!= '\0' && lisalnum(c
) && (x
= DIGIT(c
)) < base
;
1065 c
= dtrace_load8(++pos
))
1066 val
= val
* base
+ x
;
1068 return (neg
? -val
: val
);
1072 * Compare two strings using safe loads.
1075 dtrace_strncmp(char *s1
, char *s2
, size_t limit
)
1078 volatile uint16_t *flags
;
1080 if (s1
== s2
|| limit
== 0)
1083 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1089 c1
= dtrace_load8((uintptr_t)s1
++);
1095 c2
= dtrace_load8((uintptr_t)s2
++);
1100 } while (--limit
&& c1
!= '\0' && !(*flags
& CPU_DTRACE_FAULT
));
1106 * Compute strlen(s) for a string using safe memory accesses. The additional
1107 * len parameter is used to specify a maximum length to ensure completion.
1110 dtrace_strlen(const char *s
, size_t lim
)
1114 for (len
= 0; len
!= lim
; len
++) {
1115 if (dtrace_load8((uintptr_t)s
++) == '\0')
1123 * Check if an address falls within a toxic region.
1126 dtrace_istoxic(uintptr_t kaddr
, size_t size
)
1128 uintptr_t taddr
, tsize
;
1131 for (i
= 0; i
< dtrace_toxranges
; i
++) {
1132 taddr
= dtrace_toxrange
[i
].dtt_base
;
1133 tsize
= dtrace_toxrange
[i
].dtt_limit
- taddr
;
1135 if (kaddr
- taddr
< tsize
) {
1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1137 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= kaddr
;
1141 if (taddr
- kaddr
< size
) {
1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1143 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= taddr
;
1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1153 * memory specified by the DIF program. The dst is assumed to be safe memory
1154 * that we can store to directly because it is managed by DTrace. As with
1155 * standard bcopy, overlapping copies are handled properly.
1158 dtrace_bcopy(const void *src
, void *dst
, size_t len
)
1162 const uint8_t *s2
= src
;
1166 *s1
++ = dtrace_load8((uintptr_t)s2
++);
1167 } while (--len
!= 0);
1173 *--s1
= dtrace_load8((uintptr_t)--s2
);
1174 } while (--len
!= 0);
1180 * Copy src to dst using safe memory accesses, up to either the specified
1181 * length, or the point that a nul byte is encountered. The src is assumed to
1182 * be unsafe memory specified by the DIF program. The dst is assumed to be
1183 * safe memory that we can store to directly because it is managed by DTrace.
1184 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1187 dtrace_strcpy(const void *src
, void *dst
, size_t len
)
1190 uint8_t *s1
= dst
, c
;
1191 const uint8_t *s2
= src
;
1194 *s1
++ = c
= dtrace_load8((uintptr_t)s2
++);
1195 } while (--len
!= 0 && c
!= '\0');
1200 * Copy src to dst, deriving the size and type from the specified (BYREF)
1201 * variable type. The src is assumed to be unsafe memory specified by the DIF
1202 * program. The dst is assumed to be DTrace variable memory that is of the
1203 * specified type; we assume that we can store to directly.
1206 dtrace_vcopy(void *src
, void *dst
, dtrace_diftype_t
*type
, size_t limit
)
1208 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1210 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1211 dtrace_strcpy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1213 dtrace_bcopy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1220 * safe memory that we can access directly because it is managed by DTrace.
1223 dtrace_bcmp(const void *s1
, const void *s2
, size_t len
)
1225 volatile uint16_t *flags
;
1227 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1232 if (s1
== NULL
|| s2
== NULL
)
1235 if (s1
!= s2
&& len
!= 0) {
1236 const uint8_t *ps1
= s1
;
1237 const uint8_t *ps2
= s2
;
1240 if (dtrace_load8((uintptr_t)ps1
++) != *ps2
++)
1242 } while (--len
!= 0 && !(*flags
& CPU_DTRACE_FAULT
));
1248 * Zero the specified region using a simple byte-by-byte loop. Note that this
1249 * is for safe DTrace-managed memory only.
1252 dtrace_bzero(void *dst
, size_t len
)
1256 for (cp
= dst
; len
!= 0; len
--)
1261 dtrace_add_128(uint64_t *addend1
, uint64_t *addend2
, uint64_t *sum
)
1265 result
[0] = addend1
[0] + addend2
[0];
1266 result
[1] = addend1
[1] + addend2
[1] +
1267 (result
[0] < addend1
[0] || result
[0] < addend2
[0] ? 1 : 0);
1274 * Shift the 128-bit value in a by b. If b is positive, shift left.
1275 * If b is negative, shift right.
1278 dtrace_shift_128(uint64_t *a
, int b
)
1288 a
[0] = a
[1] >> (b
- 64);
1292 mask
= 1LL << (64 - b
);
1294 a
[0] |= ((a
[1] & mask
) << (64 - b
));
1299 a
[1] = a
[0] << (b
- 64);
1303 mask
= a
[0] >> (64 - b
);
1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312 * use native multiplication on those, and then re-combine into the
1313 * resulting 128-bit value.
1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1322 dtrace_multiply_128(uint64_t factor1
, uint64_t factor2
, uint64_t *product
)
1324 uint64_t hi1
, hi2
, lo1
, lo2
;
1327 hi1
= factor1
>> 32;
1328 hi2
= factor2
>> 32;
1330 lo1
= factor1
& DT_MASK_LO
;
1331 lo2
= factor2
& DT_MASK_LO
;
1333 product
[0] = lo1
* lo2
;
1334 product
[1] = hi1
* hi2
;
1338 dtrace_shift_128(tmp
, 32);
1339 dtrace_add_128(product
, tmp
, product
);
1343 dtrace_shift_128(tmp
, 32);
1344 dtrace_add_128(product
, tmp
, product
);
1348 * This privilege check should be used by actions and subroutines to
1349 * verify that the user credentials of the process that enabled the
1350 * invoking ECB match the target credentials
1353 dtrace_priv_proc_common_user(dtrace_state_t
*state
)
1355 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1358 * We should always have a non-NULL state cred here, since if cred
1359 * is null (anonymous tracing), we fast-path bypass this routine.
1361 ASSERT(s_cr
!= NULL
);
1363 if ((cr
= CRED()) != NULL
&&
1364 s_cr
->cr_uid
== cr
->cr_uid
&&
1365 s_cr
->cr_uid
== cr
->cr_ruid
&&
1366 s_cr
->cr_uid
== cr
->cr_suid
&&
1367 s_cr
->cr_gid
== cr
->cr_gid
&&
1368 s_cr
->cr_gid
== cr
->cr_rgid
&&
1369 s_cr
->cr_gid
== cr
->cr_sgid
)
1376 * This privilege check should be used by actions and subroutines to
1377 * verify that the zone of the process that enabled the invoking ECB
1378 * matches the target credentials
1381 dtrace_priv_proc_common_zone(dtrace_state_t
*state
)
1383 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1386 * We should always have a non-NULL state cred here, since if cred
1387 * is null (anonymous tracing), we fast-path bypass this routine.
1389 ASSERT(s_cr
!= NULL
);
1391 if ((cr
= CRED()) != NULL
&& s_cr
->cr_zone
== cr
->cr_zone
)
1398 * This privilege check should be used by actions and subroutines to
1399 * verify that the process has not setuid or changed credentials.
1402 dtrace_priv_proc_common_nocd()
1406 if ((proc
= ttoproc(curthread
)) != NULL
&&
1407 !(proc
->p_flag
& SNOCD
))
1414 dtrace_priv_proc_destructive(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1416 int action
= state
->dts_cred
.dcr_action
;
1418 if (!(mstate
->dtms_access
& DTRACE_ACCESS_PROC
))
1421 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
) == 0) &&
1422 dtrace_priv_proc_common_zone(state
) == 0)
1425 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
) == 0) &&
1426 dtrace_priv_proc_common_user(state
) == 0)
1429 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
) == 0) &&
1430 dtrace_priv_proc_common_nocd() == 0)
1436 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1442 dtrace_priv_proc_control(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1444 if (mstate
->dtms_access
& DTRACE_ACCESS_PROC
) {
1445 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC_CONTROL
)
1448 if (dtrace_priv_proc_common_zone(state
) &&
1449 dtrace_priv_proc_common_user(state
) &&
1450 dtrace_priv_proc_common_nocd())
1454 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1460 dtrace_priv_proc(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
1462 if ((mstate
->dtms_access
& DTRACE_ACCESS_PROC
) &&
1463 (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
))
1466 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1472 dtrace_priv_kernel(dtrace_state_t
*state
)
1474 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL
)
1477 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1483 dtrace_priv_kernel_destructive(dtrace_state_t
*state
)
1485 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL_DESTRUCTIVE
)
1488 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1494 * Determine if the dte_cond of the specified ECB allows for processing of
1495 * the current probe to continue. Note that this routine may allow continued
1496 * processing, but with access(es) stripped from the mstate's dtms_access
1500 dtrace_priv_probe(dtrace_state_t
*state
, dtrace_mstate_t
*mstate
,
1503 dtrace_probe_t
*probe
= ecb
->dte_probe
;
1504 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
1505 dtrace_pops_t
*pops
= &prov
->dtpv_pops
;
1506 int mode
= DTRACE_MODE_NOPRIV_DROP
;
1508 ASSERT(ecb
->dte_cond
);
1510 if (pops
->dtps_mode
!= NULL
) {
1511 mode
= pops
->dtps_mode(prov
->dtpv_arg
,
1512 probe
->dtpr_id
, probe
->dtpr_arg
);
1514 ASSERT(mode
& (DTRACE_MODE_USER
| DTRACE_MODE_KERNEL
));
1515 ASSERT(mode
& (DTRACE_MODE_NOPRIV_RESTRICT
|
1516 DTRACE_MODE_NOPRIV_DROP
));
1520 * If the dte_cond bits indicate that this consumer is only allowed to
1521 * see user-mode firings of this probe, check that the probe was fired
1522 * while in a user context. If that's not the case, use the policy
1523 * specified by the provider to determine if we drop the probe or
1524 * merely restrict operation.
1526 if (ecb
->dte_cond
& DTRACE_COND_USERMODE
) {
1527 ASSERT(mode
!= DTRACE_MODE_NOPRIV_DROP
);
1529 if (!(mode
& DTRACE_MODE_USER
)) {
1530 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1533 mstate
->dtms_access
&= ~DTRACE_ACCESS_ARGS
;
1538 * This is more subtle than it looks. We have to be absolutely certain
1539 * that CRED() isn't going to change out from under us so it's only
1540 * legit to examine that structure if we're in constrained situations.
1541 * Currently, the only times we'll this check is if a non-super-user
1542 * has enabled the profile or syscall providers -- providers that
1543 * allow visibility of all processes. For the profile case, the check
1544 * above will ensure that we're examining a user context.
1546 if (ecb
->dte_cond
& DTRACE_COND_OWNER
) {
1548 cred_t
*s_cr
= state
->dts_cred
.dcr_cred
;
1551 ASSERT(s_cr
!= NULL
);
1553 if ((cr
= CRED()) == NULL
||
1554 s_cr
->cr_uid
!= cr
->cr_uid
||
1555 s_cr
->cr_uid
!= cr
->cr_ruid
||
1556 s_cr
->cr_uid
!= cr
->cr_suid
||
1557 s_cr
->cr_gid
!= cr
->cr_gid
||
1558 s_cr
->cr_gid
!= cr
->cr_rgid
||
1559 s_cr
->cr_gid
!= cr
->cr_sgid
||
1560 (proc
= ttoproc(curthread
)) == NULL
||
1561 (proc
->p_flag
& SNOCD
)) {
1562 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1565 mstate
->dtms_access
&= ~DTRACE_ACCESS_PROC
;
1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571 * in our zone, check to see if our mode policy is to restrict rather
1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573 * and DTRACE_ACCESS_ARGS
1575 if (ecb
->dte_cond
& DTRACE_COND_ZONEOWNER
) {
1577 cred_t
*s_cr
= state
->dts_cred
.dcr_cred
;
1579 ASSERT(s_cr
!= NULL
);
1581 if ((cr
= CRED()) == NULL
||
1582 s_cr
->cr_zone
->zone_id
!= cr
->cr_zone
->zone_id
) {
1583 if (mode
& DTRACE_MODE_NOPRIV_DROP
)
1586 mstate
->dtms_access
&=
1587 ~(DTRACE_ACCESS_PROC
| DTRACE_ACCESS_ARGS
);
1592 * By merits of being in this code path at all, we have limited
1593 * privileges. If the provider has indicated that limited privileges
1594 * are to denote restricted operation, strip off the ability to access
1597 if (mode
& DTRACE_MODE_LIMITEDPRIV_RESTRICT
)
1598 mstate
->dtms_access
&= ~DTRACE_ACCESS_ARGS
;
1604 * Note: not called from probe context. This function is called
1605 * asynchronously (and at a regular interval) from outside of probe context to
1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1607 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1610 dtrace_dynvar_clean(dtrace_dstate_t
*dstate
)
1612 dtrace_dynvar_t
*dirty
;
1613 dtrace_dstate_percpu_t
*dcpu
;
1614 dtrace_dynvar_t
**rinsep
;
1617 for (i
= 0; i
< NCPU
; i
++) {
1618 dcpu
= &dstate
->dtds_percpu
[i
];
1619 rinsep
= &dcpu
->dtdsc_rinsing
;
1622 * If the dirty list is NULL, there is no dirty work to do.
1624 if (dcpu
->dtdsc_dirty
== NULL
)
1627 if (dcpu
->dtdsc_rinsing
!= NULL
) {
1629 * If the rinsing list is non-NULL, then it is because
1630 * this CPU was selected to accept another CPU's
1631 * dirty list -- and since that time, dirty buffers
1632 * have accumulated. This is a highly unlikely
1633 * condition, but we choose to ignore the dirty
1634 * buffers -- they'll be picked up a future cleanse.
1639 if (dcpu
->dtdsc_clean
!= NULL
) {
1641 * If the clean list is non-NULL, then we're in a
1642 * situation where a CPU has done deallocations (we
1643 * have a non-NULL dirty list) but no allocations (we
1644 * also have a non-NULL clean list). We can't simply
1645 * move the dirty list into the clean list on this
1646 * CPU, yet we also don't want to allow this condition
1647 * to persist, lest a short clean list prevent a
1648 * massive dirty list from being cleaned (which in
1649 * turn could lead to otherwise avoidable dynamic
1650 * drops). To deal with this, we look for some CPU
1651 * with a NULL clean list, NULL dirty list, and NULL
1652 * rinsing list -- and then we borrow this CPU to
1653 * rinse our dirty list.
1655 for (j
= 0; j
< NCPU
; j
++) {
1656 dtrace_dstate_percpu_t
*rinser
;
1658 rinser
= &dstate
->dtds_percpu
[j
];
1660 if (rinser
->dtdsc_rinsing
!= NULL
)
1663 if (rinser
->dtdsc_dirty
!= NULL
)
1666 if (rinser
->dtdsc_clean
!= NULL
)
1669 rinsep
= &rinser
->dtdsc_rinsing
;
1675 * We were unable to find another CPU that
1676 * could accept this dirty list -- we are
1677 * therefore unable to clean it now.
1679 dtrace_dynvar_failclean
++;
1687 * Atomically move the dirty list aside.
1690 dirty
= dcpu
->dtdsc_dirty
;
1693 * Before we zap the dirty list, set the rinsing list.
1694 * (This allows for a potential assertion in
1695 * dtrace_dynvar(): if a free dynamic variable appears
1696 * on a hash chain, either the dirty list or the
1697 * rinsing list for some CPU must be non-NULL.)
1700 dtrace_membar_producer();
1701 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
,
1702 dirty
, NULL
) != dirty
);
1707 * We have no work to do; we can simply return.
1714 for (i
= 0; i
< NCPU
; i
++) {
1715 dcpu
= &dstate
->dtds_percpu
[i
];
1717 if (dcpu
->dtdsc_rinsing
== NULL
)
1721 * We are now guaranteed that no hash chain contains a pointer
1722 * into this dirty list; we can make it clean.
1724 ASSERT(dcpu
->dtdsc_clean
== NULL
);
1725 dcpu
->dtdsc_clean
= dcpu
->dtdsc_rinsing
;
1726 dcpu
->dtdsc_rinsing
= NULL
;
1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732 * This prevents a race whereby a CPU incorrectly decides that
1733 * the state should be something other than DTRACE_DSTATE_CLEAN
1734 * after dtrace_dynvar_clean() has completed.
1738 dstate
->dtds_state
= DTRACE_DSTATE_CLEAN
;
1742 * Depending on the value of the op parameter, this function looks-up,
1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1744 * allocation is requested, this function will return a pointer to a
1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746 * variable can be allocated. If NULL is returned, the appropriate counter
1747 * will be incremented.
1750 dtrace_dynvar(dtrace_dstate_t
*dstate
, uint_t nkeys
,
1751 dtrace_key_t
*key
, size_t dsize
, dtrace_dynvar_op_t op
,
1752 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1754 uint64_t hashval
= DTRACE_DYNHASH_VALID
;
1755 dtrace_dynhash_t
*hash
= dstate
->dtds_hash
;
1756 dtrace_dynvar_t
*free
, *new_free
, *next
, *dvar
, *start
, *prev
= NULL
;
1757 processorid_t me
= CPU
->cpu_id
, cpu
= me
;
1758 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[me
];
1759 size_t bucket
, ksize
;
1760 size_t chunksize
= dstate
->dtds_chunksize
;
1761 uintptr_t kdata
, lock
, nstate
;
1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1768 * algorithm. For the by-value portions, we perform the algorithm in
1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1770 * bit, and seems to have only a minute effect on distribution. For
1771 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772 * over each referenced byte. It's painful to do this, but it's much
1773 * better than pathological hash distribution. The efficacy of the
1774 * hashing algorithm (and a comparison with other algorithms) may be
1775 * found by running the ::dtrace_dynstat MDB dcmd.
1777 for (i
= 0; i
< nkeys
; i
++) {
1778 if (key
[i
].dttk_size
== 0) {
1779 uint64_t val
= key
[i
].dttk_value
;
1781 hashval
+= (val
>> 48) & 0xffff;
1782 hashval
+= (hashval
<< 10);
1783 hashval
^= (hashval
>> 6);
1785 hashval
+= (val
>> 32) & 0xffff;
1786 hashval
+= (hashval
<< 10);
1787 hashval
^= (hashval
>> 6);
1789 hashval
+= (val
>> 16) & 0xffff;
1790 hashval
+= (hashval
<< 10);
1791 hashval
^= (hashval
>> 6);
1793 hashval
+= val
& 0xffff;
1794 hashval
+= (hashval
<< 10);
1795 hashval
^= (hashval
>> 6);
1798 * This is incredibly painful, but it beats the hell
1799 * out of the alternative.
1801 uint64_t j
, size
= key
[i
].dttk_size
;
1802 uintptr_t base
= (uintptr_t)key
[i
].dttk_value
;
1804 if (!dtrace_canload(base
, size
, mstate
, vstate
))
1807 for (j
= 0; j
< size
; j
++) {
1808 hashval
+= dtrace_load8(base
+ j
);
1809 hashval
+= (hashval
<< 10);
1810 hashval
^= (hashval
>> 6);
1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
1818 hashval
+= (hashval
<< 3);
1819 hashval
^= (hashval
>> 11);
1820 hashval
+= (hashval
<< 15);
1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824 * comes out to be one of our two sentinel hash values. If this
1825 * actually happens, we set the hashval to be a value known to be a
1826 * non-sentinel value.
1828 if (hashval
== DTRACE_DYNHASH_FREE
|| hashval
== DTRACE_DYNHASH_SINK
)
1829 hashval
= DTRACE_DYNHASH_VALID
;
1832 * Yes, it's painful to do a divide here. If the cycle count becomes
1833 * important here, tricks can be pulled to reduce it. (However, it's
1834 * critical that hash collisions be kept to an absolute minimum;
1835 * they're much more painful than a divide.) It's better to have a
1836 * solution that generates few collisions and still keeps things
1837 * relatively simple.
1839 bucket
= hashval
% dstate
->dtds_hashsize
;
1841 if (op
== DTRACE_DYNVAR_DEALLOC
) {
1842 volatile uintptr_t *lockp
= &hash
[bucket
].dtdh_lock
;
1845 while ((lock
= *lockp
) & 1)
1848 if (dtrace_casptr((void *)lockp
,
1849 (void *)lock
, (void *)(lock
+ 1)) == (void *)lock
)
1853 dtrace_membar_producer();
1858 lock
= hash
[bucket
].dtdh_lock
;
1860 dtrace_membar_consumer();
1862 start
= hash
[bucket
].dtdh_chain
;
1863 ASSERT(start
!= NULL
&& (start
->dtdv_hashval
== DTRACE_DYNHASH_SINK
||
1864 start
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
||
1865 op
!= DTRACE_DYNVAR_DEALLOC
));
1867 for (dvar
= start
; dvar
!= NULL
; dvar
= dvar
->dtdv_next
) {
1868 dtrace_tuple_t
*dtuple
= &dvar
->dtdv_tuple
;
1869 dtrace_key_t
*dkey
= &dtuple
->dtt_key
[0];
1871 if (dvar
->dtdv_hashval
!= hashval
) {
1872 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_SINK
) {
1874 * We've reached the sink, and therefore the
1875 * end of the hash chain; we can kick out of
1876 * the loop knowing that we have seen a valid
1877 * snapshot of state.
1879 ASSERT(dvar
->dtdv_next
== NULL
);
1880 ASSERT(dvar
== &dtrace_dynhash_sink
);
1884 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
) {
1886 * We've gone off the rails: somewhere along
1887 * the line, one of the members of this hash
1888 * chain was deleted. Note that we could also
1889 * detect this by simply letting this loop run
1890 * to completion, as we would eventually hit
1891 * the end of the dirty list. However, we
1892 * want to avoid running the length of the
1893 * dirty list unnecessarily (it might be quite
1894 * long), so we catch this as early as
1895 * possible by detecting the hash marker. In
1896 * this case, we simply set dvar to NULL and
1897 * break; the conditional after the loop will
1898 * send us back to top.
1907 if (dtuple
->dtt_nkeys
!= nkeys
)
1910 for (i
= 0; i
< nkeys
; i
++, dkey
++) {
1911 if (dkey
->dttk_size
!= key
[i
].dttk_size
)
1912 goto next
; /* size or type mismatch */
1914 if (dkey
->dttk_size
!= 0) {
1916 (void *)(uintptr_t)key
[i
].dttk_value
,
1917 (void *)(uintptr_t)dkey
->dttk_value
,
1921 if (dkey
->dttk_value
!= key
[i
].dttk_value
)
1926 if (op
!= DTRACE_DYNVAR_DEALLOC
)
1929 ASSERT(dvar
->dtdv_next
== NULL
||
1930 dvar
->dtdv_next
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
);
1933 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1934 ASSERT(start
!= dvar
);
1935 ASSERT(prev
->dtdv_next
== dvar
);
1936 prev
->dtdv_next
= dvar
->dtdv_next
;
1938 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
,
1939 start
, dvar
->dtdv_next
) != start
) {
1941 * We have failed to atomically swing the
1942 * hash table head pointer, presumably because
1943 * of a conflicting allocation on another CPU.
1944 * We need to reread the hash chain and try
1951 dtrace_membar_producer();
1954 * Now set the hash value to indicate that it's free.
1956 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1957 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
1959 dtrace_membar_producer();
1962 * Set the next pointer to point at the dirty list, and
1963 * atomically swing the dirty pointer to the newly freed dvar.
1966 next
= dcpu
->dtdsc_dirty
;
1967 dvar
->dtdv_next
= next
;
1968 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, next
, dvar
) != next
);
1971 * Finally, unlock this hash bucket.
1973 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
1975 hash
[bucket
].dtdh_lock
++;
1985 * If dvar is NULL, it is because we went off the rails:
1986 * one of the elements that we traversed in the hash chain
1987 * was deleted while we were traversing it. In this case,
1988 * we assert that we aren't doing a dealloc (deallocs lock
1989 * the hash bucket to prevent themselves from racing with
1990 * one another), and retry the hash chain traversal.
1992 ASSERT(op
!= DTRACE_DYNVAR_DEALLOC
);
1996 if (op
!= DTRACE_DYNVAR_ALLOC
) {
1998 * If we are not to allocate a new variable, we want to
1999 * return NULL now. Before we return, check that the value
2000 * of the lock word hasn't changed. If it has, we may have
2001 * seen an inconsistent snapshot.
2003 if (op
== DTRACE_DYNVAR_NOALLOC
) {
2004 if (hash
[bucket
].dtdh_lock
!= lock
)
2007 ASSERT(op
== DTRACE_DYNVAR_DEALLOC
);
2008 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2010 hash
[bucket
].dtdh_lock
++;
2017 * We need to allocate a new dynamic variable. The size we need is the
2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020 * the size of any referred-to data (dsize). We then round the final
2021 * size up to the chunksize for allocation.
2023 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
2024 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
2027 * This should be pretty much impossible, but could happen if, say,
2028 * strange DIF specified the tuple. Ideally, this should be an
2029 * assertion and not an error condition -- but that requires that the
2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031 * bullet-proof. (That is, it must not be able to be fooled by
2032 * malicious DIF.) Given the lack of backwards branches in DIF,
2033 * solving this would presumably not amount to solving the Halting
2034 * Problem -- but it still seems awfully hard.
2036 if (sizeof (dtrace_dynvar_t
) + sizeof (dtrace_key_t
) * (nkeys
- 1) +
2037 ksize
+ dsize
> chunksize
) {
2038 dcpu
->dtdsc_drops
++;
2042 nstate
= DTRACE_DSTATE_EMPTY
;
2046 free
= dcpu
->dtdsc_free
;
2049 dtrace_dynvar_t
*clean
= dcpu
->dtdsc_clean
;
2052 if (clean
== NULL
) {
2054 * We're out of dynamic variable space on
2055 * this CPU. Unless we have tried all CPUs,
2056 * we'll try to allocate from a different
2059 switch (dstate
->dtds_state
) {
2060 case DTRACE_DSTATE_CLEAN
: {
2061 void *sp
= &dstate
->dtds_state
;
2066 if (dcpu
->dtdsc_dirty
!= NULL
&&
2067 nstate
== DTRACE_DSTATE_EMPTY
)
2068 nstate
= DTRACE_DSTATE_DIRTY
;
2070 if (dcpu
->dtdsc_rinsing
!= NULL
)
2071 nstate
= DTRACE_DSTATE_RINSING
;
2073 dcpu
= &dstate
->dtds_percpu
[cpu
];
2078 (void) dtrace_cas32(sp
,
2079 DTRACE_DSTATE_CLEAN
, nstate
);
2082 * To increment the correct bean
2083 * counter, take another lap.
2088 case DTRACE_DSTATE_DIRTY
:
2089 dcpu
->dtdsc_dirty_drops
++;
2092 case DTRACE_DSTATE_RINSING
:
2093 dcpu
->dtdsc_rinsing_drops
++;
2096 case DTRACE_DSTATE_EMPTY
:
2097 dcpu
->dtdsc_drops
++;
2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP
);
2106 * The clean list appears to be non-empty. We want to
2107 * move the clean list to the free list; we start by
2108 * moving the clean pointer aside.
2110 if (dtrace_casptr(&dcpu
->dtdsc_clean
,
2111 clean
, NULL
) != clean
) {
2113 * We are in one of two situations:
2115 * (a) The clean list was switched to the
2116 * free list by another CPU.
2118 * (b) The clean list was added to by the
2121 * In either of these situations, we can
2122 * just reattempt the free list allocation.
2127 ASSERT(clean
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2130 * Now we'll move the clean list to our free list.
2131 * It's impossible for this to fail: the only way
2132 * the free list can be updated is through this
2133 * code path, and only one CPU can own the clean list.
2134 * Thus, it would only be possible for this to fail if
2135 * this code were racing with dtrace_dynvar_clean().
2136 * (That is, if dtrace_dynvar_clean() updated the clean
2137 * list, and we ended up racing to update the free
2138 * list.) This race is prevented by the dtrace_sync()
2139 * in dtrace_dynvar_clean() -- which flushes the
2140 * owners of the clean lists out before resetting
2143 dcpu
= &dstate
->dtds_percpu
[me
];
2144 rval
= dtrace_casptr(&dcpu
->dtdsc_free
, NULL
, clean
);
2145 ASSERT(rval
== NULL
);
2150 new_free
= dvar
->dtdv_next
;
2151 } while (dtrace_casptr(&dcpu
->dtdsc_free
, free
, new_free
) != free
);
2154 * We have now allocated a new chunk. We copy the tuple keys into the
2155 * tuple array and copy any referenced key data into the data space
2156 * following the tuple array. As we do this, we relocate dttk_value
2157 * in the final tuple to point to the key data address in the chunk.
2159 kdata
= (uintptr_t)&dvar
->dtdv_tuple
.dtt_key
[nkeys
];
2160 dvar
->dtdv_data
= (void *)(kdata
+ ksize
);
2161 dvar
->dtdv_tuple
.dtt_nkeys
= nkeys
;
2163 for (i
= 0; i
< nkeys
; i
++) {
2164 dtrace_key_t
*dkey
= &dvar
->dtdv_tuple
.dtt_key
[i
];
2165 size_t kesize
= key
[i
].dttk_size
;
2169 (const void *)(uintptr_t)key
[i
].dttk_value
,
2170 (void *)kdata
, kesize
);
2171 dkey
->dttk_value
= kdata
;
2172 kdata
+= P2ROUNDUP(kesize
, sizeof (uint64_t));
2174 dkey
->dttk_value
= key
[i
].dttk_value
;
2177 dkey
->dttk_size
= kesize
;
2180 ASSERT(dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2181 dvar
->dtdv_hashval
= hashval
;
2182 dvar
->dtdv_next
= start
;
2184 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
, start
, dvar
) == start
)
2188 * The cas has failed. Either another CPU is adding an element to
2189 * this hash chain, or another CPU is deleting an element from this
2190 * hash chain. The simplest way to deal with both of these cases
2191 * (though not necessarily the most efficient) is to free our
2192 * allocated block and re-attempt it all. Note that the free is
2193 * to the dirty list and _not_ to the free list. This is to prevent
2194 * races with allocators, above.
2196 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2198 dtrace_membar_producer();
2201 free
= dcpu
->dtdsc_dirty
;
2202 dvar
->dtdv_next
= free
;
2203 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, free
, dvar
) != free
);
2210 dtrace_aggregate_min(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2212 if ((int64_t)nval
< (int64_t)*oval
)
2218 dtrace_aggregate_max(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2220 if ((int64_t)nval
> (int64_t)*oval
)
2225 dtrace_aggregate_quantize(uint64_t *quanta
, uint64_t nval
, uint64_t incr
)
2227 int i
, zero
= DTRACE_QUANTIZE_ZEROBUCKET
;
2228 int64_t val
= (int64_t)nval
;
2231 for (i
= 0; i
< zero
; i
++) {
2232 if (val
<= DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2238 for (i
= zero
+ 1; i
< DTRACE_QUANTIZE_NBUCKETS
; i
++) {
2239 if (val
< DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2240 quanta
[i
- 1] += incr
;
2245 quanta
[DTRACE_QUANTIZE_NBUCKETS
- 1] += incr
;
2253 dtrace_aggregate_lquantize(uint64_t *lquanta
, uint64_t nval
, uint64_t incr
)
2255 uint64_t arg
= *lquanta
++;
2256 int32_t base
= DTRACE_LQUANTIZE_BASE(arg
);
2257 uint16_t step
= DTRACE_LQUANTIZE_STEP(arg
);
2258 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(arg
);
2259 int32_t val
= (int32_t)nval
, level
;
2262 ASSERT(levels
!= 0);
2266 * This is an underflow.
2272 level
= (val
- base
) / step
;
2274 if (level
< levels
) {
2275 lquanta
[level
+ 1] += incr
;
2280 * This is an overflow.
2282 lquanta
[levels
+ 1] += incr
;
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor
, uint16_t low
,
2287 uint16_t high
, uint16_t nsteps
, int64_t value
)
2289 int64_t this = 1, last
, next
;
2290 int base
= 1, order
;
2292 ASSERT(factor
<= nsteps
);
2293 ASSERT(nsteps
% factor
== 0);
2295 for (order
= 0; order
< low
; order
++)
2299 * If our value is less than our factor taken to the power of the
2300 * low order of magnitude, it goes into the zeroth bucket.
2302 if (value
< (last
= this))
2305 for (this *= factor
; order
<= high
; order
++) {
2306 int nbuckets
= this > nsteps
? nsteps
: this;
2308 if ((next
= this * factor
) < this) {
2310 * We should not generally get log/linear quantizations
2311 * with a high magnitude that allows 64-bits to
2312 * overflow, but we nonetheless protect against this
2313 * by explicitly checking for overflow, and clamping
2314 * our value accordingly.
2321 * If our value lies within this order of magnitude,
2322 * determine its position by taking the offset within
2323 * the order of magnitude, dividing by the bucket
2324 * width, and adding to our (accumulated) base.
2326 return (base
+ (value
- last
) / (this / nbuckets
));
2329 base
+= nbuckets
- (nbuckets
/ factor
);
2335 * Our value is greater than or equal to our factor taken to the
2336 * power of one plus the high magnitude -- return the top bucket.
2342 dtrace_aggregate_llquantize(uint64_t *llquanta
, uint64_t nval
, uint64_t incr
)
2344 uint64_t arg
= *llquanta
++;
2345 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(arg
);
2346 uint16_t low
= DTRACE_LLQUANTIZE_LOW(arg
);
2347 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(arg
);
2348 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(arg
);
2350 llquanta
[dtrace_aggregate_llquantize_bucket(factor
,
2351 low
, high
, nsteps
, nval
)] += incr
;
2356 dtrace_aggregate_avg(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2364 dtrace_aggregate_stddev(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2366 int64_t snval
= (int64_t)nval
;
2373 * What we want to say here is:
2375 * data[2] += nval * nval;
2377 * But given that nval is 64-bit, we could easily overflow, so
2378 * we do this as 128-bit arithmetic.
2383 dtrace_multiply_128((uint64_t)snval
, (uint64_t)snval
, tmp
);
2384 dtrace_add_128(data
+ 2, tmp
, data
+ 2);
2389 dtrace_aggregate_count(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2396 dtrace_aggregate_sum(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2402 * Aggregate given the tuple in the principal data buffer, and the aggregating
2403 * action denoted by the specified dtrace_aggregation_t. The aggregation
2404 * buffer is specified as the buf parameter. This routine does not return
2405 * failure; if there is no space in the aggregation buffer, the data will be
2406 * dropped, and a corresponding counter incremented.
2409 dtrace_aggregate(dtrace_aggregation_t
*agg
, dtrace_buffer_t
*dbuf
,
2410 intptr_t offset
, dtrace_buffer_t
*buf
, uint64_t expr
, uint64_t arg
)
2412 dtrace_recdesc_t
*rec
= &agg
->dtag_action
.dta_rec
;
2413 uint32_t i
, ndx
, size
, fsize
;
2414 uint32_t align
= sizeof (uint64_t) - 1;
2415 dtrace_aggbuffer_t
*agb
;
2416 dtrace_aggkey_t
*key
;
2417 uint32_t hashval
= 0, limit
, isstr
;
2418 caddr_t tomax
, data
, kdata
;
2419 dtrace_actkind_t action
;
2420 dtrace_action_t
*act
;
2426 if (!agg
->dtag_hasarg
) {
2428 * Currently, only quantize() and lquantize() take additional
2429 * arguments, and they have the same semantics: an increment
2430 * value that defaults to 1 when not present. If additional
2431 * aggregating actions take arguments, the setting of the
2432 * default argument value will presumably have to become more
2438 action
= agg
->dtag_action
.dta_kind
- DTRACEACT_AGGREGATION
;
2439 size
= rec
->dtrd_offset
- agg
->dtag_base
;
2440 fsize
= size
+ rec
->dtrd_size
;
2442 ASSERT(dbuf
->dtb_tomax
!= NULL
);
2443 data
= dbuf
->dtb_tomax
+ offset
+ agg
->dtag_base
;
2445 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
2446 dtrace_buffer_drop(buf
);
2451 * The metastructure is always at the bottom of the buffer.
2453 agb
= (dtrace_aggbuffer_t
*)(tomax
+ buf
->dtb_size
-
2454 sizeof (dtrace_aggbuffer_t
));
2456 if (buf
->dtb_offset
== 0) {
2458 * We just kludge up approximately 1/8th of the size to be
2459 * buckets. If this guess ends up being routinely
2460 * off-the-mark, we may need to dynamically readjust this
2461 * based on past performance.
2463 uintptr_t hashsize
= (buf
->dtb_size
>> 3) / sizeof (uintptr_t);
2465 if ((uintptr_t)agb
- hashsize
* sizeof (dtrace_aggkey_t
*) <
2466 (uintptr_t)tomax
|| hashsize
== 0) {
2468 * We've been given a ludicrously small buffer;
2469 * increment our drop count and leave.
2471 dtrace_buffer_drop(buf
);
2476 * And now, a pathetic attempt to try to get a an odd (or
2477 * perchance, a prime) hash size for better hash distribution.
2479 if (hashsize
> (DTRACE_AGGHASHSIZE_SLEW
<< 3))
2480 hashsize
-= DTRACE_AGGHASHSIZE_SLEW
;
2482 agb
->dtagb_hashsize
= hashsize
;
2483 agb
->dtagb_hash
= (dtrace_aggkey_t
**)((uintptr_t)agb
-
2484 agb
->dtagb_hashsize
* sizeof (dtrace_aggkey_t
*));
2485 agb
->dtagb_free
= (uintptr_t)agb
->dtagb_hash
;
2487 for (i
= 0; i
< agb
->dtagb_hashsize
; i
++)
2488 agb
->dtagb_hash
[i
] = NULL
;
2491 ASSERT(agg
->dtag_first
!= NULL
);
2492 ASSERT(agg
->dtag_first
->dta_intuple
);
2495 * Calculate the hash value based on the key. Note that we _don't_
2496 * include the aggid in the hashing (but we will store it as part of
2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498 * algorithm: a simple, quick algorithm that has no known funnels, and
2499 * gets good distribution in practice. The efficacy of the hashing
2500 * algorithm (and a comparison with other algorithms) may be found by
2501 * running the ::dtrace_aggstat MDB dcmd.
2503 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2504 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2505 limit
= i
+ act
->dta_rec
.dtrd_size
;
2506 ASSERT(limit
<= size
);
2507 isstr
= DTRACEACT_ISSTRING(act
);
2509 for (; i
< limit
; i
++) {
2511 hashval
+= (hashval
<< 10);
2512 hashval
^= (hashval
>> 6);
2514 if (isstr
&& data
[i
] == '\0')
2519 hashval
+= (hashval
<< 3);
2520 hashval
^= (hashval
>> 11);
2521 hashval
+= (hashval
<< 15);
2524 * Yes, the divide here is expensive -- but it's generally the least
2525 * of the performance issues given the amount of data that we iterate
2526 * over to compute hash values, compare data, etc.
2528 ndx
= hashval
% agb
->dtagb_hashsize
;
2530 for (key
= agb
->dtagb_hash
[ndx
]; key
!= NULL
; key
= key
->dtak_next
) {
2531 ASSERT((caddr_t
)key
>= tomax
);
2532 ASSERT((caddr_t
)key
< tomax
+ buf
->dtb_size
);
2534 if (hashval
!= key
->dtak_hashval
|| key
->dtak_size
!= size
)
2537 kdata
= key
->dtak_data
;
2538 ASSERT(kdata
>= tomax
&& kdata
< tomax
+ buf
->dtb_size
);
2540 for (act
= agg
->dtag_first
; act
->dta_intuple
;
2541 act
= act
->dta_next
) {
2542 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2543 limit
= i
+ act
->dta_rec
.dtrd_size
;
2544 ASSERT(limit
<= size
);
2545 isstr
= DTRACEACT_ISSTRING(act
);
2547 for (; i
< limit
; i
++) {
2548 if (kdata
[i
] != data
[i
])
2551 if (isstr
&& data
[i
] == '\0')
2556 if (action
!= key
->dtak_action
) {
2558 * We are aggregating on the same value in the same
2559 * aggregation with two different aggregating actions.
2560 * (This should have been picked up in the compiler,
2561 * so we may be dealing with errant or devious DIF.)
2562 * This is an error condition; we indicate as much,
2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
2570 * This is a hit: we need to apply the aggregator to
2571 * the value at this key.
2573 agg
->dtag_aggregate((uint64_t *)(kdata
+ size
), expr
, arg
);
2580 * We didn't find it. We need to allocate some zero-filled space,
2581 * link it into the hash table appropriately, and apply the aggregator
2582 * to the (zero-filled) value.
2584 offs
= buf
->dtb_offset
;
2585 while (offs
& (align
- 1))
2586 offs
+= sizeof (uint32_t);
2589 * If we don't have enough room to both allocate a new key _and_
2590 * its associated data, increment the drop count and return.
2592 if ((uintptr_t)tomax
+ offs
+ fsize
>
2593 agb
->dtagb_free
- sizeof (dtrace_aggkey_t
)) {
2594 dtrace_buffer_drop(buf
);
2599 ASSERT(!(sizeof (dtrace_aggkey_t
) & (sizeof (uintptr_t) - 1)));
2600 key
= (dtrace_aggkey_t
*)(agb
->dtagb_free
- sizeof (dtrace_aggkey_t
));
2601 agb
->dtagb_free
-= sizeof (dtrace_aggkey_t
);
2603 key
->dtak_data
= kdata
= tomax
+ offs
;
2604 buf
->dtb_offset
= offs
+ fsize
;
2607 * Now copy the data across.
2609 *((dtrace_aggid_t
*)kdata
) = agg
->dtag_id
;
2611 for (i
= sizeof (dtrace_aggid_t
); i
< size
; i
++)
2615 * Because strings are not zeroed out by default, we need to iterate
2616 * looking for actions that store strings, and we need to explicitly
2617 * pad these strings out with zeroes.
2619 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2622 if (!DTRACEACT_ISSTRING(act
))
2625 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2626 limit
= i
+ act
->dta_rec
.dtrd_size
;
2627 ASSERT(limit
<= size
);
2629 for (nul
= 0; i
< limit
; i
++) {
2635 if (data
[i
] != '\0')
2642 for (i
= size
; i
< fsize
; i
++)
2645 key
->dtak_hashval
= hashval
;
2646 key
->dtak_size
= size
;
2647 key
->dtak_action
= action
;
2648 key
->dtak_next
= agb
->dtagb_hash
[ndx
];
2649 agb
->dtagb_hash
[ndx
] = key
;
2652 * Finally, apply the aggregator.
2654 *((uint64_t *)(key
->dtak_data
+ size
)) = agg
->dtag_initial
;
2655 agg
->dtag_aggregate((uint64_t *)(key
->dtak_data
+ size
), expr
, arg
);
2659 * Given consumer state, this routine finds a speculation in the INACTIVE
2660 * state and transitions it into the ACTIVE state. If there is no speculation
2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2662 * incremented -- it is up to the caller to take appropriate action.
2665 dtrace_speculation(dtrace_state_t
*state
)
2668 dtrace_speculation_state_t current
;
2669 uint32_t *stat
= &state
->dts_speculations_unavail
, count
;
2671 while (i
< state
->dts_nspeculations
) {
2672 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2674 current
= spec
->dtsp_state
;
2676 if (current
!= DTRACESPEC_INACTIVE
) {
2677 if (current
== DTRACESPEC_COMMITTINGMANY
||
2678 current
== DTRACESPEC_COMMITTING
||
2679 current
== DTRACESPEC_DISCARDING
)
2680 stat
= &state
->dts_speculations_busy
;
2685 if (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2686 current
, DTRACESPEC_ACTIVE
) == current
)
2691 * We couldn't find a speculation. If we found as much as a single
2692 * busy speculation buffer, we'll attribute this failure as "busy"
2693 * instead of "unavail".
2697 } while (dtrace_cas32(stat
, count
, count
+ 1) != count
);
2703 * This routine commits an active speculation. If the specified speculation
2704 * is not in a valid state to perform a commit(), this routine will silently do
2705 * nothing. The state of the specified speculation is transitioned according
2706 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2709 dtrace_speculation_commit(dtrace_state_t
*state
, processorid_t cpu
,
2710 dtrace_specid_t which
)
2712 dtrace_speculation_t
*spec
;
2713 dtrace_buffer_t
*src
, *dest
;
2714 uintptr_t daddr
, saddr
, dlimit
, slimit
;
2715 dtrace_speculation_state_t current
, new;
2722 if (which
> state
->dts_nspeculations
) {
2723 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2727 spec
= &state
->dts_speculations
[which
- 1];
2728 src
= &spec
->dtsp_buffer
[cpu
];
2729 dest
= &state
->dts_buffer
[cpu
];
2732 current
= spec
->dtsp_state
;
2734 if (current
== DTRACESPEC_COMMITTINGMANY
)
2738 case DTRACESPEC_INACTIVE
:
2739 case DTRACESPEC_DISCARDING
:
2742 case DTRACESPEC_COMMITTING
:
2744 * This is only possible if we are (a) commit()'ing
2745 * without having done a prior speculate() on this CPU
2746 * and (b) racing with another commit() on a different
2747 * CPU. There's nothing to do -- we just assert that
2750 ASSERT(src
->dtb_offset
== 0);
2753 case DTRACESPEC_ACTIVE
:
2754 new = DTRACESPEC_COMMITTING
;
2757 case DTRACESPEC_ACTIVEONE
:
2759 * This speculation is active on one CPU. If our
2760 * buffer offset is non-zero, we know that the one CPU
2761 * must be us. Otherwise, we are committing on a
2762 * different CPU from the speculate(), and we must
2763 * rely on being asynchronously cleaned.
2765 if (src
->dtb_offset
!= 0) {
2766 new = DTRACESPEC_COMMITTING
;
2771 case DTRACESPEC_ACTIVEMANY
:
2772 new = DTRACESPEC_COMMITTINGMANY
;
2778 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2779 current
, new) != current
);
2782 * We have set the state to indicate that we are committing this
2783 * speculation. Now reserve the necessary space in the destination
2786 if ((offs
= dtrace_buffer_reserve(dest
, src
->dtb_offset
,
2787 sizeof (uint64_t), state
, NULL
)) < 0) {
2788 dtrace_buffer_drop(dest
);
2793 * We have sufficient space to copy the speculative buffer into the
2794 * primary buffer. First, modify the speculative buffer, filling
2795 * in the timestamp of all entries with the current time. The data
2796 * must have the commit() time rather than the time it was traced,
2797 * so that all entries in the primary buffer are in timestamp order.
2799 timestamp
= dtrace_gethrtime();
2800 saddr
= (uintptr_t)src
->dtb_tomax
;
2801 slimit
= saddr
+ src
->dtb_offset
;
2802 while (saddr
< slimit
) {
2804 dtrace_rechdr_t
*dtrh
= (dtrace_rechdr_t
*)saddr
;
2806 if (dtrh
->dtrh_epid
== DTRACE_EPIDNONE
) {
2807 saddr
+= sizeof (dtrace_epid_t
);
2810 ASSERT3U(dtrh
->dtrh_epid
, <=, state
->dts_necbs
);
2811 size
= state
->dts_ecbs
[dtrh
->dtrh_epid
- 1]->dte_size
;
2813 ASSERT3U(saddr
+ size
, <=, slimit
);
2814 ASSERT3U(size
, >=, sizeof (dtrace_rechdr_t
));
2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh
), ==, UINT64_MAX
);
2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, timestamp
);
2823 * Copy the buffer across. (Note that this is a
2824 * highly subobtimal bcopy(); in the unlikely event that this becomes
2825 * a serious performance issue, a high-performance DTrace-specific
2826 * bcopy() should obviously be invented.)
2828 daddr
= (uintptr_t)dest
->dtb_tomax
+ offs
;
2829 dlimit
= daddr
+ src
->dtb_offset
;
2830 saddr
= (uintptr_t)src
->dtb_tomax
;
2833 * First, the aligned portion.
2835 while (dlimit
- daddr
>= sizeof (uint64_t)) {
2836 *((uint64_t *)daddr
) = *((uint64_t *)saddr
);
2838 daddr
+= sizeof (uint64_t);
2839 saddr
+= sizeof (uint64_t);
2843 * Now any left-over bit...
2845 while (dlimit
- daddr
)
2846 *((uint8_t *)daddr
++) = *((uint8_t *)saddr
++);
2849 * Finally, commit the reserved space in the destination buffer.
2851 dest
->dtb_offset
= offs
+ src
->dtb_offset
;
2855 * If we're lucky enough to be the only active CPU on this speculation
2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2858 if (current
== DTRACESPEC_ACTIVE
||
2859 (current
== DTRACESPEC_ACTIVEONE
&& new == DTRACESPEC_COMMITTING
)) {
2860 uint32_t rval
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2861 DTRACESPEC_COMMITTING
, DTRACESPEC_INACTIVE
);
2863 ASSERT(rval
== DTRACESPEC_COMMITTING
);
2866 src
->dtb_offset
= 0;
2867 src
->dtb_xamot_drops
+= src
->dtb_drops
;
2872 * This routine discards an active speculation. If the specified speculation
2873 * is not in a valid state to perform a discard(), this routine will silently
2874 * do nothing. The state of the specified speculation is transitioned
2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2878 dtrace_speculation_discard(dtrace_state_t
*state
, processorid_t cpu
,
2879 dtrace_specid_t which
)
2881 dtrace_speculation_t
*spec
;
2882 dtrace_speculation_state_t current
, new;
2883 dtrace_buffer_t
*buf
;
2888 if (which
> state
->dts_nspeculations
) {
2889 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2893 spec
= &state
->dts_speculations
[which
- 1];
2894 buf
= &spec
->dtsp_buffer
[cpu
];
2897 current
= spec
->dtsp_state
;
2900 case DTRACESPEC_INACTIVE
:
2901 case DTRACESPEC_COMMITTINGMANY
:
2902 case DTRACESPEC_COMMITTING
:
2903 case DTRACESPEC_DISCARDING
:
2906 case DTRACESPEC_ACTIVE
:
2907 case DTRACESPEC_ACTIVEMANY
:
2908 new = DTRACESPEC_DISCARDING
;
2911 case DTRACESPEC_ACTIVEONE
:
2912 if (buf
->dtb_offset
!= 0) {
2913 new = DTRACESPEC_INACTIVE
;
2915 new = DTRACESPEC_DISCARDING
;
2922 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2923 current
, new) != current
);
2925 buf
->dtb_offset
= 0;
2930 * Note: not called from probe context. This function is called
2931 * asynchronously from cross call context to clean any speculations that are
2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2937 dtrace_speculation_clean_here(dtrace_state_t
*state
)
2939 dtrace_icookie_t cookie
;
2940 processorid_t cpu
= CPU
->cpu_id
;
2941 dtrace_buffer_t
*dest
= &state
->dts_buffer
[cpu
];
2944 cookie
= dtrace_interrupt_disable();
2946 if (dest
->dtb_tomax
== NULL
) {
2947 dtrace_interrupt_enable(cookie
);
2951 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
2952 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2953 dtrace_buffer_t
*src
= &spec
->dtsp_buffer
[cpu
];
2955 if (src
->dtb_tomax
== NULL
)
2958 if (spec
->dtsp_state
== DTRACESPEC_DISCARDING
) {
2959 src
->dtb_offset
= 0;
2963 if (spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2966 if (src
->dtb_offset
== 0)
2969 dtrace_speculation_commit(state
, cpu
, i
+ 1);
2972 dtrace_interrupt_enable(cookie
);
2976 * Note: not called from probe context. This function is called
2977 * asynchronously (and at a regular interval) to clean any speculations that
2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2979 * is work to be done, it cross calls all CPUs to perform that work;
2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981 * INACTIVE state until they have been cleaned by all CPUs.
2984 dtrace_speculation_clean(dtrace_state_t
*state
)
2989 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
2990 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2992 ASSERT(!spec
->dtsp_cleaning
);
2994 if (spec
->dtsp_state
!= DTRACESPEC_DISCARDING
&&
2995 spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
2999 spec
->dtsp_cleaning
= 1;
3005 dtrace_xcall(DTRACE_CPUALL
,
3006 (dtrace_xcall_t
)dtrace_speculation_clean_here
, state
);
3009 * We now know that all CPUs have committed or discarded their
3010 * speculation buffers, as appropriate. We can now set the state
3013 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
3014 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3015 dtrace_speculation_state_t current
, new;
3017 if (!spec
->dtsp_cleaning
)
3020 current
= spec
->dtsp_state
;
3021 ASSERT(current
== DTRACESPEC_DISCARDING
||
3022 current
== DTRACESPEC_COMMITTINGMANY
);
3024 new = DTRACESPEC_INACTIVE
;
3026 rv
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
, current
, new);
3027 ASSERT(rv
== current
);
3028 spec
->dtsp_cleaning
= 0;
3033 * Called as part of a speculate() to get the speculative buffer associated
3034 * with a given speculation. Returns NULL if the specified speculation is not
3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3036 * the active CPU is not the specified CPU -- the speculation will be
3037 * atomically transitioned into the ACTIVEMANY state.
3039 static dtrace_buffer_t
*
3040 dtrace_speculation_buffer(dtrace_state_t
*state
, processorid_t cpuid
,
3041 dtrace_specid_t which
)
3043 dtrace_speculation_t
*spec
;
3044 dtrace_speculation_state_t current
, new;
3045 dtrace_buffer_t
*buf
;
3050 if (which
> state
->dts_nspeculations
) {
3051 cpu_core
[cpuid
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
3055 spec
= &state
->dts_speculations
[which
- 1];
3056 buf
= &spec
->dtsp_buffer
[cpuid
];
3059 current
= spec
->dtsp_state
;
3062 case DTRACESPEC_INACTIVE
:
3063 case DTRACESPEC_COMMITTINGMANY
:
3064 case DTRACESPEC_DISCARDING
:
3067 case DTRACESPEC_COMMITTING
:
3068 ASSERT(buf
->dtb_offset
== 0);
3071 case DTRACESPEC_ACTIVEONE
:
3073 * This speculation is currently active on one CPU.
3074 * Check the offset in the buffer; if it's non-zero,
3075 * that CPU must be us (and we leave the state alone).
3076 * If it's zero, assume that we're starting on a new
3077 * CPU -- and change the state to indicate that the
3078 * speculation is active on more than one CPU.
3080 if (buf
->dtb_offset
!= 0)
3083 new = DTRACESPEC_ACTIVEMANY
;
3086 case DTRACESPEC_ACTIVEMANY
:
3089 case DTRACESPEC_ACTIVE
:
3090 new = DTRACESPEC_ACTIVEONE
;
3096 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
3097 current
, new) != current
);
3099 ASSERT(new == DTRACESPEC_ACTIVEONE
|| new == DTRACESPEC_ACTIVEMANY
);
3104 * Return a string. In the event that the user lacks the privilege to access
3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106 * don't fail access checking.
3108 * dtrace_dif_variable() uses this routine as a helper for various
3109 * builtin values such as 'execname' and 'probefunc.'
3112 dtrace_dif_varstr(uintptr_t addr
, dtrace_state_t
*state
,
3113 dtrace_mstate_t
*mstate
)
3115 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3120 * The easy case: this probe is allowed to read all of memory, so
3121 * we can just return this as a vanilla pointer.
3123 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
3127 * This is the tougher case: we copy the string in question from
3128 * kernel memory into scratch memory and return it that way: this
3129 * ensures that we won't trip up when access checking tests the
3130 * BYREF return value.
3132 strsz
= dtrace_strlen((char *)addr
, size
) + 1;
3134 if (mstate
->dtms_scratch_ptr
+ strsz
>
3135 mstate
->dtms_scratch_base
+ mstate
->dtms_scratch_size
) {
3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3137 return ((uintptr_t)NULL
);
3140 dtrace_strcpy((const void *)addr
, (void *)mstate
->dtms_scratch_ptr
,
3142 ret
= mstate
->dtms_scratch_ptr
;
3143 mstate
->dtms_scratch_ptr
+= strsz
;
3148 * This function implements the DIF emulator's variable lookups. The emulator
3149 * passes a reserved variable identifier and optional built-in array index.
3152 dtrace_dif_variable(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
, uint64_t v
,
3156 * If we're accessing one of the uncached arguments, we'll turn this
3157 * into a reference in the args array.
3159 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
) {
3160 ndx
= v
- DIF_VAR_ARG0
;
3166 if (!(mstate
->dtms_access
& DTRACE_ACCESS_ARGS
)) {
3167 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|=
3172 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_ARGS
);
3173 if (ndx
>= sizeof (mstate
->dtms_arg
) /
3174 sizeof (mstate
->dtms_arg
[0])) {
3175 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3176 dtrace_provider_t
*pv
;
3179 pv
= mstate
->dtms_probe
->dtpr_provider
;
3180 if (pv
->dtpv_pops
.dtps_getargval
!= NULL
)
3181 val
= pv
->dtpv_pops
.dtps_getargval(pv
->dtpv_arg
,
3182 mstate
->dtms_probe
->dtpr_id
,
3183 mstate
->dtms_probe
->dtpr_arg
, ndx
, aframes
);
3185 val
= dtrace_getarg(ndx
, aframes
);
3188 * This is regrettably required to keep the compiler
3189 * from tail-optimizing the call to dtrace_getarg().
3190 * The condition always evaluates to true, but the
3191 * compiler has no way of figuring that out a priori.
3192 * (None of this would be necessary if the compiler
3193 * could be relied upon to _always_ tail-optimize
3194 * the call to dtrace_getarg() -- but it can't.)
3196 if (mstate
->dtms_probe
!= NULL
)
3202 return (mstate
->dtms_arg
[ndx
]);
3204 case DIF_VAR_UREGS
: {
3207 if (!dtrace_priv_proc(state
, mstate
))
3210 if ((lwp
= curthread
->t_lwp
) == NULL
) {
3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3212 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
=
3217 return (dtrace_getreg(lwp
->lwp_regs
, ndx
));
3220 case DIF_VAR_VMREGS
: {
3223 if (!dtrace_priv_kernel(state
))
3226 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3228 rval
= dtrace_getvmreg(ndx
,
3229 &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
);
3231 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3236 case DIF_VAR_CURTHREAD
:
3237 if (!dtrace_priv_proc(state
, mstate
))
3239 return ((uint64_t)(uintptr_t)curthread
);
3241 case DIF_VAR_TIMESTAMP
:
3242 if (!(mstate
->dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
3243 mstate
->dtms_timestamp
= dtrace_gethrtime();
3244 mstate
->dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
3246 return (mstate
->dtms_timestamp
);
3248 case DIF_VAR_VTIMESTAMP
:
3249 ASSERT(dtrace_vtime_references
!= 0);
3250 return (curthread
->t_dtrace_vtime
);
3252 case DIF_VAR_WALLTIMESTAMP
:
3253 if (!(mstate
->dtms_present
& DTRACE_MSTATE_WALLTIMESTAMP
)) {
3254 mstate
->dtms_walltimestamp
= dtrace_gethrestime();
3255 mstate
->dtms_present
|= DTRACE_MSTATE_WALLTIMESTAMP
;
3257 return (mstate
->dtms_walltimestamp
);
3260 if (!dtrace_priv_kernel(state
))
3262 if (!(mstate
->dtms_present
& DTRACE_MSTATE_IPL
)) {
3263 mstate
->dtms_ipl
= dtrace_getipl();
3264 mstate
->dtms_present
|= DTRACE_MSTATE_IPL
;
3266 return (mstate
->dtms_ipl
);
3269 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_EPID
);
3270 return (mstate
->dtms_epid
);
3273 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3274 return (mstate
->dtms_probe
->dtpr_id
);
3276 case DIF_VAR_STACKDEPTH
:
3277 if (!dtrace_priv_kernel(state
))
3279 if (!(mstate
->dtms_present
& DTRACE_MSTATE_STACKDEPTH
)) {
3280 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3282 mstate
->dtms_stackdepth
= dtrace_getstackdepth(aframes
);
3283 mstate
->dtms_present
|= DTRACE_MSTATE_STACKDEPTH
;
3285 return (mstate
->dtms_stackdepth
);
3287 case DIF_VAR_USTACKDEPTH
:
3288 if (!dtrace_priv_proc(state
, mstate
))
3290 if (!(mstate
->dtms_present
& DTRACE_MSTATE_USTACKDEPTH
)) {
3292 * See comment in DIF_VAR_PID.
3294 if (DTRACE_ANCHORED(mstate
->dtms_probe
) &&
3296 mstate
->dtms_ustackdepth
= 0;
3298 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3299 mstate
->dtms_ustackdepth
=
3300 dtrace_getustackdepth();
3301 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3303 mstate
->dtms_present
|= DTRACE_MSTATE_USTACKDEPTH
;
3305 return (mstate
->dtms_ustackdepth
);
3307 case DIF_VAR_CALLER
:
3308 if (!dtrace_priv_kernel(state
))
3310 if (!(mstate
->dtms_present
& DTRACE_MSTATE_CALLER
)) {
3311 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 2;
3313 if (!DTRACE_ANCHORED(mstate
->dtms_probe
)) {
3315 * If this is an unanchored probe, we are
3316 * required to go through the slow path:
3317 * dtrace_caller() only guarantees correct
3318 * results for anchored probes.
3322 dtrace_getpcstack(caller
, 2, aframes
,
3323 (uint32_t *)(uintptr_t)mstate
->dtms_arg
[0]);
3324 mstate
->dtms_caller
= caller
[1];
3325 } else if ((mstate
->dtms_caller
=
3326 dtrace_caller(aframes
)) == -1) {
3328 * We have failed to do this the quick way;
3329 * we must resort to the slower approach of
3330 * calling dtrace_getpcstack().
3334 dtrace_getpcstack(&caller
, 1, aframes
, NULL
);
3335 mstate
->dtms_caller
= caller
;
3338 mstate
->dtms_present
|= DTRACE_MSTATE_CALLER
;
3340 return (mstate
->dtms_caller
);
3342 case DIF_VAR_UCALLER
:
3343 if (!dtrace_priv_proc(state
, mstate
))
3346 if (!(mstate
->dtms_present
& DTRACE_MSTATE_UCALLER
)) {
3350 * dtrace_getupcstack() fills in the first uint64_t
3351 * with the current PID. The second uint64_t will
3352 * be the program counter at user-level. The third
3353 * uint64_t will contain the caller, which is what
3356 ustack
[2] = (uintptr_t)NULL
;
3357 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3358 dtrace_getupcstack(ustack
, 3);
3359 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3360 mstate
->dtms_ucaller
= ustack
[2];
3361 mstate
->dtms_present
|= DTRACE_MSTATE_UCALLER
;
3364 return (mstate
->dtms_ucaller
);
3366 case DIF_VAR_PROBEPROV
:
3367 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3368 return (dtrace_dif_varstr(
3369 (uintptr_t)mstate
->dtms_probe
->dtpr_provider
->dtpv_name
,
3372 case DIF_VAR_PROBEMOD
:
3373 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3374 return (dtrace_dif_varstr(
3375 (uintptr_t)mstate
->dtms_probe
->dtpr_mod
,
3378 case DIF_VAR_PROBEFUNC
:
3379 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3380 return (dtrace_dif_varstr(
3381 (uintptr_t)mstate
->dtms_probe
->dtpr_func
,
3384 case DIF_VAR_PROBENAME
:
3385 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3386 return (dtrace_dif_varstr(
3387 (uintptr_t)mstate
->dtms_probe
->dtpr_name
,
3391 if (!dtrace_priv_proc(state
, mstate
))
3395 * Note that we are assuming that an unanchored probe is
3396 * always due to a high-level interrupt. (And we're assuming
3397 * that there is only a single high level interrupt.)
3399 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3400 return (pid0
.pid_id
);
3403 * It is always safe to dereference one's own t_procp pointer:
3404 * it always points to a valid, allocated proc structure.
3405 * Further, it is always safe to dereference the p_pidp member
3406 * of one's own proc structure. (These are truisms becuase
3407 * threads and processes don't clean up their own state --
3408 * they leave that task to whomever reaps them.)
3410 return ((uint64_t)curthread
->t_procp
->p_pidp
->pid_id
);
3413 if (!dtrace_priv_proc(state
, mstate
))
3417 * See comment in DIF_VAR_PID.
3419 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3420 return (pid0
.pid_id
);
3423 * It is always safe to dereference one's own t_procp pointer:
3424 * it always points to a valid, allocated proc structure.
3425 * (This is true because threads don't clean up their own
3426 * state -- they leave that task to whomever reaps them.)
3428 return ((uint64_t)curthread
->t_procp
->p_ppid
);
3432 * See comment in DIF_VAR_PID.
3434 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3437 return ((uint64_t)curthread
->t_tid
);
3439 case DIF_VAR_EXECNAME
:
3440 if (!dtrace_priv_proc(state
, mstate
))
3444 * See comment in DIF_VAR_PID.
3446 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3447 return ((uint64_t)(uintptr_t)p0
.p_user
.u_comm
);
3450 * It is always safe to dereference one's own t_procp pointer:
3451 * it always points to a valid, allocated proc structure.
3452 * (This is true because threads don't clean up their own
3453 * state -- they leave that task to whomever reaps them.)
3455 return (dtrace_dif_varstr(
3456 (uintptr_t)curthread
->t_procp
->p_user
.u_comm
,
3459 case DIF_VAR_ZONENAME
:
3460 if (!dtrace_priv_proc(state
, mstate
))
3464 * See comment in DIF_VAR_PID.
3466 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3467 return ((uint64_t)(uintptr_t)p0
.p_zone
->zone_name
);
3470 * It is always safe to dereference one's own t_procp pointer:
3471 * it always points to a valid, allocated proc structure.
3472 * (This is true because threads don't clean up their own
3473 * state -- they leave that task to whomever reaps them.)
3475 return (dtrace_dif_varstr(
3476 (uintptr_t)curthread
->t_procp
->p_zone
->zone_name
,
3480 if (!dtrace_priv_proc(state
, mstate
))
3484 * See comment in DIF_VAR_PID.
3486 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3487 return ((uint64_t)p0
.p_cred
->cr_uid
);
3490 * It is always safe to dereference one's own t_procp pointer:
3491 * it always points to a valid, allocated proc structure.
3492 * (This is true because threads don't clean up their own
3493 * state -- they leave that task to whomever reaps them.)
3495 * Additionally, it is safe to dereference one's own process
3496 * credential, since this is never NULL after process birth.
3498 return ((uint64_t)curthread
->t_procp
->p_cred
->cr_uid
);
3501 if (!dtrace_priv_proc(state
, mstate
))
3505 * See comment in DIF_VAR_PID.
3507 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3508 return ((uint64_t)p0
.p_cred
->cr_gid
);
3511 * It is always safe to dereference one's own t_procp pointer:
3512 * it always points to a valid, allocated proc structure.
3513 * (This is true because threads don't clean up their own
3514 * state -- they leave that task to whomever reaps them.)
3516 * Additionally, it is safe to dereference one's own process
3517 * credential, since this is never NULL after process birth.
3519 return ((uint64_t)curthread
->t_procp
->p_cred
->cr_gid
);
3521 case DIF_VAR_ERRNO
: {
3523 if (!dtrace_priv_proc(state
, mstate
))
3527 * See comment in DIF_VAR_PID.
3529 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3533 * It is always safe to dereference one's own t_lwp pointer in
3534 * the event that this pointer is non-NULL. (This is true
3535 * because threads and lwps don't clean up their own state --
3536 * they leave that task to whomever reaps them.)
3538 if ((lwp
= curthread
->t_lwp
) == NULL
)
3541 return ((uint64_t)lwp
->lwp_errno
);
3544 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3550 dtrace_dif_variable_write(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
3551 uint64_t v
, uint64_t ndx
, uint64_t data
)
3554 case DIF_VAR_UREGS
: {
3557 if (dtrace_destructive_disallow
||
3558 !dtrace_priv_proc_control(state
, mstate
)) {
3562 if ((lwp
= curthread
->t_lwp
) == NULL
) {
3563 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3564 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= 0;
3568 dtrace_setreg(lwp
->lwp_regs
, ndx
, data
);
3573 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3578 typedef enum dtrace_json_state
{
3579 DTRACE_JSON_REST
= 1,
3582 DTRACE_JSON_STRING_ESCAPE
,
3583 DTRACE_JSON_STRING_ESCAPE_UNICODE
,
3587 DTRACE_JSON_IDENTIFIER
,
3589 DTRACE_JSON_NUMBER_FRAC
,
3590 DTRACE_JSON_NUMBER_EXP
,
3591 DTRACE_JSON_COLLECT_OBJECT
3592 } dtrace_json_state_t
;
3595 * This function possesses just enough knowledge about JSON to extract a single
3596 * value from a JSON string and store it in the scratch buffer. It is able
3597 * to extract nested object values, and members of arrays by index.
3599 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3600 * be looked up as we descend into the object tree. e.g.
3602 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3605 * The run time of this function must be bounded above by strsize to limit the
3606 * amount of work done in probe context. As such, it is implemented as a
3607 * simple state machine, reading one character at a time using safe loads
3608 * until we find the requested element, hit a parsing error or run off the
3609 * end of the object or string.
3611 * As there is no way for a subroutine to return an error without interrupting
3612 * clause execution, we simply return NULL in the event of a missing key or any
3613 * other error condition. Each NULL return in this function is commented with
3614 * the error condition it represents -- parsing or otherwise.
3616 * The set of states for the state machine closely matches the JSON
3617 * specification (http://json.org/). Briefly:
3620 * Skip whitespace until we find either a top-level Object, moving
3621 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3623 * DTRACE_JSON_OBJECT:
3624 * Locate the next key String in an Object. Sets a flag to denote
3625 * the next String as a key string and moves to DTRACE_JSON_STRING.
3627 * DTRACE_JSON_COLON:
3628 * Skip whitespace until we find the colon that separates key Strings
3629 * from their values. Once found, move to DTRACE_JSON_VALUE.
3631 * DTRACE_JSON_VALUE:
3632 * Detects the type of the next value (String, Number, Identifier, Object
3633 * or Array) and routes to the states that process that type. Here we also
3634 * deal with the element selector list if we are requested to traverse down
3635 * into the object tree.
3637 * DTRACE_JSON_COMMA:
3638 * Skip whitespace until we find the comma that separates key-value pairs
3639 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3640 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3641 * states return to this state at the end of their value, unless otherwise
3644 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3645 * Processes a Number literal from the JSON, including any exponent
3646 * component that may be present. Numbers are returned as strings, which
3647 * may be passed to strtoll() if an integer is required.
3649 * DTRACE_JSON_IDENTIFIER:
3650 * Processes a "true", "false" or "null" literal in the JSON.
3652 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3653 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3654 * Processes a String literal from the JSON, whether the String denotes
3655 * a key, a value or part of a larger Object. Handles all escape sequences
3656 * present in the specification, including four-digit unicode characters,
3657 * but merely includes the escape sequence without converting it to the
3658 * actual escaped character. If the String is flagged as a key, we
3659 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3661 * DTRACE_JSON_COLLECT_OBJECT:
3662 * This state collects an entire Object (or Array), correctly handling
3663 * embedded strings. If the full element selector list matches this nested
3664 * object, we return the Object in full as a string. If not, we use this
3665 * state to skip to the next value at this level and continue processing.
3667 * NOTE: This function uses various macros from strtolctype.h to manipulate
3668 * digit values, etc -- these have all been checked to ensure they make
3669 * no additional function calls.
3672 dtrace_json(uint64_t size
, uintptr_t json
, char *elemlist
, int nelems
,
3675 dtrace_json_state_t state
= DTRACE_JSON_REST
;
3676 int64_t array_elem
= INT64_MIN
;
3677 int64_t array_pos
= 0;
3678 uint8_t escape_unicount
= 0;
3679 boolean_t string_is_key
= B_FALSE
;
3680 boolean_t collect_object
= B_FALSE
;
3681 boolean_t found_key
= B_FALSE
;
3682 boolean_t in_array
= B_FALSE
;
3683 uint32_t braces
= 0, brackets
= 0;
3684 char *elem
= elemlist
;
3688 for (cur
= json
; cur
< json
+ size
; cur
++) {
3689 char cc
= dtrace_load8(cur
);
3694 case DTRACE_JSON_REST
:
3699 state
= DTRACE_JSON_OBJECT
;
3706 array_elem
= dtrace_strtoll(elem
, 10, size
);
3707 found_key
= array_elem
== 0 ? B_TRUE
: B_FALSE
;
3708 state
= DTRACE_JSON_VALUE
;
3713 * ERROR: expected to find a top-level object or array.
3716 case DTRACE_JSON_OBJECT
:
3721 state
= DTRACE_JSON_STRING
;
3722 string_is_key
= B_TRUE
;
3727 * ERROR: either the object did not start with a key
3728 * string, or we've run off the end of the object
3729 * without finding the requested key.
3732 case DTRACE_JSON_STRING
:
3735 state
= DTRACE_JSON_STRING_ESCAPE
;
3740 if (collect_object
) {
3742 * We don't reset the dest here, as
3743 * the string is part of a larger
3744 * object being collected.
3747 collect_object
= B_FALSE
;
3748 state
= DTRACE_JSON_COLLECT_OBJECT
;
3752 dd
= dest
; /* reset string buffer */
3753 if (string_is_key
) {
3754 if (dtrace_strncmp(dest
, elem
,
3757 } else if (found_key
) {
3760 * We expected an object, not
3767 state
= string_is_key
? DTRACE_JSON_COLON
:
3769 string_is_key
= B_FALSE
;
3775 case DTRACE_JSON_STRING_ESCAPE
:
3778 escape_unicount
= 0;
3779 state
= DTRACE_JSON_STRING_ESCAPE_UNICODE
;
3781 state
= DTRACE_JSON_STRING
;
3784 case DTRACE_JSON_STRING_ESCAPE_UNICODE
:
3785 if (!isxdigit(cc
)) {
3787 * ERROR: invalid unicode escape, expected
3788 * four valid hexidecimal digits.
3794 if (++escape_unicount
== 4)
3795 state
= DTRACE_JSON_STRING
;
3797 case DTRACE_JSON_COLON
:
3802 state
= DTRACE_JSON_VALUE
;
3807 * ERROR: expected a colon.
3810 case DTRACE_JSON_COMMA
:
3816 state
= DTRACE_JSON_VALUE
;
3817 if (++array_pos
== array_elem
)
3820 state
= DTRACE_JSON_OBJECT
;
3826 * ERROR: either we hit an unexpected character, or
3827 * we reached the end of the object or array without
3828 * finding the requested key.
3831 case DTRACE_JSON_IDENTIFIER
:
3838 dd
= dest
; /* reset string buffer */
3840 if (dtrace_strncmp(dest
, "true", 5) == 0 ||
3841 dtrace_strncmp(dest
, "false", 6) == 0 ||
3842 dtrace_strncmp(dest
, "null", 5) == 0) {
3846 * ERROR: We expected an object,
3847 * not this identifier.
3854 state
= DTRACE_JSON_COMMA
;
3860 * ERROR: we did not recognise the identifier as one
3861 * of those in the JSON specification.
3864 case DTRACE_JSON_NUMBER
:
3867 state
= DTRACE_JSON_NUMBER_FRAC
;
3871 if (cc
== 'x' || cc
== 'X') {
3873 * ERROR: specification explicitly excludes
3874 * hexidecimal or octal numbers.
3880 case DTRACE_JSON_NUMBER_FRAC
:
3881 if (cc
== 'e' || cc
== 'E') {
3883 state
= DTRACE_JSON_NUMBER_EXP
;
3887 if (cc
== '+' || cc
== '-') {
3889 * ERROR: expect sign as part of exponent only.
3894 case DTRACE_JSON_NUMBER_EXP
:
3895 if (isdigit(cc
) || cc
== '+' || cc
== '-') {
3901 dd
= dest
; /* reset string buffer */
3905 * ERROR: We expected an object, not
3914 state
= DTRACE_JSON_COMMA
;
3916 case DTRACE_JSON_VALUE
:
3920 if (cc
== '{' || cc
== '[') {
3921 if (nelems
> 1 && found_key
) {
3922 in_array
= cc
== '[' ? B_TRUE
: B_FALSE
;
3924 * If our element selector directs us
3925 * to descend into this nested object,
3926 * then move to the next selector
3927 * element in the list and restart the
3930 while (*elem
!= '\0')
3932 elem
++; /* skip the inter-element NUL */
3936 state
= DTRACE_JSON_VALUE
;
3938 array_elem
= dtrace_strtoll(
3940 found_key
= array_elem
== 0 ?
3943 found_key
= B_FALSE
;
3944 state
= DTRACE_JSON_OBJECT
;
3950 * Otherwise, we wish to either skip this
3951 * nested object or return it in full.
3958 state
= DTRACE_JSON_COLLECT_OBJECT
;
3963 state
= DTRACE_JSON_STRING
;
3969 * Here we deal with true, false and null.
3972 state
= DTRACE_JSON_IDENTIFIER
;
3976 if (cc
== '-' || isdigit(cc
)) {
3978 state
= DTRACE_JSON_NUMBER
;
3983 * ERROR: unexpected character at start of value.
3986 case DTRACE_JSON_COLLECT_OBJECT
:
3989 * ERROR: unexpected end of input.
3995 collect_object
= B_TRUE
;
3996 state
= DTRACE_JSON_STRING
;
4001 if (brackets
-- == 0) {
4003 * ERROR: unbalanced brackets.
4007 } else if (cc
== '}') {
4008 if (braces
-- == 0) {
4010 * ERROR: unbalanced braces.
4014 } else if (cc
== '{') {
4016 } else if (cc
== '[') {
4020 if (brackets
== 0 && braces
== 0) {
4025 dd
= dest
; /* reset string buffer */
4026 state
= DTRACE_JSON_COMMA
;
4035 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4036 * Notice that we don't bother validating the proper number of arguments or
4037 * their types in the tuple stack. This isn't needed because all argument
4038 * interpretation is safe because of our load safety -- the worst that can
4039 * happen is that a bogus program can obtain bogus results.
4042 dtrace_dif_subr(uint_t subr
, uint_t rd
, uint64_t *regs
,
4043 dtrace_key_t
*tupregs
, int nargs
,
4044 dtrace_mstate_t
*mstate
, dtrace_state_t
*state
)
4046 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
4047 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
4048 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
4062 regs
[rd
] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4065 case DIF_SUBR_MUTEX_OWNED
:
4066 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4068 regs
[rd
] = (uintptr_t)NULL
;
4072 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4073 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
))
4074 regs
[rd
] = MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
;
4076 regs
[rd
] = LOCK_HELD(&m
.mi
.m_spin
.m_spinlock
);
4079 case DIF_SUBR_MUTEX_OWNER
:
4080 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4082 regs
[rd
] = (uintptr_t)NULL
;
4086 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4087 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
) &&
4088 MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
)
4089 regs
[rd
] = (uintptr_t)MUTEX_OWNER(&m
.mi
);
4091 regs
[rd
] = (uintptr_t)NULL
;
4094 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE
:
4095 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4097 regs
[rd
] = (uintptr_t)NULL
;
4101 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4102 regs
[rd
] = MUTEX_TYPE_ADAPTIVE(&m
.mi
);
4105 case DIF_SUBR_MUTEX_TYPE_SPIN
:
4106 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
4108 regs
[rd
] = (uintptr_t)NULL
;
4112 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
4113 regs
[rd
] = MUTEX_TYPE_SPIN(&m
.mi
);
4116 case DIF_SUBR_RW_READ_HELD
: {
4119 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (uintptr_t),
4121 regs
[rd
] = (uintptr_t)NULL
;
4125 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4126 regs
[rd
] = _RW_READ_HELD(&r
.ri
, tmp
);
4130 case DIF_SUBR_RW_WRITE_HELD
:
4131 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
4133 regs
[rd
] = (uintptr_t)NULL
;
4137 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4138 regs
[rd
] = _RW_WRITE_HELD(&r
.ri
);
4141 case DIF_SUBR_RW_ISWRITER
:
4142 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
4144 regs
[rd
] = (uintptr_t)NULL
;
4148 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
4149 regs
[rd
] = _RW_ISWRITER(&r
.ri
);
4152 case DIF_SUBR_BCOPY
: {
4154 * We need to be sure that the destination is in the scratch
4155 * region -- no other region is allowed.
4157 uintptr_t src
= tupregs
[0].dttk_value
;
4158 uintptr_t dest
= tupregs
[1].dttk_value
;
4159 size_t size
= tupregs
[2].dttk_value
;
4161 if (!dtrace_inscratch(dest
, size
, mstate
)) {
4162 *flags
|= CPU_DTRACE_BADADDR
;
4167 if (!dtrace_canload(src
, size
, mstate
, vstate
)) {
4168 regs
[rd
] = (uintptr_t)NULL
;
4172 dtrace_bcopy((void *)src
, (void *)dest
, size
);
4176 case DIF_SUBR_ALLOCA
:
4177 case DIF_SUBR_COPYIN
: {
4178 uintptr_t dest
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
4180 tupregs
[subr
== DIF_SUBR_ALLOCA
? 0 : 1].dttk_value
;
4181 size_t scratch_size
= (dest
- mstate
->dtms_scratch_ptr
) + size
;
4184 * This action doesn't require any credential checks since
4185 * probes will not activate in user contexts to which the
4186 * enabling user does not have permissions.
4190 * Rounding up the user allocation size could have overflowed
4191 * a large, bogus allocation (like -1ULL) to 0.
4193 if (scratch_size
< size
||
4194 !DTRACE_INSCRATCH(mstate
, scratch_size
)) {
4195 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4196 regs
[rd
] = (uintptr_t)NULL
;
4200 if (subr
== DIF_SUBR_COPYIN
) {
4201 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4202 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
4203 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4206 mstate
->dtms_scratch_ptr
+= scratch_size
;
4211 case DIF_SUBR_COPYINTO
: {
4212 uint64_t size
= tupregs
[1].dttk_value
;
4213 uintptr_t dest
= tupregs
[2].dttk_value
;
4216 * This action doesn't require any credential checks since
4217 * probes will not activate in user contexts to which the
4218 * enabling user does not have permissions.
4220 if (!dtrace_inscratch(dest
, size
, mstate
)) {
4221 *flags
|= CPU_DTRACE_BADADDR
;
4226 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4227 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
4228 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4232 case DIF_SUBR_COPYINSTR
: {
4233 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
4234 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4236 if (nargs
> 1 && tupregs
[1].dttk_value
< size
)
4237 size
= tupregs
[1].dttk_value
+ 1;
4240 * This action doesn't require any credential checks since
4241 * probes will not activate in user contexts to which the
4242 * enabling user does not have permissions.
4244 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4245 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4246 regs
[rd
] = (uintptr_t)NULL
;
4250 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4251 dtrace_copyinstr(tupregs
[0].dttk_value
, dest
, size
, flags
);
4252 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4254 ((char *)dest
)[size
- 1] = '\0';
4255 mstate
->dtms_scratch_ptr
+= size
;
4260 case DIF_SUBR_MSGSIZE
:
4261 case DIF_SUBR_MSGDSIZE
: {
4262 uintptr_t baddr
= tupregs
[0].dttk_value
, daddr
;
4263 uintptr_t wptr
, rptr
;
4267 while (baddr
!= (uintptr_t)NULL
&&
4268 !(*flags
& CPU_DTRACE_FAULT
)) {
4269 if (!dtrace_canload(baddr
, sizeof (mblk_t
), mstate
,
4271 regs
[rd
] = (uintptr_t)NULL
;
4275 wptr
= dtrace_loadptr(baddr
+
4276 offsetof(mblk_t
, b_wptr
));
4278 rptr
= dtrace_loadptr(baddr
+
4279 offsetof(mblk_t
, b_rptr
));
4282 *flags
|= CPU_DTRACE_BADADDR
;
4283 *illval
= tupregs
[0].dttk_value
;
4287 daddr
= dtrace_loadptr(baddr
+
4288 offsetof(mblk_t
, b_datap
));
4290 baddr
= dtrace_loadptr(baddr
+
4291 offsetof(mblk_t
, b_cont
));
4294 * We want to prevent against denial-of-service here,
4295 * so we're only going to search the list for
4296 * dtrace_msgdsize_max mblks.
4298 if (cont
++ > dtrace_msgdsize_max
) {
4299 *flags
|= CPU_DTRACE_ILLOP
;
4303 if (subr
== DIF_SUBR_MSGDSIZE
) {
4304 if (dtrace_load8(daddr
+
4305 offsetof(dblk_t
, db_type
)) != M_DATA
)
4309 count
+= wptr
- rptr
;
4312 if (!(*flags
& CPU_DTRACE_FAULT
))
4318 case DIF_SUBR_PROGENYOF
: {
4319 pid_t pid
= tupregs
[0].dttk_value
;
4323 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4325 for (p
= curthread
->t_procp
; p
!= NULL
; p
= p
->p_parent
) {
4326 if (p
->p_pidp
->pid_id
== pid
) {
4332 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4338 case DIF_SUBR_SPECULATION
:
4339 regs
[rd
] = dtrace_speculation(state
);
4342 case DIF_SUBR_COPYOUT
: {
4343 uintptr_t kaddr
= tupregs
[0].dttk_value
;
4344 uintptr_t uaddr
= tupregs
[1].dttk_value
;
4345 uint64_t size
= tupregs
[2].dttk_value
;
4347 if (!dtrace_destructive_disallow
&&
4348 dtrace_priv_proc_control(state
, mstate
) &&
4349 !dtrace_istoxic(kaddr
, size
) &&
4350 dtrace_canload(kaddr
, size
, mstate
, vstate
)) {
4351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4352 dtrace_copyout(kaddr
, uaddr
, size
, flags
);
4353 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4358 case DIF_SUBR_COPYOUTSTR
: {
4359 uintptr_t kaddr
= tupregs
[0].dttk_value
;
4360 uintptr_t uaddr
= tupregs
[1].dttk_value
;
4361 uint64_t size
= tupregs
[2].dttk_value
;
4364 if (!dtrace_destructive_disallow
&&
4365 dtrace_priv_proc_control(state
, mstate
) &&
4366 !dtrace_istoxic(kaddr
, size
) &&
4367 dtrace_strcanload(kaddr
, size
, &lim
, mstate
, vstate
)) {
4368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
4369 dtrace_copyoutstr(kaddr
, uaddr
, lim
, flags
);
4370 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
4375 case DIF_SUBR_STRLEN
: {
4376 size_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4377 uintptr_t addr
= (uintptr_t)tupregs
[0].dttk_value
;
4380 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
4381 regs
[rd
] = (uintptr_t)NULL
;
4384 regs
[rd
] = dtrace_strlen((char *)addr
, lim
);
4389 case DIF_SUBR_STRCHR
:
4390 case DIF_SUBR_STRRCHR
: {
4392 * We're going to iterate over the string looking for the
4393 * specified character. We will iterate until we have reached
4394 * the string length or we have found the character. If this
4395 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4396 * of the specified character instead of the first.
4398 uintptr_t addr
= tupregs
[0].dttk_value
;
4399 uintptr_t addr_limit
;
4400 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4402 char c
, target
= (char)tupregs
[1].dttk_value
;
4404 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
4405 regs
[rd
] = (uintptr_t)NULL
;
4408 addr_limit
= addr
+ lim
;
4410 for (regs
[rd
] = (uintptr_t)NULL
; addr
< addr_limit
; addr
++) {
4411 if ((c
= dtrace_load8(addr
)) == target
) {
4414 if (subr
== DIF_SUBR_STRCHR
)
4424 case DIF_SUBR_STRSTR
:
4425 case DIF_SUBR_INDEX
:
4426 case DIF_SUBR_RINDEX
: {
4428 * We're going to iterate over the string looking for the
4429 * specified string. We will iterate until we have reached
4430 * the string length or we have found the string. (Yes, this
4431 * is done in the most naive way possible -- but considering
4432 * that the string we're searching for is likely to be
4433 * relatively short, the complexity of Rabin-Karp or similar
4434 * hardly seems merited.)
4436 char *addr
= (char *)(uintptr_t)tupregs
[0].dttk_value
;
4437 char *substr
= (char *)(uintptr_t)tupregs
[1].dttk_value
;
4438 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4439 size_t len
= dtrace_strlen(addr
, size
);
4440 size_t sublen
= dtrace_strlen(substr
, size
);
4441 char *limit
= addr
+ len
, *orig
= addr
;
4442 int notfound
= subr
== DIF_SUBR_STRSTR
? 0 : -1;
4445 regs
[rd
] = notfound
;
4447 if (!dtrace_canload((uintptr_t)addr
, len
+ 1, mstate
, vstate
)) {
4448 regs
[rd
] = (uintptr_t)NULL
;
4452 if (!dtrace_canload((uintptr_t)substr
, sublen
+ 1, mstate
,
4454 regs
[rd
] = (uintptr_t)NULL
;
4459 * strstr() and index()/rindex() have similar semantics if
4460 * both strings are the empty string: strstr() returns a
4461 * pointer to the (empty) string, and index() and rindex()
4462 * both return index 0 (regardless of any position argument).
4464 if (sublen
== 0 && len
== 0) {
4465 if (subr
== DIF_SUBR_STRSTR
)
4466 regs
[rd
] = (uintptr_t)addr
;
4468 regs
[rd
] = (uintptr_t)NULL
;
4472 if (subr
!= DIF_SUBR_STRSTR
) {
4473 if (subr
== DIF_SUBR_RINDEX
) {
4480 * Both index() and rindex() take an optional position
4481 * argument that denotes the starting position.
4484 int64_t pos
= (int64_t)tupregs
[2].dttk_value
;
4487 * If the position argument to index() is
4488 * negative, Perl implicitly clamps it at
4489 * zero. This semantic is a little surprising
4490 * given the special meaning of negative
4491 * positions to similar Perl functions like
4492 * substr(), but it appears to reflect a
4493 * notion that index() can start from a
4494 * negative index and increment its way up to
4495 * the string. Given this notion, Perl's
4496 * rindex() is at least self-consistent in
4497 * that it implicitly clamps positions greater
4498 * than the string length to be the string
4499 * length. Where Perl completely loses
4500 * coherence, however, is when the specified
4501 * substring is the empty string (""). In
4502 * this case, even if the position is
4503 * negative, rindex() returns 0 -- and even if
4504 * the position is greater than the length,
4505 * index() returns the string length. These
4506 * semantics violate the notion that index()
4507 * should never return a value less than the
4508 * specified position and that rindex() should
4509 * never return a value greater than the
4510 * specified position. (One assumes that
4511 * these semantics are artifacts of Perl's
4512 * implementation and not the results of
4513 * deliberate design -- it beggars belief that
4514 * even Larry Wall could desire such oddness.)
4515 * While in the abstract one would wish for
4516 * consistent position semantics across
4517 * substr(), index() and rindex() -- or at the
4518 * very least self-consistent position
4519 * semantics for index() and rindex() -- we
4520 * instead opt to keep with the extant Perl
4521 * semantics, in all their broken glory. (Do
4522 * we have more desire to maintain Perl's
4523 * semantics than Perl does? Probably.)
4525 if (subr
== DIF_SUBR_RINDEX
) {
4550 for (regs
[rd
] = notfound
; addr
!= limit
; addr
+= inc
) {
4551 if (dtrace_strncmp(addr
, substr
, sublen
) == 0) {
4552 if (subr
!= DIF_SUBR_STRSTR
) {
4554 * As D index() and rindex() are
4555 * modeled on Perl (and not on awk),
4556 * we return a zero-based (and not a
4557 * one-based) index. (For you Perl
4558 * weenies: no, we're not going to add
4559 * $[ -- and shouldn't you be at a con
4562 regs
[rd
] = (uintptr_t)(addr
- orig
);
4566 ASSERT(subr
== DIF_SUBR_STRSTR
);
4567 regs
[rd
] = (uintptr_t)addr
;
4575 case DIF_SUBR_STRTOK
: {
4576 uintptr_t addr
= tupregs
[0].dttk_value
;
4577 uintptr_t tokaddr
= tupregs
[1].dttk_value
;
4578 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4579 uintptr_t limit
, toklimit
;
4581 uint8_t c
, tokmap
[32]; /* 256 / 8 */
4582 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4586 * Check both the token buffer and (later) the input buffer,
4587 * since both could be non-scratch addresses.
4589 if (!dtrace_strcanload(tokaddr
, size
, &clim
, mstate
, vstate
)) {
4590 regs
[rd
] = (uintptr_t)NULL
;
4593 toklimit
= tokaddr
+ clim
;
4595 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4596 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4597 regs
[rd
] = (uintptr_t)NULL
;
4601 if (addr
== (uintptr_t)NULL
) {
4603 * If the address specified is NULL, we use our saved
4604 * strtok pointer from the mstate. Note that this
4605 * means that the saved strtok pointer is _only_
4606 * valid within multiple enablings of the same probe --
4607 * it behaves like an implicit clause-local variable.
4609 addr
= mstate
->dtms_strtok
;
4610 limit
= mstate
->dtms_strtok_limit
;
4613 * If the user-specified address is non-NULL we must
4614 * access check it. This is the only time we have
4615 * a chance to do so, since this address may reside
4616 * in the string table of this clause-- future calls
4617 * (when we fetch addr from mstate->dtms_strtok)
4618 * would fail this access check.
4620 if (!dtrace_strcanload(addr
, size
, &clim
, mstate
,
4622 regs
[rd
] = (uintptr_t)NULL
;
4625 limit
= addr
+ clim
;
4629 * First, zero the token map, and then process the token
4630 * string -- setting a bit in the map for every character
4631 * found in the token string.
4633 for (i
= 0; i
< sizeof (tokmap
); i
++)
4636 for (; tokaddr
< toklimit
; tokaddr
++) {
4637 if ((c
= dtrace_load8(tokaddr
)) == '\0')
4640 ASSERT((c
>> 3) < sizeof (tokmap
));
4641 tokmap
[c
>> 3] |= (1 << (c
& 0x7));
4644 for (; addr
< limit
; addr
++) {
4646 * We're looking for a character that is _not_
4647 * contained in the token string.
4649 if ((c
= dtrace_load8(addr
)) == '\0')
4652 if (!(tokmap
[c
>> 3] & (1 << (c
& 0x7))))
4658 * We reached the end of the string without finding
4659 * any character that was not in the token string.
4660 * We return NULL in this case, and we set the saved
4661 * address to NULL as well.
4663 regs
[rd
] = (uintptr_t)NULL
;
4664 mstate
->dtms_strtok
= (uintptr_t)NULL
;
4665 mstate
->dtms_strtok_limit
= (uintptr_t)NULL
;
4670 * From here on, we're copying into the destination string.
4672 for (i
= 0; addr
< limit
&& i
< size
- 1; addr
++) {
4673 if ((c
= dtrace_load8(addr
)) == '\0')
4676 if (tokmap
[c
>> 3] & (1 << (c
& 0x7)))
4685 regs
[rd
] = (uintptr_t)dest
;
4686 mstate
->dtms_scratch_ptr
+= size
;
4687 mstate
->dtms_strtok
= addr
;
4688 mstate
->dtms_strtok_limit
= limit
;
4692 case DIF_SUBR_SUBSTR
: {
4693 uintptr_t s
= tupregs
[0].dttk_value
;
4694 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4695 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4696 int64_t index
= (int64_t)tupregs
[1].dttk_value
;
4697 int64_t remaining
= (int64_t)tupregs
[2].dttk_value
;
4698 size_t len
= dtrace_strlen((char *)s
, size
);
4701 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4702 regs
[rd
] = (uintptr_t)NULL
;
4706 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4707 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4708 regs
[rd
] = (uintptr_t)NULL
;
4713 remaining
= (int64_t)size
;
4718 if (index
< 0 && index
+ remaining
> 0) {
4724 if (index
>= len
|| index
< 0) {
4726 } else if (remaining
< 0) {
4727 remaining
+= len
- index
;
4728 } else if (index
+ remaining
> size
) {
4729 remaining
= size
- index
;
4732 for (i
= 0; i
< remaining
; i
++) {
4733 if ((d
[i
] = dtrace_load8(s
+ index
+ i
)) == '\0')
4739 mstate
->dtms_scratch_ptr
+= size
;
4740 regs
[rd
] = (uintptr_t)d
;
4744 case DIF_SUBR_JSON
: {
4745 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4746 uintptr_t json
= tupregs
[0].dttk_value
;
4747 size_t jsonlen
= dtrace_strlen((char *)json
, size
);
4748 uintptr_t elem
= tupregs
[1].dttk_value
;
4749 size_t elemlen
= dtrace_strlen((char *)elem
, size
);
4751 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4752 char *elemlist
= (char *)mstate
->dtms_scratch_ptr
+ jsonlen
+ 1;
4753 char *ee
= elemlist
;
4757 if (!dtrace_canload(json
, jsonlen
+ 1, mstate
, vstate
) ||
4758 !dtrace_canload(elem
, elemlen
+ 1, mstate
, vstate
)) {
4759 regs
[rd
] = (uintptr_t)NULL
;
4763 if (!DTRACE_INSCRATCH(mstate
, jsonlen
+ 1 + elemlen
+ 1)) {
4764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4765 regs
[rd
] = (uintptr_t)NULL
;
4770 * Read the element selector and split it up into a packed list
4773 for (cur
= elem
; cur
< elem
+ elemlen
; cur
++) {
4774 char cc
= dtrace_load8(cur
);
4776 if (cur
== elem
&& cc
== '[') {
4778 * If the first element selector key is
4779 * actually an array index then ignore the
4788 if (cc
== '.' || cc
== '[') {
4797 if ((regs
[rd
] = (uintptr_t)dtrace_json(size
, json
, elemlist
,
4798 nelems
, dest
)) != (uintptr_t)NULL
)
4799 mstate
->dtms_scratch_ptr
+= jsonlen
+ 1;
4803 case DIF_SUBR_TOUPPER
:
4804 case DIF_SUBR_TOLOWER
: {
4805 uintptr_t s
= tupregs
[0].dttk_value
;
4806 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4807 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
4808 size_t len
= dtrace_strlen((char *)s
, size
);
4809 char lower
, upper
, convert
;
4812 if (subr
== DIF_SUBR_TOUPPER
) {
4822 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4823 regs
[rd
] = (uintptr_t)NULL
;
4827 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4828 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4829 regs
[rd
] = (uintptr_t)NULL
;
4833 for (i
= 0; i
< size
- 1; i
++) {
4834 if ((c
= dtrace_load8(s
+ i
)) == '\0')
4837 if (c
>= lower
&& c
<= upper
)
4838 c
= convert
+ (c
- lower
);
4845 regs
[rd
] = (uintptr_t)dest
;
4846 mstate
->dtms_scratch_ptr
+= size
;
4850 case DIF_SUBR_GETMAJOR
:
4852 regs
[rd
] = (tupregs
[0].dttk_value
>> NBITSMINOR64
) & MAXMAJ64
;
4854 regs
[rd
] = (tupregs
[0].dttk_value
>> NBITSMINOR
) & MAXMAJ
;
4858 case DIF_SUBR_GETMINOR
:
4860 regs
[rd
] = tupregs
[0].dttk_value
& MAXMIN64
;
4862 regs
[rd
] = tupregs
[0].dttk_value
& MAXMIN
;
4866 case DIF_SUBR_DDI_PATHNAME
: {
4868 * This one is a galactic mess. We are going to roughly
4869 * emulate ddi_pathname(), but it's made more complicated
4870 * by the fact that we (a) want to include the minor name and
4871 * (b) must proceed iteratively instead of recursively.
4873 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
4874 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4875 char *start
= (char *)dest
, *end
= start
+ size
- 1;
4876 uintptr_t daddr
= tupregs
[0].dttk_value
;
4877 int64_t minor
= (int64_t)tupregs
[1].dttk_value
;
4879 int i
, len
, depth
= 0;
4882 * Due to all the pointer jumping we do and context we must
4883 * rely upon, we just mandate that the user must have kernel
4884 * read privileges to use this routine.
4886 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) == 0) {
4887 *flags
|= CPU_DTRACE_KPRIV
;
4889 regs
[rd
] = (uintptr_t)NULL
;
4892 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4893 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4894 regs
[rd
] = (uintptr_t)NULL
;
4901 * We want to have a name for the minor. In order to do this,
4902 * we need to walk the minor list from the devinfo. We want
4903 * to be sure that we don't infinitely walk a circular list,
4904 * so we check for circularity by sending a scout pointer
4905 * ahead two elements for every element that we iterate over;
4906 * if the list is circular, these will ultimately point to the
4907 * same element. You may recognize this little trick as the
4908 * answer to a stupid interview question -- one that always
4909 * seems to be asked by those who had to have it laboriously
4910 * explained to them, and who can't even concisely describe
4911 * the conditions under which one would be forced to resort to
4912 * this technique. Needless to say, those conditions are
4913 * found here -- and probably only here. Is this the only use
4914 * of this infamous trick in shipping, production code? If it
4915 * isn't, it probably should be...
4918 uintptr_t maddr
= dtrace_loadptr(daddr
+
4919 offsetof(struct dev_info
, devi_minor
));
4921 uintptr_t next
= offsetof(struct ddi_minor_data
, next
);
4922 uintptr_t name
= offsetof(struct ddi_minor_data
,
4923 d_minor
) + offsetof(struct ddi_minor
, name
);
4924 uintptr_t dev
= offsetof(struct ddi_minor_data
,
4925 d_minor
) + offsetof(struct ddi_minor
, dev
);
4928 if (maddr
!= (uintptr_t)NULL
)
4929 scout
= dtrace_loadptr(maddr
+ next
);
4931 while (maddr
!= (uintptr_t)NULL
&&
4932 !(*flags
& CPU_DTRACE_FAULT
)) {
4935 m
= dtrace_load64(maddr
+ dev
) & MAXMIN64
;
4937 m
= dtrace_load32(maddr
+ dev
) & MAXMIN
;
4940 maddr
= dtrace_loadptr(maddr
+ next
);
4942 if (scout
== (uintptr_t)NULL
)
4945 scout
= dtrace_loadptr(scout
+ next
);
4947 if (scout
== (uintptr_t)NULL
)
4950 scout
= dtrace_loadptr(scout
+ next
);
4952 if (scout
== (uintptr_t)NULL
)
4955 if (scout
== maddr
) {
4956 *flags
|= CPU_DTRACE_ILLOP
;
4964 * We have the minor data. Now we need to
4965 * copy the minor's name into the end of the
4968 s
= (char *)dtrace_loadptr(maddr
+ name
);
4969 len
= dtrace_strlen(s
, size
);
4971 if (*flags
& CPU_DTRACE_FAULT
)
4975 if ((end
-= (len
+ 1)) < start
)
4981 for (i
= 1; i
<= len
; i
++)
4982 end
[i
] = dtrace_load8((uintptr_t)s
++);
4987 while (daddr
!= (uintptr_t)NULL
&&
4988 !(*flags
& CPU_DTRACE_FAULT
)) {
4989 ddi_node_state_t devi_state
;
4991 devi_state
= dtrace_load32(daddr
+
4992 offsetof(struct dev_info
, devi_node_state
));
4994 if (*flags
& CPU_DTRACE_FAULT
)
4997 if (devi_state
>= DS_INITIALIZED
) {
4998 s
= (char *)dtrace_loadptr(daddr
+
4999 offsetof(struct dev_info
, devi_addr
));
5000 len
= dtrace_strlen(s
, size
);
5002 if (*flags
& CPU_DTRACE_FAULT
)
5006 if ((end
-= (len
+ 1)) < start
)
5012 for (i
= 1; i
<= len
; i
++)
5013 end
[i
] = dtrace_load8((uintptr_t)s
++);
5017 * Now for the node name...
5019 s
= (char *)dtrace_loadptr(daddr
+
5020 offsetof(struct dev_info
, devi_node_name
));
5022 daddr
= dtrace_loadptr(daddr
+
5023 offsetof(struct dev_info
, devi_parent
));
5026 * If our parent is NULL (that is, if we're the root
5027 * node), we're going to use the special path
5030 if (daddr
== (uintptr_t)NULL
)
5033 len
= dtrace_strlen(s
, size
);
5034 if (*flags
& CPU_DTRACE_FAULT
)
5037 if ((end
-= (len
+ 1)) < start
)
5040 for (i
= 1; i
<= len
; i
++)
5041 end
[i
] = dtrace_load8((uintptr_t)s
++);
5044 if (depth
++ > dtrace_devdepth_max
) {
5045 *flags
|= CPU_DTRACE_ILLOP
;
5051 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5053 if (daddr
== (uintptr_t)NULL
) {
5054 regs
[rd
] = (uintptr_t)end
;
5055 mstate
->dtms_scratch_ptr
+= size
;
5061 case DIF_SUBR_STRJOIN
: {
5062 char *d
= (char *)mstate
->dtms_scratch_ptr
;
5063 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5064 uintptr_t s1
= tupregs
[0].dttk_value
;
5065 uintptr_t s2
= tupregs
[1].dttk_value
;
5070 if (!dtrace_strcanload(s1
, size
, &lim1
, mstate
, vstate
) ||
5071 !dtrace_strcanload(s2
, size
, &lim2
, mstate
, vstate
)) {
5072 regs
[rd
] = (uintptr_t)NULL
;
5076 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5077 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5078 regs
[rd
] = (uintptr_t)NULL
;
5084 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5085 regs
[rd
] = (uintptr_t)NULL
;
5088 c
= (i
>= lim1
) ? '\0' : dtrace_load8(s1
++);
5089 if ((d
[i
++] = c
) == '\0') {
5097 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5098 regs
[rd
] = (uintptr_t)NULL
;
5102 c
= (j
++ >= lim2
) ? '\0' : dtrace_load8(s2
++);
5103 if ((d
[i
++] = c
) == '\0')
5108 mstate
->dtms_scratch_ptr
+= i
;
5109 regs
[rd
] = (uintptr_t)d
;
5115 case DIF_SUBR_STRTOLL
: {
5116 uintptr_t s
= tupregs
[0].dttk_value
;
5117 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5122 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
5123 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5124 *flags
|= CPU_DTRACE_ILLOP
;
5129 if (!dtrace_strcanload(s
, size
, &lim
, mstate
, vstate
)) {
5130 regs
[rd
] = INT64_MIN
;
5134 regs
[rd
] = dtrace_strtoll((char *)s
, base
, lim
);
5138 case DIF_SUBR_LLTOSTR
: {
5139 int64_t i
= (int64_t)tupregs
[0].dttk_value
;
5140 uint64_t val
, digit
;
5141 uint64_t size
= 65; /* enough room for 2^64 in binary */
5142 char *end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5146 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
5147 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5148 *flags
|= CPU_DTRACE_ILLOP
;
5153 val
= (base
== 10 && i
< 0) ? i
* -1 : i
;
5155 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5156 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5157 regs
[rd
] = (uintptr_t)NULL
;
5161 for (*end
-- = '\0'; val
; val
/= base
) {
5162 if ((digit
= val
% base
) <= '9' - '0') {
5163 *end
-- = '0' + digit
;
5165 *end
-- = 'a' + (digit
- ('9' - '0') - 1);
5169 if (i
== 0 && base
== 16)
5175 if (i
== 0 || base
== 8 || base
== 16)
5178 if (i
< 0 && base
== 10)
5181 regs
[rd
] = (uintptr_t)end
+ 1;
5182 mstate
->dtms_scratch_ptr
+= size
;
5186 case DIF_SUBR_HTONS
:
5187 case DIF_SUBR_NTOHS
:
5189 regs
[rd
] = (uint16_t)tupregs
[0].dttk_value
;
5191 regs
[rd
] = DT_BSWAP_16((uint16_t)tupregs
[0].dttk_value
);
5196 case DIF_SUBR_HTONL
:
5197 case DIF_SUBR_NTOHL
:
5199 regs
[rd
] = (uint32_t)tupregs
[0].dttk_value
;
5201 regs
[rd
] = DT_BSWAP_32((uint32_t)tupregs
[0].dttk_value
);
5206 case DIF_SUBR_HTONLL
:
5207 case DIF_SUBR_NTOHLL
:
5209 regs
[rd
] = (uint64_t)tupregs
[0].dttk_value
;
5211 regs
[rd
] = DT_BSWAP_64((uint64_t)tupregs
[0].dttk_value
);
5216 case DIF_SUBR_DIRNAME
:
5217 case DIF_SUBR_BASENAME
: {
5218 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
5219 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5220 uintptr_t src
= tupregs
[0].dttk_value
;
5221 int i
, j
, len
= dtrace_strlen((char *)src
, size
);
5222 int lastbase
= -1, firstbase
= -1, lastdir
= -1;
5225 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
5226 regs
[rd
] = (uintptr_t)NULL
;
5230 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5231 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5232 regs
[rd
] = (uintptr_t)NULL
;
5237 * The basename and dirname for a zero-length string is
5242 src
= (uintptr_t)".";
5246 * Start from the back of the string, moving back toward the
5247 * front until we see a character that isn't a slash. That
5248 * character is the last character in the basename.
5250 for (i
= len
- 1; i
>= 0; i
--) {
5251 if (dtrace_load8(src
+ i
) != '/')
5259 * Starting from the last character in the basename, move
5260 * towards the front until we find a slash. The character
5261 * that we processed immediately before that is the first
5262 * character in the basename.
5264 for (; i
>= 0; i
--) {
5265 if (dtrace_load8(src
+ i
) == '/')
5273 * Now keep going until we find a non-slash character. That
5274 * character is the last character in the dirname.
5276 for (; i
>= 0; i
--) {
5277 if (dtrace_load8(src
+ i
) != '/')
5284 ASSERT(!(lastbase
== -1 && firstbase
!= -1));
5285 ASSERT(!(firstbase
== -1 && lastdir
!= -1));
5287 if (lastbase
== -1) {
5289 * We didn't find a non-slash character. We know that
5290 * the length is non-zero, so the whole string must be
5291 * slashes. In either the dirname or the basename
5292 * case, we return '/'.
5294 ASSERT(firstbase
== -1);
5295 firstbase
= lastbase
= lastdir
= 0;
5298 if (firstbase
== -1) {
5300 * The entire string consists only of a basename
5301 * component. If we're looking for dirname, we need
5302 * to change our string to be just "."; if we're
5303 * looking for a basename, we'll just set the first
5304 * character of the basename to be 0.
5306 if (subr
== DIF_SUBR_DIRNAME
) {
5307 ASSERT(lastdir
== -1);
5308 src
= (uintptr_t)".";
5315 if (subr
== DIF_SUBR_DIRNAME
) {
5316 if (lastdir
== -1) {
5318 * We know that we have a slash in the name --
5319 * or lastdir would be set to 0, above. And
5320 * because lastdir is -1, we know that this
5321 * slash must be the first character. (That
5322 * is, the full string must be of the form
5323 * "/basename".) In this case, the last
5324 * character of the directory name is 0.
5332 ASSERT(subr
== DIF_SUBR_BASENAME
);
5333 ASSERT(firstbase
!= -1 && lastbase
!= -1);
5338 for (i
= start
, j
= 0; i
<= end
&& j
< size
- 1; i
++, j
++)
5339 dest
[j
] = dtrace_load8(src
+ i
);
5342 regs
[rd
] = (uintptr_t)dest
;
5343 mstate
->dtms_scratch_ptr
+= size
;
5347 case DIF_SUBR_GETF
: {
5348 uintptr_t fd
= tupregs
[0].dttk_value
;
5349 uf_info_t
*finfo
= &curthread
->t_procp
->p_user
.u_finfo
;
5352 if (!dtrace_priv_proc(state
, mstate
)) {
5353 regs
[rd
] = (uintptr_t)NULL
;
5358 * This is safe because fi_nfiles only increases, and the
5359 * fi_list array is not freed when the array size doubles.
5360 * (See the comment in flist_grow() for details on the
5361 * management of the u_finfo structure.)
5363 fp
= fd
< finfo
->fi_nfiles
? finfo
->fi_list
[fd
].uf_file
: NULL
;
5365 mstate
->dtms_getf
= fp
;
5366 regs
[rd
] = (uintptr_t)fp
;
5370 case DIF_SUBR_CLEANPATH
: {
5371 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
5372 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5373 uintptr_t src
= tupregs
[0].dttk_value
;
5378 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
5379 regs
[rd
] = (uintptr_t)NULL
;
5383 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5384 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5385 regs
[rd
] = (uintptr_t)NULL
;
5390 * Move forward, loading each character.
5393 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5395 if (j
+ 5 >= size
) /* 5 = strlen("/..c\0") */
5403 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5407 * We have two slashes -- we can just advance
5408 * to the next character.
5415 * This is not "." and it's not ".." -- we can
5416 * just store the "/" and this character and
5424 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5428 * This is a "/./" component. We're not going
5429 * to store anything in the destination buffer;
5430 * we're just going to go to the next component.
5437 * This is not ".." -- we can just store the
5438 * "/." and this character and continue
5447 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
5449 if (c
!= '/' && c
!= '\0') {
5451 * This is not ".." -- it's "..[mumble]".
5452 * We'll store the "/.." and this character
5453 * and continue processing.
5463 * This is "/../" or "/..\0". We need to back up
5464 * our destination pointer until we find a "/".
5467 while (j
!= 0 && dest
[--j
] != '/')
5472 } while (c
!= '\0');
5476 if (mstate
->dtms_getf
!= NULL
&&
5477 !(mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) &&
5478 (z
= state
->dts_cred
.dcr_cred
->cr_zone
) != kcred
->cr_zone
) {
5480 * If we've done a getf() as a part of this ECB and we
5481 * don't have kernel access (and we're not in the global
5482 * zone), check if the path we cleaned up begins with
5483 * the zone's root path, and trim it off if so. Note
5484 * that this is an output cleanliness issue, not a
5485 * security issue: knowing one's zone root path does
5486 * not enable privilege escalation.
5488 if (strstr(dest
, z
->zone_rootpath
) == dest
)
5489 dest
+= strlen(z
->zone_rootpath
) - 1;
5492 regs
[rd
] = (uintptr_t)dest
;
5493 mstate
->dtms_scratch_ptr
+= size
;
5497 case DIF_SUBR_INET_NTOA
:
5498 case DIF_SUBR_INET_NTOA6
:
5499 case DIF_SUBR_INET_NTOP
: {
5504 if (subr
== DIF_SUBR_INET_NTOP
) {
5505 af
= (int)tupregs
[0].dttk_value
;
5508 af
= subr
== DIF_SUBR_INET_NTOA
? AF_INET
: AF_INET6
;
5512 if (af
== AF_INET
) {
5516 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
5517 sizeof (ipaddr_t
), mstate
, vstate
)) {
5523 * Safely load the IPv4 address.
5525 ip4
= dtrace_load32(tupregs
[argi
].dttk_value
);
5528 * Check an IPv4 string will fit in scratch.
5530 size
= INET_ADDRSTRLEN
;
5531 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5532 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5533 regs
[rd
] = (uintptr_t)NULL
;
5536 base
= (char *)mstate
->dtms_scratch_ptr
;
5537 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5540 * Stringify as a dotted decimal quad.
5543 ptr8
= (uint8_t *)&ip4
;
5544 for (i
= 3; i
>= 0; i
--) {
5550 for (; val
; val
/= 10) {
5551 *end
-- = '0' + (val
% 10);
5558 ASSERT(end
+ 1 >= base
);
5560 } else if (af
== AF_INET6
) {
5561 struct in6_addr ip6
;
5562 int firstzero
, tryzero
, numzero
, v6end
;
5564 const char digits
[] = "0123456789abcdef";
5567 * Stringify using RFC 1884 convention 2 - 16 bit
5568 * hexadecimal values with a zero-run compression.
5569 * Lower case hexadecimal digits are used.
5570 * eg, fe80::214:4fff:fe0b:76c8.
5571 * The IPv4 embedded form is returned for inet_ntop,
5572 * just the IPv4 string is returned for inet_ntoa6.
5575 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
5576 sizeof (struct in6_addr
), mstate
, vstate
)) {
5582 * Safely load the IPv6 address.
5585 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
5586 (void *)(uintptr_t)&ip6
, sizeof (struct in6_addr
));
5589 * Check an IPv6 string will fit in scratch.
5591 size
= INET6_ADDRSTRLEN
;
5592 if (!DTRACE_INSCRATCH(mstate
, size
)) {
5593 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5594 regs
[rd
] = (uintptr_t)NULL
;
5597 base
= (char *)mstate
->dtms_scratch_ptr
;
5598 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
5602 * Find the longest run of 16 bit zero values
5603 * for the single allowed zero compression - "::".
5608 for (i
= 0; i
< sizeof (struct in6_addr
); i
++) {
5609 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
5610 tryzero
== -1 && i
% 2 == 0) {
5615 if (tryzero
!= -1 &&
5616 (ip6
._S6_un
._S6_u8
[i
] != 0 ||
5617 i
== sizeof (struct in6_addr
) - 1)) {
5619 if (i
- tryzero
<= numzero
) {
5624 firstzero
= tryzero
;
5625 numzero
= i
- i
% 2 - tryzero
;
5628 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
5629 i
== sizeof (struct in6_addr
) - 1)
5633 ASSERT(firstzero
+ numzero
<= sizeof (struct in6_addr
));
5636 * Check for an IPv4 embedded address.
5638 v6end
= sizeof (struct in6_addr
) - 2;
5639 if (IN6_IS_ADDR_V4MAPPED(&ip6
) ||
5640 IN6_IS_ADDR_V4COMPAT(&ip6
)) {
5641 for (i
= sizeof (struct in6_addr
) - 1;
5642 i
>= DTRACE_V4MAPPED_OFFSET
; i
--) {
5643 ASSERT(end
>= base
);
5645 val
= ip6
._S6_un
._S6_u8
[i
];
5650 for (; val
; val
/= 10) {
5651 *end
-- = '0' + val
% 10;
5655 if (i
> DTRACE_V4MAPPED_OFFSET
)
5659 if (subr
== DIF_SUBR_INET_NTOA6
)
5663 * Set v6end to skip the IPv4 address that
5664 * we have already stringified.
5670 * Build the IPv6 string by working through the
5671 * address in reverse.
5673 for (i
= v6end
; i
>= 0; i
-= 2) {
5674 ASSERT(end
>= base
);
5676 if (i
== firstzero
+ numzero
- 2) {
5683 if (i
< 14 && i
!= firstzero
- 2)
5686 val
= (ip6
._S6_un
._S6_u8
[i
] << 8) +
5687 ip6
._S6_un
._S6_u8
[i
+ 1];
5692 for (; val
; val
/= 16) {
5693 *end
-- = digits
[val
% 16];
5697 ASSERT(end
+ 1 >= base
);
5701 * The user didn't use AH_INET or AH_INET6.
5703 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5704 regs
[rd
] = (uintptr_t)NULL
;
5708 inetout
: regs
[rd
] = (uintptr_t)end
+ 1;
5709 mstate
->dtms_scratch_ptr
+= size
;
5717 * Emulate the execution of DTrace IR instructions specified by the given
5718 * DIF object. This function is deliberately void of assertions as all of
5719 * the necessary checks are handled by a call to dtrace_difo_validate().
5722 dtrace_dif_emulate(dtrace_difo_t
*difo
, dtrace_mstate_t
*mstate
,
5723 dtrace_vstate_t
*vstate
, dtrace_state_t
*state
)
5725 const dif_instr_t
*text
= difo
->dtdo_buf
;
5726 const uint_t textlen
= difo
->dtdo_len
;
5727 const char *strtab
= difo
->dtdo_strtab
;
5728 const uint64_t *inttab
= difo
->dtdo_inttab
;
5731 dtrace_statvar_t
*svar
;
5732 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
5734 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5735 volatile uintptr_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
5737 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
5738 uint64_t regs
[DIF_DIR_NREGS
];
5741 uint8_t cc_n
= 0, cc_z
= 0, cc_v
= 0, cc_c
= 0;
5743 uint_t pc
= 0, id
, opc
;
5749 * We stash the current DIF object into the machine state: we need it
5750 * for subsequent access checking.
5752 mstate
->dtms_difo
= difo
;
5754 regs
[DIF_REG_R0
] = 0; /* %r0 is fixed at zero */
5756 while (pc
< textlen
&& !(*flags
& CPU_DTRACE_FAULT
)) {
5760 r1
= DIF_INSTR_R1(instr
);
5761 r2
= DIF_INSTR_R2(instr
);
5762 rd
= DIF_INSTR_RD(instr
);
5764 switch (DIF_INSTR_OP(instr
)) {
5766 regs
[rd
] = regs
[r1
] | regs
[r2
];
5769 regs
[rd
] = regs
[r1
] ^ regs
[r2
];
5772 regs
[rd
] = regs
[r1
] & regs
[r2
];
5775 regs
[rd
] = regs
[r1
] << regs
[r2
];
5778 regs
[rd
] = regs
[r1
] >> regs
[r2
];
5781 regs
[rd
] = regs
[r1
] - regs
[r2
];
5784 regs
[rd
] = regs
[r1
] + regs
[r2
];
5787 regs
[rd
] = regs
[r1
] * regs
[r2
];
5790 if (regs
[r2
] == 0) {
5791 regs
[rd
] = (uintptr_t)NULL
;
5792 *flags
|= CPU_DTRACE_DIVZERO
;
5794 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5795 regs
[rd
] = (int64_t)regs
[r1
] /
5797 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5802 if (regs
[r2
] == 0) {
5803 regs
[rd
] = (uintptr_t)NULL
;
5804 *flags
|= CPU_DTRACE_DIVZERO
;
5806 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5807 regs
[rd
] = regs
[r1
] / regs
[r2
];
5808 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5813 if (regs
[r2
] == 0) {
5814 regs
[rd
] = (uintptr_t)NULL
;
5815 *flags
|= CPU_DTRACE_DIVZERO
;
5817 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5818 regs
[rd
] = (int64_t)regs
[r1
] %
5820 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5825 if (regs
[r2
] == 0) {
5826 regs
[rd
] = (uintptr_t)NULL
;
5827 *flags
|= CPU_DTRACE_DIVZERO
;
5829 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5830 regs
[rd
] = regs
[r1
] % regs
[r2
];
5831 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5836 regs
[rd
] = ~regs
[r1
];
5839 regs
[rd
] = regs
[r1
];
5842 cc_r
= regs
[r1
] - regs
[r2
];
5846 cc_c
= regs
[r1
] < regs
[r2
];
5849 cc_n
= cc_v
= cc_c
= 0;
5850 cc_z
= regs
[r1
] == 0;
5853 pc
= DIF_INSTR_LABEL(instr
);
5857 pc
= DIF_INSTR_LABEL(instr
);
5861 pc
= DIF_INSTR_LABEL(instr
);
5864 if ((cc_z
| (cc_n
^ cc_v
)) == 0)
5865 pc
= DIF_INSTR_LABEL(instr
);
5868 if ((cc_c
| cc_z
) == 0)
5869 pc
= DIF_INSTR_LABEL(instr
);
5872 if ((cc_n
^ cc_v
) == 0)
5873 pc
= DIF_INSTR_LABEL(instr
);
5877 pc
= DIF_INSTR_LABEL(instr
);
5881 pc
= DIF_INSTR_LABEL(instr
);
5885 pc
= DIF_INSTR_LABEL(instr
);
5888 if (cc_z
| (cc_n
^ cc_v
))
5889 pc
= DIF_INSTR_LABEL(instr
);
5893 pc
= DIF_INSTR_LABEL(instr
);
5896 if (!dtrace_canload(regs
[r1
], 1, mstate
, vstate
))
5900 regs
[rd
] = (int8_t)dtrace_load8(regs
[r1
]);
5903 if (!dtrace_canload(regs
[r1
], 2, mstate
, vstate
))
5907 regs
[rd
] = (int16_t)dtrace_load16(regs
[r1
]);
5910 if (!dtrace_canload(regs
[r1
], 4, mstate
, vstate
))
5914 regs
[rd
] = (int32_t)dtrace_load32(regs
[r1
]);
5917 if (!dtrace_canload(regs
[r1
], 1, mstate
, vstate
))
5921 regs
[rd
] = dtrace_load8(regs
[r1
]);
5924 if (!dtrace_canload(regs
[r1
], 2, mstate
, vstate
))
5928 regs
[rd
] = dtrace_load16(regs
[r1
]);
5931 if (!dtrace_canload(regs
[r1
], 4, mstate
, vstate
))
5935 regs
[rd
] = dtrace_load32(regs
[r1
]);
5938 if (!dtrace_canload(regs
[r1
], 8, mstate
, vstate
))
5942 regs
[rd
] = dtrace_load64(regs
[r1
]);
5945 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5947 dtrace_fuword8((void *)(uintptr_t)regs
[r1
]);
5948 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5951 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5952 regs
[rd
] = (int16_t)
5953 dtrace_fuword16((void *)(uintptr_t)regs
[r1
]);
5954 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5957 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5958 regs
[rd
] = (int32_t)
5959 dtrace_fuword32((void *)(uintptr_t)regs
[r1
]);
5960 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5963 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5965 dtrace_fuword8((void *)(uintptr_t)regs
[r1
]);
5966 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5969 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5971 dtrace_fuword16((void *)(uintptr_t)regs
[r1
]);
5972 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5975 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5977 dtrace_fuword32((void *)(uintptr_t)regs
[r1
]);
5978 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5981 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
5983 dtrace_fuword64((void *)(uintptr_t)regs
[r1
]);
5984 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
5993 regs
[rd
] = inttab
[DIF_INSTR_INTEGER(instr
)];
5996 regs
[rd
] = (uint64_t)(uintptr_t)
5997 (strtab
+ DIF_INSTR_STRING(instr
));
6000 size_t sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
6001 uintptr_t s1
= regs
[r1
];
6002 uintptr_t s2
= regs
[r2
];
6005 if (s1
!= (uintptr_t)NULL
&&
6006 !dtrace_strcanload(s1
, sz
, &lim1
, mstate
, vstate
))
6008 if (s2
!= (uintptr_t)NULL
&&
6009 !dtrace_strcanload(s2
, sz
, &lim2
, mstate
, vstate
))
6012 cc_r
= dtrace_strncmp((char *)s1
, (char *)s2
,
6021 regs
[rd
] = dtrace_dif_variable(mstate
, state
,
6025 id
= DIF_INSTR_VAR(instr
);
6027 if (id
>= DIF_VAR_OTHER_UBASE
) {
6030 id
-= DIF_VAR_OTHER_UBASE
;
6031 svar
= vstate
->dtvs_globals
[id
];
6032 ASSERT(svar
!= NULL
);
6033 v
= &svar
->dtsv_var
;
6035 if (!(v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)) {
6036 regs
[rd
] = svar
->dtsv_data
;
6040 a
= (uintptr_t)svar
->dtsv_data
;
6042 if (*(uint8_t *)a
== UINT8_MAX
) {
6044 * If the 0th byte is set to UINT8_MAX
6045 * then this is to be treated as a
6046 * reference to a NULL variable.
6048 regs
[rd
] = (uintptr_t)NULL
;
6050 regs
[rd
] = a
+ sizeof (uint64_t);
6056 regs
[rd
] = dtrace_dif_variable(mstate
, state
, id
, 0);
6060 dtrace_dif_variable_write(mstate
, state
, r1
, regs
[r2
],
6065 id
= DIF_INSTR_VAR(instr
);
6067 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6068 id
-= DIF_VAR_OTHER_UBASE
;
6070 VERIFY(id
< vstate
->dtvs_nglobals
);
6071 svar
= vstate
->dtvs_globals
[id
];
6072 ASSERT(svar
!= NULL
);
6073 v
= &svar
->dtsv_var
;
6075 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6076 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6079 ASSERT(a
!= (uintptr_t)NULL
);
6080 ASSERT(svar
->dtsv_size
!= 0);
6082 if (regs
[rd
] == (uintptr_t)NULL
) {
6083 *(uint8_t *)a
= UINT8_MAX
;
6087 a
+= sizeof (uint64_t);
6089 if (!dtrace_vcanload(
6090 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6091 &lim
, mstate
, vstate
))
6094 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6095 (void *)a
, &v
->dtdv_type
, lim
);
6099 svar
->dtsv_data
= regs
[rd
];
6104 * There are no DTrace built-in thread-local arrays at
6105 * present. This opcode is saved for future work.
6107 *flags
|= CPU_DTRACE_ILLOP
;
6108 regs
[rd
] = (uintptr_t)NULL
;
6112 id
= DIF_INSTR_VAR(instr
);
6114 if (id
< DIF_VAR_OTHER_UBASE
) {
6116 * For now, this has no meaning.
6118 regs
[rd
] = (uintptr_t)NULL
;
6122 id
-= DIF_VAR_OTHER_UBASE
;
6124 ASSERT(id
< vstate
->dtvs_nlocals
);
6125 ASSERT(vstate
->dtvs_locals
!= NULL
);
6127 svar
= vstate
->dtvs_locals
[id
];
6128 ASSERT(svar
!= NULL
);
6129 v
= &svar
->dtsv_var
;
6131 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6132 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6133 size_t sz
= v
->dtdv_type
.dtdt_size
;
6135 sz
+= sizeof (uint64_t);
6136 ASSERT(svar
->dtsv_size
== NCPU
* sz
);
6137 a
+= CPU
->cpu_id
* sz
;
6139 if (*(uint8_t *)a
== UINT8_MAX
) {
6141 * If the 0th byte is set to UINT8_MAX
6142 * then this is to be treated as a
6143 * reference to a NULL variable.
6145 regs
[rd
] = (uintptr_t)NULL
;
6147 regs
[rd
] = a
+ sizeof (uint64_t);
6153 ASSERT(svar
->dtsv_size
== NCPU
* sizeof (uint64_t));
6154 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
6155 regs
[rd
] = tmp
[CPU
->cpu_id
];
6159 id
= DIF_INSTR_VAR(instr
);
6161 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6162 id
-= DIF_VAR_OTHER_UBASE
;
6163 VERIFY(id
< vstate
->dtvs_nlocals
);
6165 ASSERT(vstate
->dtvs_locals
!= NULL
);
6166 svar
= vstate
->dtvs_locals
[id
];
6167 ASSERT(svar
!= NULL
);
6168 v
= &svar
->dtsv_var
;
6170 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6171 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
6172 size_t sz
= v
->dtdv_type
.dtdt_size
;
6175 sz
+= sizeof (uint64_t);
6176 ASSERT(svar
->dtsv_size
== NCPU
* sz
);
6177 a
+= CPU
->cpu_id
* sz
;
6179 if (regs
[rd
] == (uintptr_t)NULL
) {
6180 *(uint8_t *)a
= UINT8_MAX
;
6184 a
+= sizeof (uint64_t);
6187 if (!dtrace_vcanload(
6188 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6189 &lim
, mstate
, vstate
))
6192 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6193 (void *)a
, &v
->dtdv_type
, lim
);
6197 ASSERT(svar
->dtsv_size
== NCPU
* sizeof (uint64_t));
6198 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
6199 tmp
[CPU
->cpu_id
] = regs
[rd
];
6203 dtrace_dynvar_t
*dvar
;
6206 id
= DIF_INSTR_VAR(instr
);
6207 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6208 id
-= DIF_VAR_OTHER_UBASE
;
6209 v
= &vstate
->dtvs_tlocals
[id
];
6211 key
= &tupregs
[DIF_DTR_NREGS
];
6212 key
[0].dttk_value
= (uint64_t)id
;
6213 key
[0].dttk_size
= 0;
6214 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
6215 key
[1].dttk_size
= 0;
6217 dvar
= dtrace_dynvar(dstate
, 2, key
,
6218 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC
,
6222 regs
[rd
] = (uintptr_t)NULL
;
6226 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6227 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
6229 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
6236 dtrace_dynvar_t
*dvar
;
6239 id
= DIF_INSTR_VAR(instr
);
6240 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6241 id
-= DIF_VAR_OTHER_UBASE
;
6242 VERIFY(id
< vstate
->dtvs_ntlocals
);
6244 key
= &tupregs
[DIF_DTR_NREGS
];
6245 key
[0].dttk_value
= (uint64_t)id
;
6246 key
[0].dttk_size
= 0;
6247 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
6248 key
[1].dttk_size
= 0;
6249 v
= &vstate
->dtvs_tlocals
[id
];
6251 dvar
= dtrace_dynvar(dstate
, 2, key
,
6252 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6253 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6254 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
6255 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
6258 * Given that we're storing to thread-local data,
6259 * we need to flush our predicate cache.
6261 curthread
->t_predcache
= 0;
6266 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6269 if (!dtrace_vcanload(
6270 (void *)(uintptr_t)regs
[rd
],
6271 &v
->dtdv_type
, &lim
, mstate
, vstate
))
6274 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6275 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
6277 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
6284 regs
[rd
] = (int64_t)regs
[r1
] >> regs
[r2
];
6288 dtrace_dif_subr(DIF_INSTR_SUBR(instr
), rd
,
6289 regs
, tupregs
, ttop
, mstate
, state
);
6293 if (ttop
== DIF_DTR_NREGS
) {
6294 *flags
|= CPU_DTRACE_TUPOFLOW
;
6298 if (r1
== DIF_TYPE_STRING
) {
6300 * If this is a string type and the size is 0,
6301 * we'll use the system-wide default string
6302 * size. Note that we are _not_ looking at
6303 * the value of the DTRACEOPT_STRSIZE option;
6304 * had this been set, we would expect to have
6305 * a non-zero size value in the "pushtr".
6307 tupregs
[ttop
].dttk_size
=
6308 dtrace_strlen((char *)(uintptr_t)regs
[rd
],
6309 regs
[r2
] ? regs
[r2
] :
6310 dtrace_strsize_default
) + 1;
6312 if (regs
[r2
] > LONG_MAX
) {
6313 *flags
|= CPU_DTRACE_ILLOP
;
6317 tupregs
[ttop
].dttk_size
= regs
[r2
];
6320 tupregs
[ttop
++].dttk_value
= regs
[rd
];
6324 if (ttop
== DIF_DTR_NREGS
) {
6325 *flags
|= CPU_DTRACE_TUPOFLOW
;
6329 tupregs
[ttop
].dttk_value
= regs
[rd
];
6330 tupregs
[ttop
++].dttk_size
= 0;
6338 case DIF_OP_FLUSHTS
:
6343 case DIF_OP_LDTAA
: {
6344 dtrace_dynvar_t
*dvar
;
6345 dtrace_key_t
*key
= tupregs
;
6346 uint_t nkeys
= ttop
;
6348 id
= DIF_INSTR_VAR(instr
);
6349 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6350 id
-= DIF_VAR_OTHER_UBASE
;
6352 key
[nkeys
].dttk_value
= (uint64_t)id
;
6353 key
[nkeys
++].dttk_size
= 0;
6355 if (DIF_INSTR_OP(instr
) == DIF_OP_LDTAA
) {
6356 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
6357 key
[nkeys
++].dttk_size
= 0;
6358 VERIFY(id
< vstate
->dtvs_ntlocals
);
6359 v
= &vstate
->dtvs_tlocals
[id
];
6361 VERIFY(id
< vstate
->dtvs_nglobals
);
6362 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
6365 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
6366 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6367 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6368 DTRACE_DYNVAR_NOALLOC
, mstate
, vstate
);
6371 regs
[rd
] = (uintptr_t)NULL
;
6375 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6376 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
6378 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
6385 case DIF_OP_STTAA
: {
6386 dtrace_dynvar_t
*dvar
;
6387 dtrace_key_t
*key
= tupregs
;
6388 uint_t nkeys
= ttop
;
6390 id
= DIF_INSTR_VAR(instr
);
6391 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
6392 id
-= DIF_VAR_OTHER_UBASE
;
6394 key
[nkeys
].dttk_value
= (uint64_t)id
;
6395 key
[nkeys
++].dttk_size
= 0;
6397 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
) {
6398 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
6399 key
[nkeys
++].dttk_size
= 0;
6400 VERIFY(id
< vstate
->dtvs_ntlocals
);
6401 v
= &vstate
->dtvs_tlocals
[id
];
6403 VERIFY(id
< vstate
->dtvs_nglobals
);
6404 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
6407 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
6408 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
6409 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
6410 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
6411 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
6416 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
6419 if (!dtrace_vcanload(
6420 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
6421 &lim
, mstate
, vstate
))
6424 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
6425 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
6427 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
6433 case DIF_OP_ALLOCS
: {
6434 uintptr_t ptr
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6435 size_t size
= ptr
- mstate
->dtms_scratch_ptr
+ regs
[r1
];
6438 * Rounding up the user allocation size could have
6439 * overflowed large, bogus allocations (like -1ULL) to
6442 if (size
< regs
[r1
] ||
6443 !DTRACE_INSCRATCH(mstate
, size
)) {
6444 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6445 regs
[rd
] = (uintptr_t)NULL
;
6449 dtrace_bzero((void *) mstate
->dtms_scratch_ptr
, size
);
6450 mstate
->dtms_scratch_ptr
+= size
;
6456 if (!dtrace_canstore(regs
[rd
], regs
[r2
],
6458 *flags
|= CPU_DTRACE_BADADDR
;
6463 if (!dtrace_canload(regs
[r1
], regs
[r2
], mstate
, vstate
))
6466 dtrace_bcopy((void *)(uintptr_t)regs
[r1
],
6467 (void *)(uintptr_t)regs
[rd
], (size_t)regs
[r2
]);
6471 if (!dtrace_canstore(regs
[rd
], 1, mstate
, vstate
)) {
6472 *flags
|= CPU_DTRACE_BADADDR
;
6476 *((uint8_t *)(uintptr_t)regs
[rd
]) = (uint8_t)regs
[r1
];
6480 if (!dtrace_canstore(regs
[rd
], 2, mstate
, vstate
)) {
6481 *flags
|= CPU_DTRACE_BADADDR
;
6486 *flags
|= CPU_DTRACE_BADALIGN
;
6490 *((uint16_t *)(uintptr_t)regs
[rd
]) = (uint16_t)regs
[r1
];
6494 if (!dtrace_canstore(regs
[rd
], 4, mstate
, vstate
)) {
6495 *flags
|= CPU_DTRACE_BADADDR
;
6500 *flags
|= CPU_DTRACE_BADALIGN
;
6504 *((uint32_t *)(uintptr_t)regs
[rd
]) = (uint32_t)regs
[r1
];
6508 if (!dtrace_canstore(regs
[rd
], 8, mstate
, vstate
)) {
6509 *flags
|= CPU_DTRACE_BADADDR
;
6514 *flags
|= CPU_DTRACE_BADALIGN
;
6518 *((uint64_t *)(uintptr_t)regs
[rd
]) = regs
[r1
];
6523 if (!(*flags
& CPU_DTRACE_FAULT
))
6526 mstate
->dtms_fltoffs
= opc
* sizeof (dif_instr_t
);
6527 mstate
->dtms_present
|= DTRACE_MSTATE_FLTOFFS
;
6533 dtrace_action_breakpoint(dtrace_ecb_t
*ecb
)
6535 dtrace_probe_t
*probe
= ecb
->dte_probe
;
6536 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6537 char c
[DTRACE_FULLNAMELEN
+ 80], *str
;
6538 char *msg
= "dtrace: breakpoint action at probe ";
6539 char *ecbmsg
= " (ecb ";
6540 uintptr_t mask
= (0xf << (sizeof (uintptr_t) * NBBY
/ 4));
6541 uintptr_t val
= (uintptr_t)ecb
;
6542 int shift
= (sizeof (uintptr_t) * NBBY
) - 4, i
= 0;
6544 if (dtrace_destructive_disallow
)
6548 * It's impossible to be taking action on the NULL probe.
6550 ASSERT(probe
!= NULL
);
6553 * This is a poor man's (destitute man's?) sprintf(): we want to
6554 * print the provider name, module name, function name and name of
6555 * the probe, along with the hex address of the ECB with the breakpoint
6556 * action -- all of which we must place in the character buffer by
6559 while (*msg
!= '\0')
6562 for (str
= prov
->dtpv_name
; *str
!= '\0'; str
++)
6566 for (str
= probe
->dtpr_mod
; *str
!= '\0'; str
++)
6570 for (str
= probe
->dtpr_func
; *str
!= '\0'; str
++)
6574 for (str
= probe
->dtpr_name
; *str
!= '\0'; str
++)
6577 while (*ecbmsg
!= '\0')
6580 while (shift
>= 0) {
6581 mask
= (uintptr_t)0xf << shift
;
6583 if (val
>= ((uintptr_t)1 << shift
))
6584 c
[i
++] = "0123456789abcdef"[(val
& mask
) >> shift
];
6595 dtrace_action_panic(dtrace_ecb_t
*ecb
)
6597 dtrace_probe_t
*probe
= ecb
->dte_probe
;
6600 * It's impossible to be taking action on the NULL probe.
6602 ASSERT(probe
!= NULL
);
6604 if (dtrace_destructive_disallow
)
6607 if (dtrace_panicked
!= NULL
)
6610 if (dtrace_casptr(&dtrace_panicked
, NULL
, curthread
) != NULL
)
6614 * We won the right to panic. (We want to be sure that only one
6615 * thread calls panic() from dtrace_probe(), and that panic() is
6616 * called exactly once.)
6618 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6619 probe
->dtpr_provider
->dtpv_name
, probe
->dtpr_mod
,
6620 probe
->dtpr_func
, probe
->dtpr_name
, (void *)ecb
);
6624 dtrace_action_raise(uint64_t sig
)
6626 if (dtrace_destructive_disallow
)
6630 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
6635 * raise() has a queue depth of 1 -- we ignore all subsequent
6636 * invocations of the raise() action.
6638 if (curthread
->t_dtrace_sig
== 0)
6639 curthread
->t_dtrace_sig
= (uint8_t)sig
;
6641 curthread
->t_sig_check
= 1;
6646 dtrace_action_stop(void)
6648 if (dtrace_destructive_disallow
)
6651 if (!curthread
->t_dtrace_stop
) {
6652 curthread
->t_dtrace_stop
= 1;
6653 curthread
->t_sig_check
= 1;
6659 dtrace_action_chill(dtrace_mstate_t
*mstate
, hrtime_t val
)
6662 volatile uint16_t *flags
;
6665 if (dtrace_destructive_disallow
)
6668 flags
= (volatile uint16_t *)&cpu_core
[cpu
->cpu_id
].cpuc_dtrace_flags
;
6670 now
= dtrace_gethrtime();
6672 if (now
- cpu
->cpu_dtrace_chillmark
> dtrace_chill_interval
) {
6674 * We need to advance the mark to the current time.
6676 cpu
->cpu_dtrace_chillmark
= now
;
6677 cpu
->cpu_dtrace_chilled
= 0;
6681 * Now check to see if the requested chill time would take us over
6682 * the maximum amount of time allowed in the chill interval. (Or
6683 * worse, if the calculation itself induces overflow.)
6685 if (cpu
->cpu_dtrace_chilled
+ val
> dtrace_chill_max
||
6686 cpu
->cpu_dtrace_chilled
+ val
< cpu
->cpu_dtrace_chilled
) {
6687 *flags
|= CPU_DTRACE_ILLOP
;
6691 while (dtrace_gethrtime() - now
< val
)
6695 * Normally, we assure that the value of the variable "timestamp" does
6696 * not change within an ECB. The presence of chill() represents an
6697 * exception to this rule, however.
6699 mstate
->dtms_present
&= ~DTRACE_MSTATE_TIMESTAMP
;
6700 cpu
->cpu_dtrace_chilled
+= val
;
6704 dtrace_action_ustack(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
6705 uint64_t *buf
, uint64_t arg
)
6707 int nframes
= DTRACE_USTACK_NFRAMES(arg
);
6708 int strsize
= DTRACE_USTACK_STRSIZE(arg
);
6709 uint64_t *pcs
= &buf
[1], *fps
;
6710 char *str
= (char *)&pcs
[nframes
];
6711 int size
, offs
= 0, i
, j
;
6713 uintptr_t old
= mstate
->dtms_scratch_ptr
, saved
;
6714 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6718 * Should be taking a faster path if string space has not been
6721 ASSERT(strsize
!= 0);
6724 * We will first allocate some temporary space for the frame pointers.
6726 fps
= (uint64_t *)P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6727 size
= (uintptr_t)fps
- mstate
->dtms_scratch_ptr
+
6728 (nframes
* sizeof (uint64_t));
6730 if (!DTRACE_INSCRATCH(mstate
, size
)) {
6732 * Not enough room for our frame pointers -- need to indicate
6733 * that we ran out of scratch space.
6735 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6739 mstate
->dtms_scratch_ptr
+= size
;
6740 saved
= mstate
->dtms_scratch_ptr
;
6743 * Now get a stack with both program counters and frame pointers.
6745 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6746 dtrace_getufpstack(buf
, fps
, nframes
+ 1);
6747 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6750 * If that faulted, we're cooked.
6752 if (*flags
& CPU_DTRACE_FAULT
)
6756 * Now we want to walk up the stack, calling the USTACK helper. For
6757 * each iteration, we restore the scratch pointer.
6759 for (i
= 0; i
< nframes
; i
++) {
6760 mstate
->dtms_scratch_ptr
= saved
;
6762 if (offs
>= strsize
)
6765 sym
= (char *)(uintptr_t)dtrace_helper(
6766 DTRACE_HELPER_ACTION_USTACK
,
6767 mstate
, state
, pcs
[i
], fps
[i
]);
6770 * If we faulted while running the helper, we're going to
6771 * clear the fault and null out the corresponding string.
6773 if (*flags
& CPU_DTRACE_FAULT
) {
6774 *flags
&= ~CPU_DTRACE_FAULT
;
6784 if (!dtrace_strcanload((uintptr_t)sym
, strsize
, &rem
, mstate
,
6785 &(state
->dts_vstate
))) {
6790 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6793 * Now copy in the string that the helper returned to us.
6795 for (j
= 0; offs
+ j
< strsize
&& j
< rem
; j
++) {
6796 if ((str
[offs
+ j
] = sym
[j
]) == '\0')
6800 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6805 if (offs
>= strsize
) {
6807 * If we didn't have room for all of the strings, we don't
6808 * abort processing -- this needn't be a fatal error -- but we
6809 * still want to increment a counter (dts_stkstroverflows) to
6810 * allow this condition to be warned about. (If this is from
6811 * a jstack() action, it is easily tuned via jstackstrsize.)
6813 dtrace_error(&state
->dts_stkstroverflows
);
6816 while (offs
< strsize
)
6820 mstate
->dtms_scratch_ptr
= old
;
6824 dtrace_store_by_ref(dtrace_difo_t
*dp
, caddr_t tomax
, size_t size
,
6825 size_t *valoffsp
, uint64_t *valp
, uint64_t end
, int intuple
, int dtkind
)
6827 volatile uint16_t *flags
;
6828 uint64_t val
= *valp
;
6829 size_t valoffs
= *valoffsp
;
6831 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6832 ASSERT(dtkind
== DIF_TF_BYREF
|| dtkind
== DIF_TF_BYUREF
);
6835 * If this is a string, we're going to only load until we find the zero
6836 * byte -- after which we'll store zero bytes.
6838 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
6842 for (s
= 0; s
< size
; s
++) {
6843 if (c
!= '\0' && dtkind
== DIF_TF_BYREF
) {
6844 c
= dtrace_load8(val
++);
6845 } else if (c
!= '\0' && dtkind
== DIF_TF_BYUREF
) {
6846 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6847 c
= dtrace_fuword8((void *)(uintptr_t)val
++);
6848 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6849 if (*flags
& CPU_DTRACE_FAULT
)
6853 DTRACE_STORE(uint8_t, tomax
, valoffs
++, c
);
6855 if (c
== '\0' && intuple
)
6860 while (valoffs
< end
) {
6861 if (dtkind
== DIF_TF_BYREF
) {
6862 c
= dtrace_load8(val
++);
6863 } else if (dtkind
== DIF_TF_BYUREF
) {
6864 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6865 c
= dtrace_fuword8((void *)(uintptr_t)val
++);
6866 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6867 if (*flags
& CPU_DTRACE_FAULT
)
6871 DTRACE_STORE(uint8_t, tomax
,
6877 *valoffsp
= valoffs
;
6881 * If you're looking for the epicenter of DTrace, you just found it. This
6882 * is the function called by the provider to fire a probe -- from which all
6883 * subsequent probe-context DTrace activity emanates.
6886 dtrace_probe(dtrace_id_t id
, uintptr_t arg0
, uintptr_t arg1
,
6887 uintptr_t arg2
, uintptr_t arg3
, uintptr_t arg4
)
6889 processorid_t cpuid
;
6890 dtrace_icookie_t cookie
;
6891 dtrace_probe_t
*probe
;
6892 dtrace_mstate_t mstate
;
6894 dtrace_action_t
*act
;
6898 volatile uint16_t *flags
;
6902 * Kick out immediately if this CPU is still being born (in which case
6903 * curthread will be set to -1) or the current thread can't allow
6904 * probes in its current context.
6906 if (((uintptr_t)curthread
& 1) || (curthread
->t_flag
& T_DONTDTRACE
))
6909 cookie
= dtrace_interrupt_disable();
6910 probe
= dtrace_probes
[id
- 1];
6911 cpuid
= CPU
->cpu_id
;
6912 onintr
= CPU_ON_INTR(CPU
);
6914 CPU
->cpu_dtrace_probes
++;
6916 if (!onintr
&& probe
->dtpr_predcache
!= DTRACE_CACHEIDNONE
&&
6917 probe
->dtpr_predcache
== curthread
->t_predcache
) {
6919 * We have hit in the predicate cache; we know that
6920 * this predicate would evaluate to be false.
6922 dtrace_interrupt_enable(cookie
);
6926 if (panic_quiesce
) {
6928 * We don't trace anything if we're panicking.
6930 dtrace_interrupt_enable(cookie
);
6934 now
= mstate
.dtms_timestamp
= dtrace_gethrtime();
6935 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
6936 vtime
= dtrace_vtime_references
!= 0;
6938 if (vtime
&& curthread
->t_dtrace_start
)
6939 curthread
->t_dtrace_vtime
+= now
- curthread
->t_dtrace_start
;
6941 mstate
.dtms_difo
= NULL
;
6942 mstate
.dtms_probe
= probe
;
6943 mstate
.dtms_strtok
= (uintptr_t)NULL
;
6944 mstate
.dtms_arg
[0] = arg0
;
6945 mstate
.dtms_arg
[1] = arg1
;
6946 mstate
.dtms_arg
[2] = arg2
;
6947 mstate
.dtms_arg
[3] = arg3
;
6948 mstate
.dtms_arg
[4] = arg4
;
6950 flags
= (volatile uint16_t *)&cpu_core
[cpuid
].cpuc_dtrace_flags
;
6952 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
6953 dtrace_predicate_t
*pred
= ecb
->dte_predicate
;
6954 dtrace_state_t
*state
= ecb
->dte_state
;
6955 dtrace_buffer_t
*buf
= &state
->dts_buffer
[cpuid
];
6956 dtrace_buffer_t
*aggbuf
= &state
->dts_aggbuffer
[cpuid
];
6957 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
6958 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6959 uint64_t tracememsize
= 0;
6964 * A little subtlety with the following (seemingly innocuous)
6965 * declaration of the automatic 'val': by looking at the
6966 * code, you might think that it could be declared in the
6967 * action processing loop, below. (That is, it's only used in
6968 * the action processing loop.) However, it must be declared
6969 * out of that scope because in the case of DIF expression
6970 * arguments to aggregating actions, one iteration of the
6971 * action loop will use the last iteration's value.
6975 mstate
.dtms_present
= DTRACE_MSTATE_ARGS
| DTRACE_MSTATE_PROBE
;
6976 mstate
.dtms_access
= DTRACE_ACCESS_ARGS
| DTRACE_ACCESS_PROC
;
6977 mstate
.dtms_getf
= NULL
;
6979 *flags
&= ~CPU_DTRACE_ERROR
;
6981 if (prov
== dtrace_provider
) {
6983 * If dtrace itself is the provider of this probe,
6984 * we're only going to continue processing the ECB if
6985 * arg0 (the dtrace_state_t) is equal to the ECB's
6986 * creating state. (This prevents disjoint consumers
6987 * from seeing one another's metaprobes.)
6989 if (arg0
!= (uint64_t)(uintptr_t)state
)
6993 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
) {
6995 * We're not currently active. If our provider isn't
6996 * the dtrace pseudo provider, we're not interested.
6998 if (prov
!= dtrace_provider
)
7002 * Now we must further check if we are in the BEGIN
7003 * probe. If we are, we will only continue processing
7004 * if we're still in WARMUP -- if one BEGIN enabling
7005 * has invoked the exit() action, we don't want to
7006 * evaluate subsequent BEGIN enablings.
7008 if (probe
->dtpr_id
== dtrace_probeid_begin
&&
7009 state
->dts_activity
!= DTRACE_ACTIVITY_WARMUP
) {
7010 ASSERT(state
->dts_activity
==
7011 DTRACE_ACTIVITY_DRAINING
);
7016 if (ecb
->dte_cond
&& !dtrace_priv_probe(state
, &mstate
, ecb
))
7019 if (now
- state
->dts_alive
> dtrace_deadman_timeout
) {
7021 * We seem to be dead. Unless we (a) have kernel
7022 * destructive permissions (b) have explicitly enabled
7023 * destructive actions and (c) destructive actions have
7024 * not been disabled, we're going to transition into
7025 * the KILLED state, from which no further processing
7026 * on this state will be performed.
7028 if (!dtrace_priv_kernel_destructive(state
) ||
7029 !state
->dts_cred
.dcr_destructive
||
7030 dtrace_destructive_disallow
) {
7031 void *activity
= &state
->dts_activity
;
7032 dtrace_activity_t current
;
7035 current
= state
->dts_activity
;
7036 } while (dtrace_cas32(activity
, current
,
7037 DTRACE_ACTIVITY_KILLED
) != current
);
7043 if ((offs
= dtrace_buffer_reserve(buf
, ecb
->dte_needed
,
7044 ecb
->dte_alignment
, state
, &mstate
)) < 0)
7047 tomax
= buf
->dtb_tomax
;
7048 ASSERT(tomax
!= NULL
);
7050 if (ecb
->dte_size
!= 0) {
7051 dtrace_rechdr_t dtrh
;
7052 if (!(mstate
.dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
7053 mstate
.dtms_timestamp
= dtrace_gethrtime();
7054 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
7056 ASSERT3U(ecb
->dte_size
, >=, sizeof (dtrace_rechdr_t
));
7057 dtrh
.dtrh_epid
= ecb
->dte_epid
;
7058 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh
,
7059 mstate
.dtms_timestamp
);
7060 *((dtrace_rechdr_t
*)(tomax
+ offs
)) = dtrh
;
7063 mstate
.dtms_epid
= ecb
->dte_epid
;
7064 mstate
.dtms_present
|= DTRACE_MSTATE_EPID
;
7066 if (state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)
7067 mstate
.dtms_access
|= DTRACE_ACCESS_KERNEL
;
7070 dtrace_difo_t
*dp
= pred
->dtp_difo
;
7073 rval
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
7075 if (!(*flags
& CPU_DTRACE_ERROR
) && !rval
) {
7076 dtrace_cacheid_t cid
= probe
->dtpr_predcache
;
7078 if (cid
!= DTRACE_CACHEIDNONE
&& !onintr
) {
7080 * Update the predicate cache...
7082 ASSERT(cid
== pred
->dtp_cacheid
);
7083 curthread
->t_predcache
= cid
;
7090 for (act
= ecb
->dte_action
; !(*flags
& CPU_DTRACE_ERROR
) &&
7091 act
!= NULL
; act
= act
->dta_next
) {
7094 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
7096 size
= rec
->dtrd_size
;
7097 valoffs
= offs
+ rec
->dtrd_offset
;
7099 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
7101 dtrace_aggregation_t
*agg
;
7103 agg
= (dtrace_aggregation_t
*)act
;
7105 if ((dp
= act
->dta_difo
) != NULL
)
7106 v
= dtrace_dif_emulate(dp
,
7107 &mstate
, vstate
, state
);
7109 if (*flags
& CPU_DTRACE_ERROR
)
7113 * Note that we always pass the expression
7114 * value from the previous iteration of the
7115 * action loop. This value will only be used
7116 * if there is an expression argument to the
7117 * aggregating action, denoted by the
7118 * dtag_hasarg field.
7120 dtrace_aggregate(agg
, buf
,
7121 offs
, aggbuf
, v
, val
);
7125 switch (act
->dta_kind
) {
7126 case DTRACEACT_STOP
:
7127 if (dtrace_priv_proc_destructive(state
,
7129 dtrace_action_stop();
7132 case DTRACEACT_BREAKPOINT
:
7133 if (dtrace_priv_kernel_destructive(state
))
7134 dtrace_action_breakpoint(ecb
);
7137 case DTRACEACT_PANIC
:
7138 if (dtrace_priv_kernel_destructive(state
))
7139 dtrace_action_panic(ecb
);
7142 case DTRACEACT_STACK
:
7143 if (!dtrace_priv_kernel(state
))
7146 dtrace_getpcstack((pc_t
*)(tomax
+ valoffs
),
7147 size
/ sizeof (pc_t
), probe
->dtpr_aframes
,
7148 DTRACE_ANCHORED(probe
) ? NULL
:
7153 case DTRACEACT_JSTACK
:
7154 case DTRACEACT_USTACK
:
7155 if (!dtrace_priv_proc(state
, &mstate
))
7159 * See comment in DIF_VAR_PID.
7161 if (DTRACE_ANCHORED(mstate
.dtms_probe
) &&
7163 int depth
= DTRACE_USTACK_NFRAMES(
7166 dtrace_bzero((void *)(tomax
+ valoffs
),
7167 DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
)
7168 + depth
* sizeof (uint64_t));
7173 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0 &&
7174 curproc
->p_dtrace_helpers
!= NULL
) {
7176 * This is the slow path -- we have
7177 * allocated string space, and we're
7178 * getting the stack of a process that
7179 * has helpers. Call into a separate
7180 * routine to perform this processing.
7182 dtrace_action_ustack(&mstate
, state
,
7183 (uint64_t *)(tomax
+ valoffs
),
7189 * Clear the string space, since there's no
7190 * helper to do it for us.
7192 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0) {
7193 int depth
= DTRACE_USTACK_NFRAMES(
7195 size_t strsize
= DTRACE_USTACK_STRSIZE(
7197 uint64_t *buf
= (uint64_t *)(tomax
+
7199 void *strspace
= &buf
[depth
+ 1];
7201 dtrace_bzero(strspace
,
7202 MIN(depth
, strsize
));
7205 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
7206 dtrace_getupcstack((uint64_t *)
7208 DTRACE_USTACK_NFRAMES(rec
->dtrd_arg
) + 1);
7209 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
7219 val
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
7221 if (*flags
& CPU_DTRACE_ERROR
)
7224 switch (act
->dta_kind
) {
7225 case DTRACEACT_SPECULATE
: {
7226 dtrace_rechdr_t
*dtrh
;
7228 ASSERT(buf
== &state
->dts_buffer
[cpuid
]);
7229 buf
= dtrace_speculation_buffer(state
,
7233 *flags
|= CPU_DTRACE_DROP
;
7237 offs
= dtrace_buffer_reserve(buf
,
7238 ecb
->dte_needed
, ecb
->dte_alignment
,
7242 *flags
|= CPU_DTRACE_DROP
;
7246 tomax
= buf
->dtb_tomax
;
7247 ASSERT(tomax
!= NULL
);
7249 if (ecb
->dte_size
== 0)
7252 ASSERT3U(ecb
->dte_size
, >=,
7253 sizeof (dtrace_rechdr_t
));
7254 dtrh
= ((void *)(tomax
+ offs
));
7255 dtrh
->dtrh_epid
= ecb
->dte_epid
;
7257 * When the speculation is committed, all of
7258 * the records in the speculative buffer will
7259 * have their timestamps set to the commit
7260 * time. Until then, it is set to a sentinel
7261 * value, for debugability.
7263 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, UINT64_MAX
);
7267 case DTRACEACT_CHILL
:
7268 if (dtrace_priv_kernel_destructive(state
))
7269 dtrace_action_chill(&mstate
, val
);
7272 case DTRACEACT_RAISE
:
7273 if (dtrace_priv_proc_destructive(state
,
7275 dtrace_action_raise(val
);
7278 case DTRACEACT_COMMIT
:
7282 * We need to commit our buffer state.
7285 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
7286 buf
= &state
->dts_buffer
[cpuid
];
7287 dtrace_speculation_commit(state
, cpuid
, val
);
7291 case DTRACEACT_DISCARD
:
7292 dtrace_speculation_discard(state
, cpuid
, val
);
7295 case DTRACEACT_DIFEXPR
:
7296 case DTRACEACT_LIBACT
:
7297 case DTRACEACT_PRINTF
:
7298 case DTRACEACT_PRINTA
:
7299 case DTRACEACT_SYSTEM
:
7300 case DTRACEACT_FREOPEN
:
7301 case DTRACEACT_TRACEMEM
:
7304 case DTRACEACT_TRACEMEM_DYNSIZE
:
7310 if (!dtrace_priv_kernel(state
))
7314 case DTRACEACT_USYM
:
7315 case DTRACEACT_UMOD
:
7316 case DTRACEACT_UADDR
: {
7317 struct pid
*pid
= curthread
->t_procp
->p_pidp
;
7319 if (!dtrace_priv_proc(state
, &mstate
))
7322 DTRACE_STORE(uint64_t, tomax
,
7323 valoffs
, (uint64_t)pid
->pid_id
);
7324 DTRACE_STORE(uint64_t, tomax
,
7325 valoffs
+ sizeof (uint64_t), val
);
7330 case DTRACEACT_EXIT
: {
7332 * For the exit action, we are going to attempt
7333 * to atomically set our activity to be
7334 * draining. If this fails (either because
7335 * another CPU has beat us to the exit action,
7336 * or because our current activity is something
7337 * other than ACTIVE or WARMUP), we will
7338 * continue. This assures that the exit action
7339 * can be successfully recorded at most once
7340 * when we're in the ACTIVE state. If we're
7341 * encountering the exit() action while in
7342 * COOLDOWN, however, we want to honor the new
7343 * status code. (We know that we're the only
7344 * thread in COOLDOWN, so there is no race.)
7346 void *activity
= &state
->dts_activity
;
7347 dtrace_activity_t current
= state
->dts_activity
;
7349 if (current
== DTRACE_ACTIVITY_COOLDOWN
)
7352 if (current
!= DTRACE_ACTIVITY_WARMUP
)
7353 current
= DTRACE_ACTIVITY_ACTIVE
;
7355 if (dtrace_cas32(activity
, current
,
7356 DTRACE_ACTIVITY_DRAINING
) != current
) {
7357 *flags
|= CPU_DTRACE_DROP
;
7368 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
||
7369 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYUREF
) {
7370 uintptr_t end
= valoffs
+ size
;
7372 if (tracememsize
!= 0 &&
7373 valoffs
+ tracememsize
< end
) {
7374 end
= valoffs
+ tracememsize
;
7378 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
&&
7379 !dtrace_vcanload((void *)(uintptr_t)val
,
7380 &dp
->dtdo_rtype
, NULL
, &mstate
, vstate
))
7383 dtrace_store_by_ref(dp
, tomax
, size
, &valoffs
,
7384 &val
, end
, act
->dta_intuple
,
7385 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
?
7386 DIF_TF_BYREF
: DIF_TF_BYUREF
);
7394 case sizeof (uint8_t):
7395 DTRACE_STORE(uint8_t, tomax
, valoffs
, val
);
7397 case sizeof (uint16_t):
7398 DTRACE_STORE(uint16_t, tomax
, valoffs
, val
);
7400 case sizeof (uint32_t):
7401 DTRACE_STORE(uint32_t, tomax
, valoffs
, val
);
7403 case sizeof (uint64_t):
7404 DTRACE_STORE(uint64_t, tomax
, valoffs
, val
);
7408 * Any other size should have been returned by
7409 * reference, not by value.
7416 if (*flags
& CPU_DTRACE_DROP
)
7419 if (*flags
& CPU_DTRACE_FAULT
) {
7421 dtrace_action_t
*err
;
7425 if (probe
->dtpr_id
== dtrace_probeid_error
) {
7427 * There's nothing we can do -- we had an
7428 * error on the error probe. We bump an
7429 * error counter to at least indicate that
7430 * this condition happened.
7432 dtrace_error(&state
->dts_dblerrors
);
7438 * Before recursing on dtrace_probe(), we
7439 * need to explicitly clear out our start
7440 * time to prevent it from being accumulated
7441 * into t_dtrace_vtime.
7443 curthread
->t_dtrace_start
= 0;
7447 * Iterate over the actions to figure out which action
7448 * we were processing when we experienced the error.
7449 * Note that act points _past_ the faulting action; if
7450 * act is ecb->dte_action, the fault was in the
7451 * predicate, if it's ecb->dte_action->dta_next it's
7452 * in action #1, and so on.
7454 for (err
= ecb
->dte_action
, ndx
= 0;
7455 err
!= act
; err
= err
->dta_next
, ndx
++)
7458 dtrace_probe_error(state
, ecb
->dte_epid
, ndx
,
7459 (mstate
.dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
7460 mstate
.dtms_fltoffs
: -1, DTRACE_FLAGS2FLT(*flags
),
7461 cpu_core
[cpuid
].cpuc_dtrace_illval
);
7467 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
7470 end
= dtrace_gethrtime();
7472 curthread
->t_dtrace_start
= end
;
7474 CPU
->cpu_dtrace_nsec
+= end
- now
;
7476 dtrace_interrupt_enable(cookie
);
7480 * DTrace Probe Hashing Functions
7482 * The functions in this section (and indeed, the functions in remaining
7483 * sections) are not _called_ from probe context. (Any exceptions to this are
7484 * marked with a "Note:".) Rather, they are called from elsewhere in the
7485 * DTrace framework to look-up probes in, add probes to and remove probes from
7486 * the DTrace probe hashes. (Each probe is hashed by each element of the
7487 * probe tuple -- allowing for fast lookups, regardless of what was
7491 dtrace_hash_str(char *p
)
7497 hval
= (hval
<< 4) + *p
++;
7498 if ((g
= (hval
& 0xf0000000)) != 0)
7505 static dtrace_hash_t
*
7506 dtrace_hash_create(uintptr_t stroffs
, uintptr_t nextoffs
, uintptr_t prevoffs
)
7508 dtrace_hash_t
*hash
= kmem_zalloc(sizeof (dtrace_hash_t
), KM_SLEEP
);
7510 hash
->dth_stroffs
= stroffs
;
7511 hash
->dth_nextoffs
= nextoffs
;
7512 hash
->dth_prevoffs
= prevoffs
;
7515 hash
->dth_mask
= hash
->dth_size
- 1;
7517 hash
->dth_tab
= kmem_zalloc(hash
->dth_size
*
7518 sizeof (dtrace_hashbucket_t
*), KM_SLEEP
);
7524 dtrace_hash_destroy(dtrace_hash_t
*hash
)
7529 for (i
= 0; i
< hash
->dth_size
; i
++)
7530 ASSERT(hash
->dth_tab
[i
] == NULL
);
7533 kmem_free(hash
->dth_tab
,
7534 hash
->dth_size
* sizeof (dtrace_hashbucket_t
*));
7535 kmem_free(hash
, sizeof (dtrace_hash_t
));
7539 dtrace_hash_resize(dtrace_hash_t
*hash
)
7541 int size
= hash
->dth_size
, i
, ndx
;
7542 int new_size
= hash
->dth_size
<< 1;
7543 int new_mask
= new_size
- 1;
7544 dtrace_hashbucket_t
**new_tab
, *bucket
, *next
;
7546 ASSERT((new_size
& new_mask
) == 0);
7548 new_tab
= kmem_zalloc(new_size
* sizeof (void *), KM_SLEEP
);
7550 for (i
= 0; i
< size
; i
++) {
7551 for (bucket
= hash
->dth_tab
[i
]; bucket
!= NULL
; bucket
= next
) {
7552 dtrace_probe_t
*probe
= bucket
->dthb_chain
;
7554 ASSERT(probe
!= NULL
);
7555 ndx
= DTRACE_HASHSTR(hash
, probe
) & new_mask
;
7557 next
= bucket
->dthb_next
;
7558 bucket
->dthb_next
= new_tab
[ndx
];
7559 new_tab
[ndx
] = bucket
;
7563 kmem_free(hash
->dth_tab
, hash
->dth_size
* sizeof (void *));
7564 hash
->dth_tab
= new_tab
;
7565 hash
->dth_size
= new_size
;
7566 hash
->dth_mask
= new_mask
;
7570 dtrace_hash_add(dtrace_hash_t
*hash
, dtrace_probe_t
*new)
7572 int hashval
= DTRACE_HASHSTR(hash
, new);
7573 int ndx
= hashval
& hash
->dth_mask
;
7574 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7575 dtrace_probe_t
**nextp
, **prevp
;
7577 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7578 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, new))
7582 if ((hash
->dth_nbuckets
>> 1) > hash
->dth_size
) {
7583 dtrace_hash_resize(hash
);
7584 dtrace_hash_add(hash
, new);
7588 bucket
= kmem_zalloc(sizeof (dtrace_hashbucket_t
), KM_SLEEP
);
7589 bucket
->dthb_next
= hash
->dth_tab
[ndx
];
7590 hash
->dth_tab
[ndx
] = bucket
;
7591 hash
->dth_nbuckets
++;
7594 nextp
= DTRACE_HASHNEXT(hash
, new);
7595 ASSERT(*nextp
== NULL
&& *(DTRACE_HASHPREV(hash
, new)) == NULL
);
7596 *nextp
= bucket
->dthb_chain
;
7598 if (bucket
->dthb_chain
!= NULL
) {
7599 prevp
= DTRACE_HASHPREV(hash
, bucket
->dthb_chain
);
7600 ASSERT(*prevp
== NULL
);
7604 bucket
->dthb_chain
= new;
7608 static dtrace_probe_t
*
7609 dtrace_hash_lookup(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7611 int hashval
= DTRACE_HASHSTR(hash
, template);
7612 int ndx
= hashval
& hash
->dth_mask
;
7613 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7615 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7616 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7617 return (bucket
->dthb_chain
);
7624 dtrace_hash_collisions(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7626 int hashval
= DTRACE_HASHSTR(hash
, template);
7627 int ndx
= hashval
& hash
->dth_mask
;
7628 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7630 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7631 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7632 return (bucket
->dthb_len
);
7639 dtrace_hash_remove(dtrace_hash_t
*hash
, dtrace_probe_t
*probe
)
7641 int ndx
= DTRACE_HASHSTR(hash
, probe
) & hash
->dth_mask
;
7642 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7644 dtrace_probe_t
**prevp
= DTRACE_HASHPREV(hash
, probe
);
7645 dtrace_probe_t
**nextp
= DTRACE_HASHNEXT(hash
, probe
);
7648 * Find the bucket that we're removing this probe from.
7650 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7651 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, probe
))
7655 ASSERT(bucket
!= NULL
);
7657 if (*prevp
== NULL
) {
7658 if (*nextp
== NULL
) {
7660 * The removed probe was the only probe on this
7661 * bucket; we need to remove the bucket.
7663 dtrace_hashbucket_t
*b
= hash
->dth_tab
[ndx
];
7665 ASSERT(bucket
->dthb_chain
== probe
);
7669 hash
->dth_tab
[ndx
] = bucket
->dthb_next
;
7671 while (b
->dthb_next
!= bucket
)
7673 b
->dthb_next
= bucket
->dthb_next
;
7676 ASSERT(hash
->dth_nbuckets
> 0);
7677 hash
->dth_nbuckets
--;
7678 kmem_free(bucket
, sizeof (dtrace_hashbucket_t
));
7682 bucket
->dthb_chain
= *nextp
;
7684 *(DTRACE_HASHNEXT(hash
, *prevp
)) = *nextp
;
7688 *(DTRACE_HASHPREV(hash
, *nextp
)) = *prevp
;
7692 * DTrace Utility Functions
7694 * These are random utility functions that are _not_ called from probe context.
7697 dtrace_badattr(const dtrace_attribute_t
*a
)
7699 return (a
->dtat_name
> DTRACE_STABILITY_MAX
||
7700 a
->dtat_data
> DTRACE_STABILITY_MAX
||
7701 a
->dtat_class
> DTRACE_CLASS_MAX
);
7705 * Return a duplicate copy of a string. If the specified string is NULL,
7706 * this function returns a zero-length string.
7709 dtrace_strdup(const char *str
)
7711 char *new = kmem_zalloc((str
!= NULL
? strlen(str
) : 0) + 1, KM_SLEEP
);
7714 (void) strcpy(new, str
);
7719 #define DTRACE_ISALPHA(c) \
7720 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7723 dtrace_badname(const char *s
)
7727 if (s
== NULL
|| (c
= *s
++) == '\0')
7730 if (!DTRACE_ISALPHA(c
) && c
!= '-' && c
!= '_' && c
!= '.')
7733 while ((c
= *s
++) != '\0') {
7734 if (!DTRACE_ISALPHA(c
) && (c
< '0' || c
> '9') &&
7735 c
!= '-' && c
!= '_' && c
!= '.' && c
!= '`')
7743 dtrace_cred2priv(cred_t
*cr
, uint32_t *privp
, uid_t
*uidp
, zoneid_t
*zoneidp
)
7747 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
7749 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7751 priv
= DTRACE_PRIV_ALL
;
7753 *uidp
= crgetuid(cr
);
7754 *zoneidp
= crgetzoneid(cr
);
7757 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
))
7758 priv
|= DTRACE_PRIV_KERNEL
| DTRACE_PRIV_USER
;
7759 else if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
))
7760 priv
|= DTRACE_PRIV_USER
;
7761 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
))
7762 priv
|= DTRACE_PRIV_PROC
;
7763 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
7764 priv
|= DTRACE_PRIV_OWNER
;
7765 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
7766 priv
|= DTRACE_PRIV_ZONEOWNER
;
7772 #ifdef DTRACE_ERRDEBUG
7774 dtrace_errdebug(const char *str
)
7776 int hval
= dtrace_hash_str((char *)str
) % DTRACE_ERRHASHSZ
;
7779 mutex_enter(&dtrace_errlock
);
7780 dtrace_errlast
= str
;
7781 dtrace_errthread
= curthread
;
7783 while (occupied
++ < DTRACE_ERRHASHSZ
) {
7784 if (dtrace_errhash
[hval
].dter_msg
== str
) {
7785 dtrace_errhash
[hval
].dter_count
++;
7789 if (dtrace_errhash
[hval
].dter_msg
!= NULL
) {
7790 hval
= (hval
+ 1) % DTRACE_ERRHASHSZ
;
7794 dtrace_errhash
[hval
].dter_msg
= str
;
7795 dtrace_errhash
[hval
].dter_count
= 1;
7799 panic("dtrace: undersized error hash");
7801 mutex_exit(&dtrace_errlock
);
7806 * DTrace Matching Functions
7808 * These functions are used to match groups of probes, given some elements of
7809 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7812 dtrace_match_priv(const dtrace_probe_t
*prp
, uint32_t priv
, uid_t uid
,
7815 if (priv
!= DTRACE_PRIV_ALL
) {
7816 uint32_t ppriv
= prp
->dtpr_provider
->dtpv_priv
.dtpp_flags
;
7817 uint32_t match
= priv
& ppriv
;
7820 * No PRIV_DTRACE_* privileges...
7822 if ((priv
& (DTRACE_PRIV_PROC
| DTRACE_PRIV_USER
|
7823 DTRACE_PRIV_KERNEL
)) == 0)
7827 * No matching bits, but there were bits to match...
7829 if (match
== 0 && ppriv
!= 0)
7833 * Need to have permissions to the process, but don't...
7835 if (((ppriv
& ~match
) & DTRACE_PRIV_OWNER
) != 0 &&
7836 uid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_uid
) {
7841 * Need to be in the same zone unless we possess the
7842 * privilege to examine all zones.
7844 if (((ppriv
& ~match
) & DTRACE_PRIV_ZONEOWNER
) != 0 &&
7845 zoneid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_zoneid
) {
7854 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7855 * consists of input pattern strings and an ops-vector to evaluate them.
7856 * This function returns >0 for match, 0 for no match, and <0 for error.
7859 dtrace_match_probe(const dtrace_probe_t
*prp
, const dtrace_probekey_t
*pkp
,
7860 uint32_t priv
, uid_t uid
, zoneid_t zoneid
)
7862 dtrace_provider_t
*pvp
= prp
->dtpr_provider
;
7865 if (pvp
->dtpv_defunct
)
7868 if ((rv
= pkp
->dtpk_pmatch(pvp
->dtpv_name
, pkp
->dtpk_prov
, 0)) <= 0)
7871 if ((rv
= pkp
->dtpk_mmatch(prp
->dtpr_mod
, pkp
->dtpk_mod
, 0)) <= 0)
7874 if ((rv
= pkp
->dtpk_fmatch(prp
->dtpr_func
, pkp
->dtpk_func
, 0)) <= 0)
7877 if ((rv
= pkp
->dtpk_nmatch(prp
->dtpr_name
, pkp
->dtpk_name
, 0)) <= 0)
7880 if (dtrace_match_priv(prp
, priv
, uid
, zoneid
) == 0)
7887 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7888 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7889 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7890 * In addition, all of the recursion cases except for '*' matching have been
7891 * unwound. For '*', we still implement recursive evaluation, but a depth
7892 * counter is maintained and matching is aborted if we recurse too deep.
7893 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7896 dtrace_match_glob(const char *s
, const char *p
, int depth
)
7902 if (depth
> DTRACE_PROBEKEY_MAXDEPTH
)
7906 s
= ""; /* treat NULL as empty string */
7915 if ((c
= *p
++) == '\0')
7916 return (s1
== '\0');
7920 int ok
= 0, notflag
= 0;
7931 if ((c
= *p
++) == '\0')
7935 if (c
== '-' && lc
!= '\0' && *p
!= ']') {
7936 if ((c
= *p
++) == '\0')
7938 if (c
== '\\' && (c
= *p
++) == '\0')
7942 if (s1
< lc
|| s1
> c
)
7946 } else if (lc
<= s1
&& s1
<= c
)
7949 } else if (c
== '\\' && (c
= *p
++) == '\0')
7952 lc
= c
; /* save left-hand 'c' for next iteration */
7962 if ((c
= *p
++) == '\0')
7974 if ((c
= *p
++) == '\0')
7990 p
++; /* consecutive *'s are identical to a single one */
7995 for (s
= olds
; *s
!= '\0'; s
++) {
7996 if ((gs
= dtrace_match_glob(s
, p
, depth
+ 1)) != 0)
8006 dtrace_match_string(const char *s
, const char *p
, int depth
)
8008 return (s
!= NULL
&& strcmp(s
, p
) == 0);
8013 dtrace_match_nul(const char *s
, const char *p
, int depth
)
8015 return (1); /* always match the empty pattern */
8020 dtrace_match_nonzero(const char *s
, const char *p
, int depth
)
8022 return (s
!= NULL
&& s
[0] != '\0');
8026 dtrace_match(const dtrace_probekey_t
*pkp
, uint32_t priv
, uid_t uid
,
8027 zoneid_t zoneid
, int (*matched
)(dtrace_probe_t
*, void *), void *arg
)
8029 dtrace_probe_t
template, *probe
;
8030 dtrace_hash_t
*hash
= NULL
;
8031 int len
, rc
, best
= INT_MAX
, nmatched
= 0;
8034 ASSERT(MUTEX_HELD(&dtrace_lock
));
8037 * If the probe ID is specified in the key, just lookup by ID and
8038 * invoke the match callback once if a matching probe is found.
8040 if (pkp
->dtpk_id
!= DTRACE_IDNONE
) {
8041 if ((probe
= dtrace_probe_lookup_id(pkp
->dtpk_id
)) != NULL
&&
8042 dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) > 0) {
8043 if ((*matched
)(probe
, arg
) == DTRACE_MATCH_FAIL
)
8044 return (DTRACE_MATCH_FAIL
);
8050 template.dtpr_mod
= (char *)pkp
->dtpk_mod
;
8051 template.dtpr_func
= (char *)pkp
->dtpk_func
;
8052 template.dtpr_name
= (char *)pkp
->dtpk_name
;
8055 * We want to find the most distinct of the module name, function
8056 * name, and name. So for each one that is not a glob pattern or
8057 * empty string, we perform a lookup in the corresponding hash and
8058 * use the hash table with the fewest collisions to do our search.
8060 if (pkp
->dtpk_mmatch
== &dtrace_match_string
&&
8061 (len
= dtrace_hash_collisions(dtrace_bymod
, &template)) < best
) {
8063 hash
= dtrace_bymod
;
8066 if (pkp
->dtpk_fmatch
== &dtrace_match_string
&&
8067 (len
= dtrace_hash_collisions(dtrace_byfunc
, &template)) < best
) {
8069 hash
= dtrace_byfunc
;
8072 if (pkp
->dtpk_nmatch
== &dtrace_match_string
&&
8073 (len
= dtrace_hash_collisions(dtrace_byname
, &template)) < best
) {
8075 hash
= dtrace_byname
;
8079 * If we did not select a hash table, iterate over every probe and
8080 * invoke our callback for each one that matches our input probe key.
8083 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8084 if ((probe
= dtrace_probes
[i
]) == NULL
||
8085 dtrace_match_probe(probe
, pkp
, priv
, uid
,
8091 if ((rc
= (*matched
)(probe
, arg
)) !=
8092 DTRACE_MATCH_NEXT
) {
8093 if (rc
== DTRACE_MATCH_FAIL
)
8094 return (DTRACE_MATCH_FAIL
);
8103 * If we selected a hash table, iterate over each probe of the same key
8104 * name and invoke the callback for every probe that matches the other
8105 * attributes of our input probe key.
8107 for (probe
= dtrace_hash_lookup(hash
, &template); probe
!= NULL
;
8108 probe
= *(DTRACE_HASHNEXT(hash
, probe
))) {
8110 if (dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) <= 0)
8115 if ((rc
= (*matched
)(probe
, arg
)) != DTRACE_MATCH_NEXT
) {
8116 if (rc
== DTRACE_MATCH_FAIL
)
8117 return (DTRACE_MATCH_FAIL
);
8126 * Return the function pointer dtrace_probecmp() should use to compare the
8127 * specified pattern with a string. For NULL or empty patterns, we select
8128 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8129 * For non-empty non-glob strings, we use dtrace_match_string().
8131 static dtrace_probekey_f
*
8132 dtrace_probekey_func(const char *p
)
8136 if (p
== NULL
|| *p
== '\0')
8137 return (&dtrace_match_nul
);
8139 while ((c
= *p
++) != '\0') {
8140 if (c
== '[' || c
== '?' || c
== '*' || c
== '\\')
8141 return (&dtrace_match_glob
);
8144 return (&dtrace_match_string
);
8148 * Build a probe comparison key for use with dtrace_match_probe() from the
8149 * given probe description. By convention, a null key only matches anchored
8150 * probes: if each field is the empty string, reset dtpk_fmatch to
8151 * dtrace_match_nonzero().
8154 dtrace_probekey(const dtrace_probedesc_t
*pdp
, dtrace_probekey_t
*pkp
)
8156 pkp
->dtpk_prov
= pdp
->dtpd_provider
;
8157 pkp
->dtpk_pmatch
= dtrace_probekey_func(pdp
->dtpd_provider
);
8159 pkp
->dtpk_mod
= pdp
->dtpd_mod
;
8160 pkp
->dtpk_mmatch
= dtrace_probekey_func(pdp
->dtpd_mod
);
8162 pkp
->dtpk_func
= pdp
->dtpd_func
;
8163 pkp
->dtpk_fmatch
= dtrace_probekey_func(pdp
->dtpd_func
);
8165 pkp
->dtpk_name
= pdp
->dtpd_name
;
8166 pkp
->dtpk_nmatch
= dtrace_probekey_func(pdp
->dtpd_name
);
8168 pkp
->dtpk_id
= pdp
->dtpd_id
;
8170 if (pkp
->dtpk_id
== DTRACE_IDNONE
&&
8171 pkp
->dtpk_pmatch
== &dtrace_match_nul
&&
8172 pkp
->dtpk_mmatch
== &dtrace_match_nul
&&
8173 pkp
->dtpk_fmatch
== &dtrace_match_nul
&&
8174 pkp
->dtpk_nmatch
== &dtrace_match_nul
)
8175 pkp
->dtpk_fmatch
= &dtrace_match_nonzero
;
8179 * DTrace Provider-to-Framework API Functions
8181 * These functions implement much of the Provider-to-Framework API, as
8182 * described in <sys/dtrace.h>. The parts of the API not in this section are
8183 * the functions in the API for probe management (found below), and
8184 * dtrace_probe() itself (found above).
8188 * Register the calling provider with the DTrace framework. This should
8189 * generally be called by DTrace providers in their attach(9E) entry point.
8192 dtrace_register(const char *name
, const dtrace_pattr_t
*pap
, uint32_t priv
,
8193 cred_t
*cr
, const dtrace_pops_t
*pops
, void *arg
, dtrace_provider_id_t
*idp
)
8195 dtrace_provider_t
*provider
;
8197 if (name
== NULL
|| pap
== NULL
|| pops
== NULL
|| idp
== NULL
) {
8198 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8199 "arguments", name
? name
: "<NULL>");
8203 if (name
[0] == '\0' || dtrace_badname(name
)) {
8204 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8205 "provider name", name
);
8209 if ((pops
->dtps_provide
== NULL
&& pops
->dtps_provide_module
== NULL
) ||
8210 pops
->dtps_enable
== NULL
|| pops
->dtps_disable
== NULL
||
8211 pops
->dtps_destroy
== NULL
||
8212 ((pops
->dtps_resume
== NULL
) != (pops
->dtps_suspend
== NULL
))) {
8213 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8214 "provider ops", name
);
8218 if (dtrace_badattr(&pap
->dtpa_provider
) ||
8219 dtrace_badattr(&pap
->dtpa_mod
) ||
8220 dtrace_badattr(&pap
->dtpa_func
) ||
8221 dtrace_badattr(&pap
->dtpa_name
) ||
8222 dtrace_badattr(&pap
->dtpa_args
)) {
8223 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8224 "provider attributes", name
);
8228 if (priv
& ~DTRACE_PRIV_ALL
) {
8229 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
8230 "privilege attributes", name
);
8234 if ((priv
& DTRACE_PRIV_KERNEL
) &&
8235 (priv
& (DTRACE_PRIV_USER
| DTRACE_PRIV_OWNER
)) &&
8236 pops
->dtps_mode
== NULL
) {
8237 cmn_err(CE_WARN
, "failed to register provider '%s': need "
8238 "dtps_mode() op for given privilege attributes", name
);
8242 provider
= kmem_zalloc(sizeof (dtrace_provider_t
), KM_SLEEP
);
8243 provider
->dtpv_name
= kmem_alloc(strlen(name
) + 1, KM_SLEEP
);
8244 (void) strcpy(provider
->dtpv_name
, name
);
8246 provider
->dtpv_attr
= *pap
;
8247 provider
->dtpv_priv
.dtpp_flags
= priv
;
8249 provider
->dtpv_priv
.dtpp_uid
= crgetuid(cr
);
8250 provider
->dtpv_priv
.dtpp_zoneid
= crgetzoneid(cr
);
8252 provider
->dtpv_pops
= *pops
;
8254 if (pops
->dtps_provide
== NULL
) {
8255 ASSERT(pops
->dtps_provide_module
!= NULL
);
8256 provider
->dtpv_pops
.dtps_provide
=
8257 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
;
8260 if (pops
->dtps_provide_module
== NULL
) {
8261 ASSERT(pops
->dtps_provide
!= NULL
);
8262 provider
->dtpv_pops
.dtps_provide_module
=
8263 (void (*)(void *, struct modctl
*))dtrace_nullop
;
8266 if (pops
->dtps_suspend
== NULL
) {
8267 ASSERT(pops
->dtps_resume
== NULL
);
8268 provider
->dtpv_pops
.dtps_suspend
=
8269 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
8270 provider
->dtpv_pops
.dtps_resume
=
8271 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
8274 provider
->dtpv_arg
= arg
;
8275 *idp
= (dtrace_provider_id_t
)provider
;
8277 if (pops
== &dtrace_provider_ops
) {
8278 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8279 ASSERT(MUTEX_HELD(&dtrace_lock
));
8280 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
8283 * We make sure that the DTrace provider is at the head of
8284 * the provider chain.
8286 provider
->dtpv_next
= dtrace_provider
;
8287 dtrace_provider
= provider
;
8291 mutex_enter(&dtrace_provider_lock
);
8292 mutex_enter(&dtrace_lock
);
8295 * If there is at least one provider registered, we'll add this
8296 * provider after the first provider.
8298 if (dtrace_provider
!= NULL
) {
8299 provider
->dtpv_next
= dtrace_provider
->dtpv_next
;
8300 dtrace_provider
->dtpv_next
= provider
;
8302 dtrace_provider
= provider
;
8305 if (dtrace_retained
!= NULL
) {
8306 dtrace_enabling_provide(provider
);
8309 * Now we need to call dtrace_enabling_matchall() -- which
8310 * will acquire cpu_lock and dtrace_lock. We therefore need
8311 * to drop all of our locks before calling into it...
8313 mutex_exit(&dtrace_lock
);
8314 mutex_exit(&dtrace_provider_lock
);
8315 dtrace_enabling_matchall();
8320 mutex_exit(&dtrace_lock
);
8321 mutex_exit(&dtrace_provider_lock
);
8327 * Unregister the specified provider from the DTrace framework. This should
8328 * generally be called by DTrace providers in their detach(9E) entry point.
8331 dtrace_unregister(dtrace_provider_id_t id
)
8333 dtrace_provider_t
*old
= (dtrace_provider_t
*)id
;
8334 dtrace_provider_t
*prev
= NULL
;
8335 int i
, self
= 0, noreap
= 0;
8336 dtrace_probe_t
*probe
, *first
= NULL
;
8338 if (old
->dtpv_pops
.dtps_enable
==
8339 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
) {
8341 * If DTrace itself is the provider, we're called with locks
8344 ASSERT(old
== dtrace_provider
);
8345 ASSERT(dtrace_devi
!= NULL
);
8346 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8347 ASSERT(MUTEX_HELD(&dtrace_lock
));
8350 if (dtrace_provider
->dtpv_next
!= NULL
) {
8352 * There's another provider here; return failure.
8357 mutex_enter(&dtrace_provider_lock
);
8358 mutex_enter(&mod_lock
);
8359 mutex_enter(&dtrace_lock
);
8363 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8364 * probes, we refuse to let providers slither away, unless this
8365 * provider has already been explicitly invalidated.
8367 if (!old
->dtpv_defunct
&&
8368 (dtrace_opens
|| (dtrace_anon
.dta_state
!= NULL
&&
8369 dtrace_anon
.dta_state
->dts_necbs
> 0))) {
8371 mutex_exit(&dtrace_lock
);
8372 mutex_exit(&mod_lock
);
8373 mutex_exit(&dtrace_provider_lock
);
8379 * Attempt to destroy the probes associated with this provider.
8381 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8382 if ((probe
= dtrace_probes
[i
]) == NULL
)
8385 if (probe
->dtpr_provider
!= old
)
8388 if (probe
->dtpr_ecb
== NULL
)
8392 * If we are trying to unregister a defunct provider, and the
8393 * provider was made defunct within the interval dictated by
8394 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8395 * attempt to reap our enablings. To denote that the provider
8396 * should reattempt to unregister itself at some point in the
8397 * future, we will return a differentiable error code (EAGAIN
8398 * instead of EBUSY) in this case.
8400 if (dtrace_gethrtime() - old
->dtpv_defunct
>
8401 dtrace_unregister_defunct_reap
)
8405 mutex_exit(&dtrace_lock
);
8406 mutex_exit(&mod_lock
);
8407 mutex_exit(&dtrace_provider_lock
);
8413 (void) taskq_dispatch(dtrace_taskq
,
8414 (task_func_t
*)dtrace_enabling_reap
, NULL
, TQ_SLEEP
);
8420 * All of the probes for this provider are disabled; we can safely
8421 * remove all of them from their hash chains and from the probe array.
8423 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8424 if ((probe
= dtrace_probes
[i
]) == NULL
)
8427 if (probe
->dtpr_provider
!= old
)
8430 dtrace_probes
[i
] = NULL
;
8432 dtrace_hash_remove(dtrace_bymod
, probe
);
8433 dtrace_hash_remove(dtrace_byfunc
, probe
);
8434 dtrace_hash_remove(dtrace_byname
, probe
);
8436 if (first
== NULL
) {
8438 probe
->dtpr_nextmod
= NULL
;
8440 probe
->dtpr_nextmod
= first
;
8446 * The provider's probes have been removed from the hash chains and
8447 * from the probe array. Now issue a dtrace_sync() to be sure that
8448 * everyone has cleared out from any probe array processing.
8452 for (probe
= first
; probe
!= NULL
; probe
= first
) {
8453 first
= probe
->dtpr_nextmod
;
8455 old
->dtpv_pops
.dtps_destroy(old
->dtpv_arg
, probe
->dtpr_id
,
8457 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8458 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8459 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8460 vmem_free(dtrace_arena
, (void *)(uintptr_t)(probe
->dtpr_id
), 1);
8461 kmem_free(probe
, sizeof (dtrace_probe_t
));
8464 if ((prev
= dtrace_provider
) == old
) {
8465 ASSERT(self
|| dtrace_devi
== NULL
);
8466 ASSERT(old
->dtpv_next
== NULL
|| dtrace_devi
== NULL
);
8467 dtrace_provider
= old
->dtpv_next
;
8469 while (prev
!= NULL
&& prev
->dtpv_next
!= old
)
8470 prev
= prev
->dtpv_next
;
8473 panic("attempt to unregister non-existent "
8474 "dtrace provider %p\n", (void *)id
);
8477 prev
->dtpv_next
= old
->dtpv_next
;
8481 mutex_exit(&dtrace_lock
);
8482 mutex_exit(&mod_lock
);
8483 mutex_exit(&dtrace_provider_lock
);
8486 kmem_free(old
->dtpv_name
, strlen(old
->dtpv_name
) + 1);
8487 kmem_free(old
, sizeof (dtrace_provider_t
));
8493 * Invalidate the specified provider. All subsequent probe lookups for the
8494 * specified provider will fail, but its probes will not be removed.
8497 dtrace_invalidate(dtrace_provider_id_t id
)
8499 dtrace_provider_t
*pvp
= (dtrace_provider_t
*)id
;
8501 ASSERT(pvp
->dtpv_pops
.dtps_enable
!=
8502 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8504 mutex_enter(&dtrace_provider_lock
);
8505 mutex_enter(&dtrace_lock
);
8507 pvp
->dtpv_defunct
= dtrace_gethrtime();
8509 mutex_exit(&dtrace_lock
);
8510 mutex_exit(&dtrace_provider_lock
);
8514 * Indicate whether or not DTrace has attached.
8517 dtrace_attached(void)
8520 * dtrace_provider will be non-NULL iff the DTrace driver has
8521 * attached. (It's non-NULL because DTrace is always itself a
8524 return (dtrace_provider
!= NULL
);
8528 * Remove all the unenabled probes for the given provider. This function is
8529 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8530 * -- just as many of its associated probes as it can.
8533 dtrace_condense(dtrace_provider_id_t id
)
8535 dtrace_provider_t
*prov
= (dtrace_provider_t
*)id
;
8537 dtrace_probe_t
*probe
;
8540 * Make sure this isn't the dtrace provider itself.
8542 ASSERT(prov
->dtpv_pops
.dtps_enable
!=
8543 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8545 mutex_enter(&dtrace_provider_lock
);
8546 mutex_enter(&dtrace_lock
);
8549 * Attempt to destroy the probes associated with this provider.
8551 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8552 if ((probe
= dtrace_probes
[i
]) == NULL
)
8555 if (probe
->dtpr_provider
!= prov
)
8558 if (probe
->dtpr_ecb
!= NULL
)
8561 dtrace_probes
[i
] = NULL
;
8563 dtrace_hash_remove(dtrace_bymod
, probe
);
8564 dtrace_hash_remove(dtrace_byfunc
, probe
);
8565 dtrace_hash_remove(dtrace_byname
, probe
);
8567 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, i
+ 1,
8569 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8570 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8571 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8572 kmem_free(probe
, sizeof (dtrace_probe_t
));
8573 vmem_free(dtrace_arena
, (void *)((uintptr_t)i
+ 1), 1);
8576 mutex_exit(&dtrace_lock
);
8577 mutex_exit(&dtrace_provider_lock
);
8583 * DTrace Probe Management Functions
8585 * The functions in this section perform the DTrace probe management,
8586 * including functions to create probes, look-up probes, and call into the
8587 * providers to request that probes be provided. Some of these functions are
8588 * in the Provider-to-Framework API; these functions can be identified by the
8589 * fact that they are not declared "static".
8593 * Create a probe with the specified module name, function name, and name.
8596 dtrace_probe_create(dtrace_provider_id_t prov
, const char *mod
,
8597 const char *func
, const char *name
, int aframes
, void *arg
)
8599 dtrace_probe_t
*probe
, **probes
;
8600 dtrace_provider_t
*provider
= (dtrace_provider_t
*)prov
;
8603 if (provider
== dtrace_provider
) {
8604 ASSERT(MUTEX_HELD(&dtrace_lock
));
8606 mutex_enter(&dtrace_lock
);
8609 id
= (dtrace_id_t
)(uintptr_t)vmem_alloc(dtrace_arena
, 1,
8610 VM_BESTFIT
| VM_SLEEP
);
8611 probe
= kmem_zalloc(sizeof (dtrace_probe_t
), KM_SLEEP
);
8613 probe
->dtpr_id
= id
;
8614 probe
->dtpr_gen
= dtrace_probegen
++;
8615 probe
->dtpr_mod
= dtrace_strdup(mod
);
8616 probe
->dtpr_func
= dtrace_strdup(func
);
8617 probe
->dtpr_name
= dtrace_strdup(name
);
8618 probe
->dtpr_arg
= arg
;
8619 probe
->dtpr_aframes
= aframes
;
8620 probe
->dtpr_provider
= provider
;
8622 dtrace_hash_add(dtrace_bymod
, probe
);
8623 dtrace_hash_add(dtrace_byfunc
, probe
);
8624 dtrace_hash_add(dtrace_byname
, probe
);
8626 if (id
- 1 >= dtrace_nprobes
) {
8627 size_t osize
= dtrace_nprobes
* sizeof (dtrace_probe_t
*);
8628 size_t nsize
= osize
<< 1;
8632 ASSERT(dtrace_probes
== NULL
);
8633 nsize
= sizeof (dtrace_probe_t
*);
8636 probes
= kmem_zalloc(nsize
, KM_SLEEP
);
8638 if (dtrace_probes
== NULL
) {
8640 dtrace_probes
= probes
;
8643 dtrace_probe_t
**oprobes
= dtrace_probes
;
8645 bcopy(oprobes
, probes
, osize
);
8646 dtrace_membar_producer();
8647 dtrace_probes
= probes
;
8652 * All CPUs are now seeing the new probes array; we can
8653 * safely free the old array.
8655 kmem_free(oprobes
, osize
);
8656 dtrace_nprobes
<<= 1;
8659 ASSERT(id
- 1 < dtrace_nprobes
);
8662 ASSERT(dtrace_probes
[id
- 1] == NULL
);
8663 dtrace_probes
[id
- 1] = probe
;
8665 if (provider
!= dtrace_provider
)
8666 mutex_exit(&dtrace_lock
);
8671 static dtrace_probe_t
*
8672 dtrace_probe_lookup_id(dtrace_id_t id
)
8674 ASSERT(MUTEX_HELD(&dtrace_lock
));
8676 if (id
== 0 || id
> dtrace_nprobes
)
8679 return (dtrace_probes
[id
- 1]);
8683 dtrace_probe_lookup_match(dtrace_probe_t
*probe
, void *arg
)
8685 *((dtrace_id_t
*)arg
) = probe
->dtpr_id
;
8687 return (DTRACE_MATCH_DONE
);
8691 * Look up a probe based on provider and one or more of module name, function
8692 * name and probe name.
8695 dtrace_probe_lookup(dtrace_provider_id_t prid
, const char *mod
,
8696 const char *func
, const char *name
)
8698 dtrace_probekey_t pkey
;
8702 pkey
.dtpk_prov
= ((dtrace_provider_t
*)prid
)->dtpv_name
;
8703 pkey
.dtpk_pmatch
= &dtrace_match_string
;
8704 pkey
.dtpk_mod
= mod
;
8705 pkey
.dtpk_mmatch
= mod
? &dtrace_match_string
: &dtrace_match_nul
;
8706 pkey
.dtpk_func
= func
;
8707 pkey
.dtpk_fmatch
= func
? &dtrace_match_string
: &dtrace_match_nul
;
8708 pkey
.dtpk_name
= name
;
8709 pkey
.dtpk_nmatch
= name
? &dtrace_match_string
: &dtrace_match_nul
;
8710 pkey
.dtpk_id
= DTRACE_IDNONE
;
8712 mutex_enter(&dtrace_lock
);
8713 match
= dtrace_match(&pkey
, DTRACE_PRIV_ALL
, 0, 0,
8714 dtrace_probe_lookup_match
, &id
);
8715 mutex_exit(&dtrace_lock
);
8717 ASSERT(match
== 1 || match
== 0);
8718 return (match
? id
: 0);
8722 * Returns the probe argument associated with the specified probe.
8725 dtrace_probe_arg(dtrace_provider_id_t id
, dtrace_id_t pid
)
8727 dtrace_probe_t
*probe
;
8730 mutex_enter(&dtrace_lock
);
8732 if ((probe
= dtrace_probe_lookup_id(pid
)) != NULL
&&
8733 probe
->dtpr_provider
== (dtrace_provider_t
*)id
)
8734 rval
= probe
->dtpr_arg
;
8736 mutex_exit(&dtrace_lock
);
8742 * Copy a probe into a probe description.
8745 dtrace_probe_description(const dtrace_probe_t
*prp
, dtrace_probedesc_t
*pdp
)
8747 bzero(pdp
, sizeof (dtrace_probedesc_t
));
8748 pdp
->dtpd_id
= prp
->dtpr_id
;
8750 (void) strncpy(pdp
->dtpd_provider
,
8751 prp
->dtpr_provider
->dtpv_name
, DTRACE_PROVNAMELEN
- 1);
8753 (void) strncpy(pdp
->dtpd_mod
, prp
->dtpr_mod
, DTRACE_MODNAMELEN
- 1);
8754 (void) strncpy(pdp
->dtpd_func
, prp
->dtpr_func
, DTRACE_FUNCNAMELEN
- 1);
8755 (void) strncpy(pdp
->dtpd_name
, prp
->dtpr_name
, DTRACE_NAMELEN
- 1);
8759 * Called to indicate that a probe -- or probes -- should be provided by a
8760 * specfied provider. If the specified description is NULL, the provider will
8761 * be told to provide all of its probes. (This is done whenever a new
8762 * consumer comes along, or whenever a retained enabling is to be matched.) If
8763 * the specified description is non-NULL, the provider is given the
8764 * opportunity to dynamically provide the specified probe, allowing providers
8765 * to support the creation of probes on-the-fly. (So-called _autocreated_
8766 * probes.) If the provider is NULL, the operations will be applied to all
8767 * providers; if the provider is non-NULL the operations will only be applied
8768 * to the specified provider. The dtrace_provider_lock must be held, and the
8769 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8770 * will need to grab the dtrace_lock when it reenters the framework through
8771 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8774 dtrace_probe_provide(dtrace_probedesc_t
*desc
, dtrace_provider_t
*prv
)
8779 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
8783 prv
= dtrace_provider
;
8788 * First, call the blanket provide operation.
8790 prv
->dtpv_pops
.dtps_provide(prv
->dtpv_arg
, desc
);
8793 * Now call the per-module provide operation. We will grab
8794 * mod_lock to prevent the list from being modified. Note
8795 * that this also prevents the mod_busy bits from changing.
8796 * (mod_busy can only be changed with mod_lock held.)
8798 mutex_enter(&mod_lock
);
8802 if (ctl
->mod_busy
|| ctl
->mod_mp
== NULL
)
8805 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
8807 } while ((ctl
= ctl
->mod_next
) != &modules
);
8809 mutex_exit(&mod_lock
);
8810 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
8814 * Iterate over each probe, and call the Framework-to-Provider API function
8818 dtrace_probe_foreach(uintptr_t offs
)
8820 dtrace_provider_t
*prov
;
8821 void (*func
)(void *, dtrace_id_t
, void *);
8822 dtrace_probe_t
*probe
;
8823 dtrace_icookie_t cookie
;
8827 * We disable interrupts to walk through the probe array. This is
8828 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8829 * won't see stale data.
8831 cookie
= dtrace_interrupt_disable();
8833 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8834 if ((probe
= dtrace_probes
[i
]) == NULL
)
8837 if (probe
->dtpr_ecb
== NULL
) {
8839 * This probe isn't enabled -- don't call the function.
8844 prov
= probe
->dtpr_provider
;
8845 func
= *((void(**)(void *, dtrace_id_t
, void *))
8846 ((uintptr_t)&prov
->dtpv_pops
+ offs
));
8848 func(prov
->dtpv_arg
, i
+ 1, probe
->dtpr_arg
);
8851 dtrace_interrupt_enable(cookie
);
8855 dtrace_probe_enable(const dtrace_probedesc_t
*desc
, dtrace_enabling_t
*enab
)
8857 dtrace_probekey_t pkey
;
8862 ASSERT(MUTEX_HELD(&dtrace_lock
));
8863 dtrace_ecb_create_cache
= NULL
;
8867 * If we're passed a NULL description, we're being asked to
8868 * create an ECB with a NULL probe.
8870 (void) dtrace_ecb_create_enable(NULL
, enab
);
8874 dtrace_probekey(desc
, &pkey
);
8875 dtrace_cred2priv(enab
->dten_vstate
->dtvs_state
->dts_cred
.dcr_cred
,
8876 &priv
, &uid
, &zoneid
);
8878 return (dtrace_match(&pkey
, priv
, uid
, zoneid
, dtrace_ecb_create_enable
,
8883 * DTrace Helper Provider Functions
8886 dtrace_dofattr2attr(dtrace_attribute_t
*attr
, const dof_attr_t dofattr
)
8888 attr
->dtat_name
= DOF_ATTR_NAME(dofattr
);
8889 attr
->dtat_data
= DOF_ATTR_DATA(dofattr
);
8890 attr
->dtat_class
= DOF_ATTR_CLASS(dofattr
);
8894 dtrace_dofprov2hprov(dtrace_helper_provdesc_t
*hprov
,
8895 const dof_provider_t
*dofprov
, char *strtab
)
8897 hprov
->dthpv_provname
= strtab
+ dofprov
->dofpv_name
;
8898 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_provider
,
8899 dofprov
->dofpv_provattr
);
8900 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_mod
,
8901 dofprov
->dofpv_modattr
);
8902 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_func
,
8903 dofprov
->dofpv_funcattr
);
8904 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_name
,
8905 dofprov
->dofpv_nameattr
);
8906 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_args
,
8907 dofprov
->dofpv_argsattr
);
8911 dtrace_helper_provide_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
8913 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8914 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8915 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
8916 dof_provider_t
*provider
;
8918 uint32_t *off
, *enoff
;
8922 dtrace_helper_provdesc_t dhpv
;
8923 dtrace_helper_probedesc_t dhpb
;
8924 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8925 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8928 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8929 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8930 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8931 prb_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8932 provider
->dofpv_probes
* dof
->dofh_secsize
);
8933 arg_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8934 provider
->dofpv_prargs
* dof
->dofh_secsize
);
8935 off_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8936 provider
->dofpv_proffs
* dof
->dofh_secsize
);
8938 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8939 off
= (uint32_t *)(uintptr_t)(daddr
+ off_sec
->dofs_offset
);
8940 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
8944 * See dtrace_helper_provider_validate().
8946 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
8947 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
) {
8948 enoff_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8949 provider
->dofpv_prenoffs
* dof
->dofh_secsize
);
8950 enoff
= (uint32_t *)(uintptr_t)(daddr
+ enoff_sec
->dofs_offset
);
8953 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
8956 * Create the provider.
8958 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8960 if ((parg
= mops
->dtms_provide_pid(meta
->dtm_arg
, &dhpv
, pid
)) == NULL
)
8966 * Create the probes.
8968 for (i
= 0; i
< nprobes
; i
++) {
8969 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
8970 prb_sec
->dofs_offset
+ i
* prb_sec
->dofs_entsize
);
8972 dhpb
.dthpb_mod
= dhp
->dofhp_mod
;
8973 dhpb
.dthpb_func
= strtab
+ probe
->dofpr_func
;
8974 dhpb
.dthpb_name
= strtab
+ probe
->dofpr_name
;
8975 dhpb
.dthpb_base
= probe
->dofpr_addr
;
8976 dhpb
.dthpb_offs
= off
+ probe
->dofpr_offidx
;
8977 dhpb
.dthpb_noffs
= probe
->dofpr_noffs
;
8978 if (enoff
!= NULL
) {
8979 dhpb
.dthpb_enoffs
= enoff
+ probe
->dofpr_enoffidx
;
8980 dhpb
.dthpb_nenoffs
= probe
->dofpr_nenoffs
;
8982 dhpb
.dthpb_enoffs
= NULL
;
8983 dhpb
.dthpb_nenoffs
= 0;
8985 dhpb
.dthpb_args
= arg
+ probe
->dofpr_argidx
;
8986 dhpb
.dthpb_nargc
= probe
->dofpr_nargc
;
8987 dhpb
.dthpb_xargc
= probe
->dofpr_xargc
;
8988 dhpb
.dthpb_ntypes
= strtab
+ probe
->dofpr_nargv
;
8989 dhpb
.dthpb_xtypes
= strtab
+ probe
->dofpr_xargv
;
8991 mops
->dtms_create_probe(meta
->dtm_arg
, parg
, &dhpb
);
8996 dtrace_helper_provide(dof_helper_t
*dhp
, pid_t pid
)
8998 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8999 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
9002 ASSERT(MUTEX_HELD(&dtrace_meta_lock
));
9004 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
9005 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
9006 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
9008 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
9011 dtrace_helper_provide_one(dhp
, sec
, pid
);
9015 * We may have just created probes, so we must now rematch against
9016 * any retained enablings. Note that this call will acquire both
9017 * cpu_lock and dtrace_lock; the fact that we are holding
9018 * dtrace_meta_lock now is what defines the ordering with respect to
9019 * these three locks.
9021 dtrace_enabling_matchall();
9025 dtrace_helper_provider_remove_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, pid_t pid
)
9027 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
9028 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
9030 dof_provider_t
*provider
;
9032 dtrace_helper_provdesc_t dhpv
;
9033 dtrace_meta_t
*meta
= dtrace_meta_pid
;
9034 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
9036 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
9037 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
9038 provider
->dofpv_strtab
* dof
->dofh_secsize
);
9040 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
9043 * Create the provider.
9045 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
9047 mops
->dtms_remove_pid(meta
->dtm_arg
, &dhpv
, pid
);
9053 dtrace_helper_provider_remove(dof_helper_t
*dhp
, pid_t pid
)
9055 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
9056 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
9059 ASSERT(MUTEX_HELD(&dtrace_meta_lock
));
9061 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
9062 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
9063 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
9065 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
9068 dtrace_helper_provider_remove_one(dhp
, sec
, pid
);
9073 * DTrace Meta Provider-to-Framework API Functions
9075 * These functions implement the Meta Provider-to-Framework API, as described
9076 * in <sys/dtrace.h>.
9079 dtrace_meta_register(const char *name
, const dtrace_mops_t
*mops
, void *arg
,
9080 dtrace_meta_provider_id_t
*idp
)
9082 dtrace_meta_t
*meta
;
9083 dtrace_helpers_t
*help
, *next
;
9086 *idp
= DTRACE_METAPROVNONE
;
9089 * We strictly don't need the name, but we hold onto it for
9090 * debuggability. All hail error queues!
9093 cmn_err(CE_WARN
, "failed to register meta-provider: "
9099 mops
->dtms_create_probe
== NULL
||
9100 mops
->dtms_provide_pid
== NULL
||
9101 mops
->dtms_remove_pid
== NULL
) {
9102 cmn_err(CE_WARN
, "failed to register meta-register %s: "
9103 "invalid ops", name
);
9107 meta
= kmem_zalloc(sizeof (dtrace_meta_t
), KM_SLEEP
);
9108 meta
->dtm_mops
= *mops
;
9109 meta
->dtm_name
= kmem_alloc(strlen(name
) + 1, KM_SLEEP
);
9110 (void) strcpy(meta
->dtm_name
, name
);
9111 meta
->dtm_arg
= arg
;
9113 mutex_enter(&dtrace_meta_lock
);
9114 mutex_enter(&dtrace_lock
);
9116 if (dtrace_meta_pid
!= NULL
) {
9117 mutex_exit(&dtrace_lock
);
9118 mutex_exit(&dtrace_meta_lock
);
9119 cmn_err(CE_WARN
, "failed to register meta-register %s: "
9120 "user-land meta-provider exists", name
);
9121 kmem_free(meta
->dtm_name
, strlen(meta
->dtm_name
) + 1);
9122 kmem_free(meta
, sizeof (dtrace_meta_t
));
9126 dtrace_meta_pid
= meta
;
9127 *idp
= (dtrace_meta_provider_id_t
)meta
;
9130 * If there are providers and probes ready to go, pass them
9131 * off to the new meta provider now.
9134 help
= dtrace_deferred_pid
;
9135 dtrace_deferred_pid
= NULL
;
9137 mutex_exit(&dtrace_lock
);
9139 while (help
!= NULL
) {
9140 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
9141 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
9145 next
= help
->dthps_next
;
9146 help
->dthps_next
= NULL
;
9147 help
->dthps_prev
= NULL
;
9148 help
->dthps_deferred
= 0;
9152 mutex_exit(&dtrace_meta_lock
);
9158 dtrace_meta_unregister(dtrace_meta_provider_id_t id
)
9160 dtrace_meta_t
**pp
, *old
= (dtrace_meta_t
*)id
;
9162 mutex_enter(&dtrace_meta_lock
);
9163 mutex_enter(&dtrace_lock
);
9165 if (old
== dtrace_meta_pid
) {
9166 pp
= &dtrace_meta_pid
;
9168 panic("attempt to unregister non-existent "
9169 "dtrace meta-provider %p\n", (void *)old
);
9172 if (old
->dtm_count
!= 0) {
9173 mutex_exit(&dtrace_lock
);
9174 mutex_exit(&dtrace_meta_lock
);
9180 mutex_exit(&dtrace_lock
);
9181 mutex_exit(&dtrace_meta_lock
);
9183 kmem_free(old
->dtm_name
, strlen(old
->dtm_name
) + 1);
9184 kmem_free(old
, sizeof (dtrace_meta_t
));
9191 * DTrace DIF Object Functions
9194 dtrace_difo_err(uint_t pc
, const char *format
, ...)
9196 if (dtrace_err_verbose
) {
9199 (void) uprintf("dtrace DIF object error: [%u]: ", pc
);
9200 va_start(alist
, format
);
9201 (void) vuprintf(format
, alist
);
9205 #ifdef DTRACE_ERRDEBUG
9206 dtrace_errdebug(format
);
9212 * Validate a DTrace DIF object by checking the IR instructions. The following
9213 * rules are currently enforced by dtrace_difo_validate():
9215 * 1. Each instruction must have a valid opcode
9216 * 2. Each register, string, variable, or subroutine reference must be valid
9217 * 3. No instruction can modify register %r0 (must be zero)
9218 * 4. All instruction reserved bits must be set to zero
9219 * 5. The last instruction must be a "ret" instruction
9220 * 6. All branch targets must reference a valid instruction _after_ the branch
9223 dtrace_difo_validate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
, uint_t nregs
,
9227 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9230 int maxglobal
= -1, maxlocal
= -1, maxtlocal
= -1;
9232 kcheckload
= cr
== NULL
||
9233 (vstate
->dtvs_state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) == 0;
9235 dp
->dtdo_destructive
= 0;
9237 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9238 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9240 uint_t r1
= DIF_INSTR_R1(instr
);
9241 uint_t r2
= DIF_INSTR_R2(instr
);
9242 uint_t rd
= DIF_INSTR_RD(instr
);
9243 uint_t rs
= DIF_INSTR_RS(instr
);
9244 uint_t label
= DIF_INSTR_LABEL(instr
);
9245 uint_t v
= DIF_INSTR_VAR(instr
);
9246 uint_t subr
= DIF_INSTR_SUBR(instr
);
9247 uint_t type
= DIF_INSTR_TYPE(instr
);
9248 uint_t op
= DIF_INSTR_OP(instr
);
9266 err
+= efunc(pc
, "invalid register %u\n", r1
);
9268 err
+= efunc(pc
, "invalid register %u\n", r2
);
9270 err
+= efunc(pc
, "invalid register %u\n", rd
);
9272 err
+= efunc(pc
, "cannot write to %r0\n");
9278 err
+= efunc(pc
, "invalid register %u\n", r1
);
9280 err
+= efunc(pc
, "non-zero reserved bits\n");
9282 err
+= efunc(pc
, "invalid register %u\n", rd
);
9284 err
+= efunc(pc
, "cannot write to %r0\n");
9294 err
+= efunc(pc
, "invalid register %u\n", r1
);
9296 err
+= efunc(pc
, "non-zero reserved bits\n");
9298 err
+= efunc(pc
, "invalid register %u\n", rd
);
9300 err
+= efunc(pc
, "cannot write to %r0\n");
9302 dp
->dtdo_buf
[pc
] = DIF_INSTR_LOAD(op
+
9303 DIF_OP_RLDSB
- DIF_OP_LDSB
, r1
, rd
);
9313 err
+= efunc(pc
, "invalid register %u\n", r1
);
9315 err
+= efunc(pc
, "non-zero reserved bits\n");
9317 err
+= efunc(pc
, "invalid register %u\n", rd
);
9319 err
+= efunc(pc
, "cannot write to %r0\n");
9329 err
+= efunc(pc
, "invalid register %u\n", r1
);
9331 err
+= efunc(pc
, "non-zero reserved bits\n");
9333 err
+= efunc(pc
, "invalid register %u\n", rd
);
9335 err
+= efunc(pc
, "cannot write to %r0\n");
9342 err
+= efunc(pc
, "invalid register %u\n", r1
);
9344 err
+= efunc(pc
, "non-zero reserved bits\n");
9346 err
+= efunc(pc
, "invalid register %u\n", rd
);
9348 err
+= efunc(pc
, "cannot write to 0 address\n");
9353 err
+= efunc(pc
, "invalid register %u\n", r1
);
9355 err
+= efunc(pc
, "invalid register %u\n", r2
);
9357 err
+= efunc(pc
, "non-zero reserved bits\n");
9361 err
+= efunc(pc
, "invalid register %u\n", r1
);
9362 if (r2
!= 0 || rd
!= 0)
9363 err
+= efunc(pc
, "non-zero reserved bits\n");
9376 if (label
>= dp
->dtdo_len
) {
9377 err
+= efunc(pc
, "invalid branch target %u\n",
9381 err
+= efunc(pc
, "backward branch to %u\n",
9386 if (r1
!= 0 || r2
!= 0)
9387 err
+= efunc(pc
, "non-zero reserved bits\n");
9389 err
+= efunc(pc
, "invalid register %u\n", rd
);
9393 case DIF_OP_FLUSHTS
:
9394 if (r1
!= 0 || r2
!= 0 || rd
!= 0)
9395 err
+= efunc(pc
, "non-zero reserved bits\n");
9398 if (DIF_INSTR_INTEGER(instr
) >= dp
->dtdo_intlen
) {
9399 err
+= efunc(pc
, "invalid integer ref %u\n",
9400 DIF_INSTR_INTEGER(instr
));
9403 err
+= efunc(pc
, "invalid register %u\n", rd
);
9405 err
+= efunc(pc
, "cannot write to %r0\n");
9408 if (DIF_INSTR_STRING(instr
) >= dp
->dtdo_strlen
) {
9409 err
+= efunc(pc
, "invalid string ref %u\n",
9410 DIF_INSTR_STRING(instr
));
9413 err
+= efunc(pc
, "invalid register %u\n", rd
);
9415 err
+= efunc(pc
, "cannot write to %r0\n");
9419 if (r1
> DIF_VAR_ARRAY_MAX
)
9420 err
+= efunc(pc
, "invalid array %u\n", r1
);
9422 err
+= efunc(pc
, "invalid register %u\n", r2
);
9424 err
+= efunc(pc
, "invalid register %u\n", rd
);
9426 err
+= efunc(pc
, "cannot write to %r0\n");
9429 if (r1
> DIF_VAR_ARRAY_MAX
)
9430 err
+= efunc(pc
, "invalid array %u\n", r1
);
9432 err
+= efunc(pc
, "invalid register %u\n", r2
);
9434 err
+= efunc(pc
, "invalid register %u\n", rd
);
9435 dp
->dtdo_destructive
= 1;
9442 if (v
< DIF_VAR_OTHER_MIN
|| v
> DIF_VAR_OTHER_MAX
)
9443 err
+= efunc(pc
, "invalid variable %u\n", v
);
9445 err
+= efunc(pc
, "invalid register %u\n", rd
);
9447 err
+= efunc(pc
, "cannot write to %r0\n");
9454 if (v
< DIF_VAR_OTHER_UBASE
|| v
> DIF_VAR_OTHER_MAX
)
9455 err
+= efunc(pc
, "invalid variable %u\n", v
);
9457 err
+= efunc(pc
, "invalid register %u\n", rd
);
9460 if (subr
> DIF_SUBR_MAX
)
9461 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9463 err
+= efunc(pc
, "invalid register %u\n", rd
);
9465 err
+= efunc(pc
, "cannot write to %r0\n");
9467 if (subr
== DIF_SUBR_COPYOUT
||
9468 subr
== DIF_SUBR_COPYOUTSTR
) {
9469 dp
->dtdo_destructive
= 1;
9472 if (subr
== DIF_SUBR_GETF
) {
9474 * If we have a getf() we need to record that
9475 * in our state. Note that our state can be
9476 * NULL if this is a helper -- but in that
9477 * case, the call to getf() is itself illegal,
9478 * and will be caught (slightly later) when
9479 * the helper is validated.
9481 if (vstate
->dtvs_state
!= NULL
)
9482 vstate
->dtvs_state
->dts_getf
++;
9487 if (type
!= DIF_TYPE_STRING
&& type
!= DIF_TYPE_CTF
)
9488 err
+= efunc(pc
, "invalid ref type %u\n", type
);
9490 err
+= efunc(pc
, "invalid register %u\n", r2
);
9492 err
+= efunc(pc
, "invalid register %u\n", rs
);
9495 if (type
!= DIF_TYPE_CTF
)
9496 err
+= efunc(pc
, "invalid val type %u\n", type
);
9498 err
+= efunc(pc
, "invalid register %u\n", r2
);
9500 err
+= efunc(pc
, "invalid register %u\n", rs
);
9503 err
+= efunc(pc
, "invalid opcode %u\n",
9504 DIF_INSTR_OP(instr
));
9508 if (dp
->dtdo_len
!= 0 &&
9509 DIF_INSTR_OP(dp
->dtdo_buf
[dp
->dtdo_len
- 1]) != DIF_OP_RET
) {
9510 err
+= efunc(dp
->dtdo_len
- 1,
9511 "expected 'ret' as last DIF instruction\n");
9514 if (!(dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
))) {
9516 * If we're not returning by reference, the size must be either
9517 * 0 or the size of one of the base types.
9519 switch (dp
->dtdo_rtype
.dtdt_size
) {
9521 case sizeof (uint8_t):
9522 case sizeof (uint16_t):
9523 case sizeof (uint32_t):
9524 case sizeof (uint64_t):
9528 err
+= efunc(dp
->dtdo_len
- 1, "bad return size\n");
9532 for (i
= 0; i
< dp
->dtdo_varlen
&& err
== 0; i
++) {
9533 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
], *existing
= NULL
;
9534 dtrace_diftype_t
*vt
, *et
;
9537 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
&&
9538 v
->dtdv_scope
!= DIFV_SCOPE_THREAD
&&
9539 v
->dtdv_scope
!= DIFV_SCOPE_LOCAL
) {
9540 err
+= efunc(i
, "unrecognized variable scope %d\n",
9545 if (v
->dtdv_kind
!= DIFV_KIND_ARRAY
&&
9546 v
->dtdv_kind
!= DIFV_KIND_SCALAR
) {
9547 err
+= efunc(i
, "unrecognized variable type %d\n",
9552 if ((id
= v
->dtdv_id
) > DIF_VARIABLE_MAX
) {
9553 err
+= efunc(i
, "%d exceeds variable id limit\n", id
);
9557 if (id
< DIF_VAR_OTHER_UBASE
)
9561 * For user-defined variables, we need to check that this
9562 * definition is identical to any previous definition that we
9565 ndx
= id
- DIF_VAR_OTHER_UBASE
;
9567 switch (v
->dtdv_scope
) {
9568 case DIFV_SCOPE_GLOBAL
:
9569 if (maxglobal
== -1 || ndx
> maxglobal
)
9572 if (ndx
< vstate
->dtvs_nglobals
) {
9573 dtrace_statvar_t
*svar
;
9575 if ((svar
= vstate
->dtvs_globals
[ndx
]) != NULL
)
9576 existing
= &svar
->dtsv_var
;
9581 case DIFV_SCOPE_THREAD
:
9582 if (maxtlocal
== -1 || ndx
> maxtlocal
)
9585 if (ndx
< vstate
->dtvs_ntlocals
)
9586 existing
= &vstate
->dtvs_tlocals
[ndx
];
9589 case DIFV_SCOPE_LOCAL
:
9590 if (maxlocal
== -1 || ndx
> maxlocal
)
9593 if (ndx
< vstate
->dtvs_nlocals
) {
9594 dtrace_statvar_t
*svar
;
9596 if ((svar
= vstate
->dtvs_locals
[ndx
]) != NULL
)
9597 existing
= &svar
->dtsv_var
;
9605 if (vt
->dtdt_flags
& DIF_TF_BYREF
) {
9606 if (vt
->dtdt_size
== 0) {
9607 err
+= efunc(i
, "zero-sized variable\n");
9611 if ((v
->dtdv_scope
== DIFV_SCOPE_GLOBAL
||
9612 v
->dtdv_scope
== DIFV_SCOPE_LOCAL
) &&
9613 vt
->dtdt_size
> dtrace_statvar_maxsize
) {
9614 err
+= efunc(i
, "oversized by-ref static\n");
9619 if (existing
== NULL
|| existing
->dtdv_id
== 0)
9622 ASSERT(existing
->dtdv_id
== v
->dtdv_id
);
9623 ASSERT(existing
->dtdv_scope
== v
->dtdv_scope
);
9625 if (existing
->dtdv_kind
!= v
->dtdv_kind
)
9626 err
+= efunc(i
, "%d changed variable kind\n", id
);
9628 et
= &existing
->dtdv_type
;
9630 if (vt
->dtdt_flags
!= et
->dtdt_flags
) {
9631 err
+= efunc(i
, "%d changed variable type flags\n", id
);
9635 if (vt
->dtdt_size
!= 0 && vt
->dtdt_size
!= et
->dtdt_size
) {
9636 err
+= efunc(i
, "%d changed variable type size\n", id
);
9641 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9642 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9644 uint_t v
= DIF_INSTR_VAR(instr
);
9645 uint_t op
= DIF_INSTR_OP(instr
);
9652 if (v
> DIF_VAR_OTHER_UBASE
+ maxglobal
)
9653 err
+= efunc(pc
, "invalid variable %u\n", v
);
9659 if (v
> DIF_VAR_OTHER_UBASE
+ maxtlocal
)
9660 err
+= efunc(pc
, "invalid variable %u\n", v
);
9664 if (v
> DIF_VAR_OTHER_UBASE
+ maxlocal
)
9665 err
+= efunc(pc
, "invalid variable %u\n", v
);
9676 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9677 * are much more constrained than normal DIFOs. Specifically, they may
9680 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9681 * miscellaneous string routines
9682 * 2. Access DTrace variables other than the args[] array, and the
9683 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9684 * 3. Have thread-local variables.
9685 * 4. Have dynamic variables.
9688 dtrace_difo_validate_helper(dtrace_difo_t
*dp
)
9690 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9694 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9695 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9697 uint_t v
= DIF_INSTR_VAR(instr
);
9698 uint_t subr
= DIF_INSTR_SUBR(instr
);
9699 uint_t op
= DIF_INSTR_OP(instr
);
9754 case DIF_OP_FLUSHTS
:
9766 if (v
>= DIF_VAR_OTHER_UBASE
)
9769 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
)
9772 if (v
== DIF_VAR_CURTHREAD
|| v
== DIF_VAR_PID
||
9773 v
== DIF_VAR_PPID
|| v
== DIF_VAR_TID
||
9774 v
== DIF_VAR_EXECNAME
|| v
== DIF_VAR_ZONENAME
||
9775 v
== DIF_VAR_UID
|| v
== DIF_VAR_GID
)
9778 err
+= efunc(pc
, "illegal variable %u\n", v
);
9782 if (v
< DIF_VAR_OTHER_UBASE
) {
9783 err
+= efunc(pc
, "illegal variable load\n");
9790 err
+= efunc(pc
, "illegal dynamic variable load\n");
9794 if (v
< DIF_VAR_OTHER_UBASE
) {
9795 err
+= efunc(pc
, "illegal variable store\n");
9802 err
+= efunc(pc
, "illegal dynamic variable store\n");
9806 if (subr
== DIF_SUBR_ALLOCA
||
9807 subr
== DIF_SUBR_BCOPY
||
9808 subr
== DIF_SUBR_COPYIN
||
9809 subr
== DIF_SUBR_COPYINTO
||
9810 subr
== DIF_SUBR_COPYINSTR
||
9811 subr
== DIF_SUBR_INDEX
||
9812 subr
== DIF_SUBR_INET_NTOA
||
9813 subr
== DIF_SUBR_INET_NTOA6
||
9814 subr
== DIF_SUBR_INET_NTOP
||
9815 subr
== DIF_SUBR_JSON
||
9816 subr
== DIF_SUBR_LLTOSTR
||
9817 subr
== DIF_SUBR_STRTOLL
||
9818 subr
== DIF_SUBR_RINDEX
||
9819 subr
== DIF_SUBR_STRCHR
||
9820 subr
== DIF_SUBR_STRJOIN
||
9821 subr
== DIF_SUBR_STRRCHR
||
9822 subr
== DIF_SUBR_STRSTR
||
9823 subr
== DIF_SUBR_HTONS
||
9824 subr
== DIF_SUBR_HTONL
||
9825 subr
== DIF_SUBR_HTONLL
||
9826 subr
== DIF_SUBR_NTOHS
||
9827 subr
== DIF_SUBR_NTOHL
||
9828 subr
== DIF_SUBR_NTOHLL
)
9831 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9835 err
+= efunc(pc
, "invalid opcode %u\n",
9836 DIF_INSTR_OP(instr
));
9844 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9848 dtrace_difo_cacheable(dtrace_difo_t
*dp
)
9855 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9856 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9858 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
)
9861 switch (v
->dtdv_id
) {
9862 case DIF_VAR_CURTHREAD
:
9865 case DIF_VAR_EXECNAME
:
9866 case DIF_VAR_ZONENAME
:
9875 * This DIF object may be cacheable. Now we need to look for any
9876 * array loading instructions, any memory loading instructions, or
9877 * any stores to thread-local variables.
9879 for (i
= 0; i
< dp
->dtdo_len
; i
++) {
9880 uint_t op
= DIF_INSTR_OP(dp
->dtdo_buf
[i
]);
9882 if ((op
>= DIF_OP_LDSB
&& op
<= DIF_OP_LDX
) ||
9883 (op
>= DIF_OP_ULDSB
&& op
<= DIF_OP_ULDX
) ||
9884 (op
>= DIF_OP_RLDSB
&& op
<= DIF_OP_RLDX
) ||
9885 op
== DIF_OP_LDGA
|| op
== DIF_OP_STTS
)
9893 dtrace_difo_hold(dtrace_difo_t
*dp
)
9897 ASSERT(MUTEX_HELD(&dtrace_lock
));
9900 ASSERT(dp
->dtdo_refcnt
!= 0);
9903 * We need to check this DIF object for references to the variable
9904 * DIF_VAR_VTIMESTAMP.
9906 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9907 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9909 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9912 if (dtrace_vtime_references
++ == 0)
9913 dtrace_vtime_enable();
9918 * This routine calculates the dynamic variable chunksize for a given DIF
9919 * object. The calculation is not fool-proof, and can probably be tricked by
9920 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9921 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9922 * if a dynamic variable size exceeds the chunksize.
9925 dtrace_difo_chunksize(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9928 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
9929 const dif_instr_t
*text
= dp
->dtdo_buf
;
9935 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9936 dif_instr_t instr
= text
[pc
];
9937 uint_t op
= DIF_INSTR_OP(instr
);
9938 uint_t rd
= DIF_INSTR_RD(instr
);
9939 uint_t r1
= DIF_INSTR_R1(instr
);
9943 dtrace_key_t
*key
= tupregs
;
9947 sval
= dp
->dtdo_inttab
[DIF_INSTR_INTEGER(instr
)];
9952 key
= &tupregs
[DIF_DTR_NREGS
];
9953 key
[0].dttk_size
= 0;
9954 key
[1].dttk_size
= 0;
9956 scope
= DIFV_SCOPE_THREAD
;
9963 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
)
9964 key
[nkeys
++].dttk_size
= 0;
9966 key
[nkeys
++].dttk_size
= 0;
9968 if (op
== DIF_OP_STTAA
) {
9969 scope
= DIFV_SCOPE_THREAD
;
9971 scope
= DIFV_SCOPE_GLOBAL
;
9977 if (ttop
== DIF_DTR_NREGS
)
9980 if ((srd
== 0 || sval
== 0) && r1
== DIF_TYPE_STRING
) {
9982 * If the register for the size of the "pushtr"
9983 * is %r0 (or the value is 0) and the type is
9984 * a string, we'll use the system-wide default
9987 tupregs
[ttop
++].dttk_size
=
9988 dtrace_strsize_default
;
9993 if (sval
> LONG_MAX
)
9996 tupregs
[ttop
++].dttk_size
= sval
;
10001 case DIF_OP_PUSHTV
:
10002 if (ttop
== DIF_DTR_NREGS
)
10005 tupregs
[ttop
++].dttk_size
= 0;
10008 case DIF_OP_FLUSHTS
:
10025 * We have a dynamic variable allocation; calculate its size.
10027 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
10028 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
10030 size
= sizeof (dtrace_dynvar_t
);
10031 size
+= sizeof (dtrace_key_t
) * (nkeys
- 1);
10035 * Now we need to determine the size of the stored data.
10037 id
= DIF_INSTR_VAR(instr
);
10039 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10040 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10042 if (v
->dtdv_id
== id
&& v
->dtdv_scope
== scope
) {
10043 size
+= v
->dtdv_type
.dtdt_size
;
10048 if (i
== dp
->dtdo_varlen
)
10052 * We have the size. If this is larger than the chunk size
10053 * for our dynamic variable state, reset the chunk size.
10055 size
= P2ROUNDUP(size
, sizeof (uint64_t));
10058 * Before setting the chunk size, check that we're not going
10059 * to set it to a negative value...
10061 if (size
> LONG_MAX
)
10065 * ...and make certain that we didn't badly overflow.
10067 if (size
< ksize
|| size
< sizeof (dtrace_dynvar_t
))
10070 if (size
> vstate
->dtvs_dynvars
.dtds_chunksize
)
10071 vstate
->dtvs_dynvars
.dtds_chunksize
= size
;
10076 dtrace_difo_init(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10078 int i
, oldsvars
, osz
, nsz
, otlocals
, ntlocals
;
10081 ASSERT(MUTEX_HELD(&dtrace_lock
));
10082 ASSERT(dp
->dtdo_buf
!= NULL
&& dp
->dtdo_len
!= 0);
10084 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10085 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10086 dtrace_statvar_t
*svar
, ***svarp
;
10088 uint8_t scope
= v
->dtdv_scope
;
10091 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
10094 id
-= DIF_VAR_OTHER_UBASE
;
10097 case DIFV_SCOPE_THREAD
:
10098 while (id
>= (otlocals
= vstate
->dtvs_ntlocals
)) {
10099 dtrace_difv_t
*tlocals
;
10101 if ((ntlocals
= (otlocals
<< 1)) == 0)
10104 osz
= otlocals
* sizeof (dtrace_difv_t
);
10105 nsz
= ntlocals
* sizeof (dtrace_difv_t
);
10107 tlocals
= kmem_zalloc(nsz
, KM_SLEEP
);
10110 bcopy(vstate
->dtvs_tlocals
,
10112 kmem_free(vstate
->dtvs_tlocals
, osz
);
10115 vstate
->dtvs_tlocals
= tlocals
;
10116 vstate
->dtvs_ntlocals
= ntlocals
;
10119 vstate
->dtvs_tlocals
[id
] = *v
;
10122 case DIFV_SCOPE_LOCAL
:
10123 np
= &vstate
->dtvs_nlocals
;
10124 svarp
= &vstate
->dtvs_locals
;
10126 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
10127 dsize
= NCPU
* (v
->dtdv_type
.dtdt_size
+
10128 sizeof (uint64_t));
10130 dsize
= NCPU
* sizeof (uint64_t);
10134 case DIFV_SCOPE_GLOBAL
:
10135 np
= &vstate
->dtvs_nglobals
;
10136 svarp
= &vstate
->dtvs_globals
;
10138 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
10139 dsize
= v
->dtdv_type
.dtdt_size
+
10148 while (id
>= (oldsvars
= *np
)) {
10149 dtrace_statvar_t
**statics
;
10150 int newsvars
, oldsize
, newsize
;
10152 if ((newsvars
= (oldsvars
<< 1)) == 0)
10155 oldsize
= oldsvars
* sizeof (dtrace_statvar_t
*);
10156 newsize
= newsvars
* sizeof (dtrace_statvar_t
*);
10158 statics
= kmem_zalloc(newsize
, KM_SLEEP
);
10160 if (oldsize
!= 0) {
10161 bcopy(*svarp
, statics
, oldsize
);
10162 kmem_free(*svarp
, oldsize
);
10169 if ((svar
= (*svarp
)[id
]) == NULL
) {
10170 svar
= kmem_zalloc(sizeof (dtrace_statvar_t
), KM_SLEEP
);
10171 svar
->dtsv_var
= *v
;
10173 if ((svar
->dtsv_size
= dsize
) != 0) {
10174 svar
->dtsv_data
= (uint64_t)(uintptr_t)
10175 kmem_zalloc(dsize
, KM_SLEEP
);
10178 (*svarp
)[id
] = svar
;
10181 svar
->dtsv_refcnt
++;
10184 dtrace_difo_chunksize(dp
, vstate
);
10185 dtrace_difo_hold(dp
);
10188 static dtrace_difo_t
*
10189 dtrace_difo_duplicate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10191 dtrace_difo_t
*new;
10194 ASSERT(dp
->dtdo_buf
!= NULL
);
10195 ASSERT(dp
->dtdo_refcnt
!= 0);
10197 new = kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
10199 ASSERT(dp
->dtdo_buf
!= NULL
);
10200 sz
= dp
->dtdo_len
* sizeof (dif_instr_t
);
10201 new->dtdo_buf
= kmem_alloc(sz
, KM_SLEEP
);
10202 bcopy(dp
->dtdo_buf
, new->dtdo_buf
, sz
);
10203 new->dtdo_len
= dp
->dtdo_len
;
10205 if (dp
->dtdo_strtab
!= NULL
) {
10206 ASSERT(dp
->dtdo_strlen
!= 0);
10207 new->dtdo_strtab
= kmem_alloc(dp
->dtdo_strlen
, KM_SLEEP
);
10208 bcopy(dp
->dtdo_strtab
, new->dtdo_strtab
, dp
->dtdo_strlen
);
10209 new->dtdo_strlen
= dp
->dtdo_strlen
;
10212 if (dp
->dtdo_inttab
!= NULL
) {
10213 ASSERT(dp
->dtdo_intlen
!= 0);
10214 sz
= dp
->dtdo_intlen
* sizeof (uint64_t);
10215 new->dtdo_inttab
= kmem_alloc(sz
, KM_SLEEP
);
10216 bcopy(dp
->dtdo_inttab
, new->dtdo_inttab
, sz
);
10217 new->dtdo_intlen
= dp
->dtdo_intlen
;
10220 if (dp
->dtdo_vartab
!= NULL
) {
10221 ASSERT(dp
->dtdo_varlen
!= 0);
10222 sz
= dp
->dtdo_varlen
* sizeof (dtrace_difv_t
);
10223 new->dtdo_vartab
= kmem_alloc(sz
, KM_SLEEP
);
10224 bcopy(dp
->dtdo_vartab
, new->dtdo_vartab
, sz
);
10225 new->dtdo_varlen
= dp
->dtdo_varlen
;
10228 dtrace_difo_init(new, vstate
);
10233 dtrace_difo_destroy(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10237 ASSERT(dp
->dtdo_refcnt
== 0);
10239 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10240 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10241 dtrace_statvar_t
*svar
, **svarp
;
10243 uint8_t scope
= v
->dtdv_scope
;
10247 case DIFV_SCOPE_THREAD
:
10250 case DIFV_SCOPE_LOCAL
:
10251 np
= &vstate
->dtvs_nlocals
;
10252 svarp
= vstate
->dtvs_locals
;
10255 case DIFV_SCOPE_GLOBAL
:
10256 np
= &vstate
->dtvs_nglobals
;
10257 svarp
= vstate
->dtvs_globals
;
10264 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
10267 id
-= DIF_VAR_OTHER_UBASE
;
10271 ASSERT(svar
!= NULL
);
10272 ASSERT(svar
->dtsv_refcnt
> 0);
10274 if (--svar
->dtsv_refcnt
> 0)
10277 if (svar
->dtsv_size
!= 0) {
10278 ASSERT(svar
->dtsv_data
!= (uintptr_t)NULL
);
10279 kmem_free((void *)(uintptr_t)svar
->dtsv_data
,
10283 kmem_free(svar
, sizeof (dtrace_statvar_t
));
10287 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
10288 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
10289 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
10290 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
10292 kmem_free(dp
, sizeof (dtrace_difo_t
));
10296 dtrace_difo_release(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
10300 ASSERT(MUTEX_HELD(&dtrace_lock
));
10301 ASSERT(dp
->dtdo_refcnt
!= 0);
10303 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
10304 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
10306 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
10309 ASSERT(dtrace_vtime_references
> 0);
10310 if (--dtrace_vtime_references
== 0)
10311 dtrace_vtime_disable();
10314 if (--dp
->dtdo_refcnt
== 0)
10315 dtrace_difo_destroy(dp
, vstate
);
10319 * DTrace Format Functions
10322 dtrace_format_add(dtrace_state_t
*state
, char *str
)
10325 uint16_t ndx
, len
= strlen(str
) + 1;
10327 fmt
= kmem_zalloc(len
, KM_SLEEP
);
10328 bcopy(str
, fmt
, len
);
10330 for (ndx
= 0; ndx
< state
->dts_nformats
; ndx
++) {
10331 if (state
->dts_formats
[ndx
] == NULL
) {
10332 state
->dts_formats
[ndx
] = fmt
;
10337 if (state
->dts_nformats
== USHRT_MAX
) {
10339 * This is only likely if a denial-of-service attack is being
10340 * attempted. As such, it's okay to fail silently here.
10342 kmem_free(fmt
, len
);
10347 * For simplicity, we always resize the formats array to be exactly the
10348 * number of formats.
10350 ndx
= state
->dts_nformats
++;
10351 new = kmem_alloc((ndx
+ 1) * sizeof (char *), KM_SLEEP
);
10353 if (state
->dts_formats
!= NULL
) {
10355 bcopy(state
->dts_formats
, new, ndx
* sizeof (char *));
10356 kmem_free(state
->dts_formats
, ndx
* sizeof (char *));
10359 state
->dts_formats
= new;
10360 state
->dts_formats
[ndx
] = fmt
;
10366 dtrace_format_remove(dtrace_state_t
*state
, uint16_t format
)
10370 ASSERT(state
->dts_formats
!= NULL
);
10371 ASSERT(format
<= state
->dts_nformats
);
10372 ASSERT(state
->dts_formats
[format
- 1] != NULL
);
10374 fmt
= state
->dts_formats
[format
- 1];
10375 kmem_free(fmt
, strlen(fmt
) + 1);
10376 state
->dts_formats
[format
- 1] = NULL
;
10380 dtrace_format_destroy(dtrace_state_t
*state
)
10384 if (state
->dts_nformats
== 0) {
10385 ASSERT(state
->dts_formats
== NULL
);
10389 ASSERT(state
->dts_formats
!= NULL
);
10391 for (i
= 0; i
< state
->dts_nformats
; i
++) {
10392 char *fmt
= state
->dts_formats
[i
];
10397 kmem_free(fmt
, strlen(fmt
) + 1);
10400 kmem_free(state
->dts_formats
, state
->dts_nformats
* sizeof (char *));
10401 state
->dts_nformats
= 0;
10402 state
->dts_formats
= NULL
;
10406 * DTrace Predicate Functions
10408 static dtrace_predicate_t
*
10409 dtrace_predicate_create(dtrace_difo_t
*dp
)
10411 dtrace_predicate_t
*pred
;
10413 ASSERT(MUTEX_HELD(&dtrace_lock
));
10414 ASSERT(dp
->dtdo_refcnt
!= 0);
10416 pred
= kmem_zalloc(sizeof (dtrace_predicate_t
), KM_SLEEP
);
10417 pred
->dtp_difo
= dp
;
10418 pred
->dtp_refcnt
= 1;
10420 if (!dtrace_difo_cacheable(dp
))
10423 if (dtrace_predcache_id
== DTRACE_CACHEIDNONE
) {
10425 * This is only theoretically possible -- we have had 2^32
10426 * cacheable predicates on this machine. We cannot allow any
10427 * more predicates to become cacheable: as unlikely as it is,
10428 * there may be a thread caching a (now stale) predicate cache
10429 * ID. (N.B.: the temptation is being successfully resisted to
10430 * have this cmn_err() "Holy shit -- we executed this code!")
10435 pred
->dtp_cacheid
= dtrace_predcache_id
++;
10441 dtrace_predicate_hold(dtrace_predicate_t
*pred
)
10443 ASSERT(MUTEX_HELD(&dtrace_lock
));
10444 ASSERT(pred
->dtp_difo
!= NULL
&& pred
->dtp_difo
->dtdo_refcnt
!= 0);
10445 ASSERT(pred
->dtp_refcnt
> 0);
10447 pred
->dtp_refcnt
++;
10451 dtrace_predicate_release(dtrace_predicate_t
*pred
, dtrace_vstate_t
*vstate
)
10453 dtrace_difo_t
*dp
= pred
->dtp_difo
;
10455 ASSERT(MUTEX_HELD(&dtrace_lock
));
10456 ASSERT(dp
!= NULL
&& dp
->dtdo_refcnt
!= 0);
10457 ASSERT(pred
->dtp_refcnt
> 0);
10459 if (--pred
->dtp_refcnt
== 0) {
10460 dtrace_difo_release(pred
->dtp_difo
, vstate
);
10461 kmem_free(pred
, sizeof (dtrace_predicate_t
));
10466 * DTrace Action Description Functions
10468 static dtrace_actdesc_t
*
10469 dtrace_actdesc_create(dtrace_actkind_t kind
, uint32_t ntuple
,
10470 uint64_t uarg
, uint64_t arg
)
10472 dtrace_actdesc_t
*act
;
10474 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind
) || (arg
!= (uintptr_t)NULL
&&
10475 arg
>= KERNELBASE
) || (arg
== (uintptr_t)NULL
&&
10476 kind
== DTRACEACT_PRINTA
));
10478 act
= kmem_zalloc(sizeof (dtrace_actdesc_t
), KM_SLEEP
);
10479 act
->dtad_kind
= kind
;
10480 act
->dtad_ntuple
= ntuple
;
10481 act
->dtad_uarg
= uarg
;
10482 act
->dtad_arg
= arg
;
10483 act
->dtad_refcnt
= 1;
10489 dtrace_actdesc_hold(dtrace_actdesc_t
*act
)
10491 ASSERT(act
->dtad_refcnt
>= 1);
10492 act
->dtad_refcnt
++;
10496 dtrace_actdesc_release(dtrace_actdesc_t
*act
, dtrace_vstate_t
*vstate
)
10498 dtrace_actkind_t kind
= act
->dtad_kind
;
10501 ASSERT(act
->dtad_refcnt
>= 1);
10503 if (--act
->dtad_refcnt
!= 0)
10506 if ((dp
= act
->dtad_difo
) != NULL
)
10507 dtrace_difo_release(dp
, vstate
);
10509 if (DTRACEACT_ISPRINTFLIKE(kind
)) {
10510 char *str
= (char *)(uintptr_t)act
->dtad_arg
;
10512 ASSERT((str
!= NULL
&& (uintptr_t)str
>= KERNELBASE
) ||
10513 (str
== NULL
&& act
->dtad_kind
== DTRACEACT_PRINTA
));
10516 kmem_free(str
, strlen(str
) + 1);
10519 kmem_free(act
, sizeof (dtrace_actdesc_t
));
10523 * DTrace ECB Functions
10525 static dtrace_ecb_t
*
10526 dtrace_ecb_add(dtrace_state_t
*state
, dtrace_probe_t
*probe
)
10529 dtrace_epid_t epid
;
10531 ASSERT(MUTEX_HELD(&dtrace_lock
));
10533 ecb
= kmem_zalloc(sizeof (dtrace_ecb_t
), KM_SLEEP
);
10534 ecb
->dte_predicate
= NULL
;
10535 ecb
->dte_probe
= probe
;
10538 * The default size is the size of the default action: recording
10541 ecb
->dte_size
= ecb
->dte_needed
= sizeof (dtrace_rechdr_t
);
10542 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10544 epid
= state
->dts_epid
++;
10546 if (epid
- 1 >= state
->dts_necbs
) {
10547 dtrace_ecb_t
**oecbs
= state
->dts_ecbs
, **ecbs
;
10548 int necbs
= state
->dts_necbs
<< 1;
10550 ASSERT(epid
== state
->dts_necbs
+ 1);
10553 ASSERT(oecbs
== NULL
);
10557 ecbs
= kmem_zalloc(necbs
* sizeof (*ecbs
), KM_SLEEP
);
10560 bcopy(oecbs
, ecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10562 dtrace_membar_producer();
10563 state
->dts_ecbs
= ecbs
;
10565 if (oecbs
!= NULL
) {
10567 * If this state is active, we must dtrace_sync()
10568 * before we can free the old dts_ecbs array: we're
10569 * coming in hot, and there may be active ring
10570 * buffer processing (which indexes into the dts_ecbs
10571 * array) on another CPU.
10573 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
10576 kmem_free(oecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10579 dtrace_membar_producer();
10580 state
->dts_necbs
= necbs
;
10583 ecb
->dte_state
= state
;
10585 ASSERT(state
->dts_ecbs
[epid
- 1] == NULL
);
10586 dtrace_membar_producer();
10587 state
->dts_ecbs
[(ecb
->dte_epid
= epid
) - 1] = ecb
;
10593 dtrace_ecb_enable(dtrace_ecb_t
*ecb
)
10595 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10597 ASSERT(MUTEX_HELD(&cpu_lock
));
10598 ASSERT(MUTEX_HELD(&dtrace_lock
));
10599 ASSERT(ecb
->dte_next
== NULL
);
10601 if (probe
== NULL
) {
10603 * This is the NULL probe -- there's nothing to do.
10608 if (probe
->dtpr_ecb
== NULL
) {
10609 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10612 * We're the first ECB on this probe.
10614 probe
->dtpr_ecb
= probe
->dtpr_ecb_last
= ecb
;
10616 if (ecb
->dte_predicate
!= NULL
)
10617 probe
->dtpr_predcache
= ecb
->dte_predicate
->dtp_cacheid
;
10619 return (prov
->dtpv_pops
.dtps_enable(prov
->dtpv_arg
,
10620 probe
->dtpr_id
, probe
->dtpr_arg
));
10623 * This probe is already active. Swing the last pointer to
10624 * point to the new ECB, and issue a dtrace_sync() to assure
10625 * that all CPUs have seen the change.
10627 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10628 probe
->dtpr_ecb_last
->dte_next
= ecb
;
10629 probe
->dtpr_ecb_last
= ecb
;
10630 probe
->dtpr_predcache
= 0;
10638 dtrace_ecb_resize(dtrace_ecb_t
*ecb
)
10640 dtrace_action_t
*act
;
10641 uint32_t curneeded
= UINT32_MAX
;
10642 uint32_t aggbase
= UINT32_MAX
;
10645 * If we record anything, we always record the dtrace_rechdr_t. (And
10646 * we always record it first.)
10648 ecb
->dte_size
= sizeof (dtrace_rechdr_t
);
10649 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10651 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10652 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
10653 ASSERT(rec
->dtrd_size
> 0 || rec
->dtrd_alignment
== 1);
10655 ecb
->dte_alignment
= MAX(ecb
->dte_alignment
,
10656 rec
->dtrd_alignment
);
10658 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10659 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10661 ASSERT(rec
->dtrd_size
!= 0);
10662 ASSERT(agg
->dtag_first
!= NULL
);
10663 ASSERT(act
->dta_prev
->dta_intuple
);
10664 ASSERT(aggbase
!= UINT32_MAX
);
10665 ASSERT(curneeded
!= UINT32_MAX
);
10667 agg
->dtag_base
= aggbase
;
10669 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10670 rec
->dtrd_offset
= curneeded
;
10671 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10673 curneeded
+= rec
->dtrd_size
;
10674 ecb
->dte_needed
= MAX(ecb
->dte_needed
, curneeded
);
10676 aggbase
= UINT32_MAX
;
10677 curneeded
= UINT32_MAX
;
10678 } else if (act
->dta_intuple
) {
10679 if (curneeded
== UINT32_MAX
) {
10681 * This is the first record in a tuple. Align
10682 * curneeded to be at offset 4 in an 8-byte
10685 ASSERT(act
->dta_prev
== NULL
||
10686 !act
->dta_prev
->dta_intuple
);
10687 ASSERT3U(aggbase
, ==, UINT32_MAX
);
10688 curneeded
= P2PHASEUP(ecb
->dte_size
,
10689 sizeof (uint64_t), sizeof (dtrace_aggid_t
));
10691 aggbase
= curneeded
- sizeof (dtrace_aggid_t
);
10692 ASSERT(IS_P2ALIGNED(aggbase
,
10693 sizeof (uint64_t)));
10695 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10696 rec
->dtrd_offset
= curneeded
;
10697 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10699 curneeded
+= rec
->dtrd_size
;
10701 /* tuples must be followed by an aggregation */
10702 ASSERT(act
->dta_prev
== NULL
||
10703 !act
->dta_prev
->dta_intuple
);
10705 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
,
10706 rec
->dtrd_alignment
);
10707 rec
->dtrd_offset
= ecb
->dte_size
;
10708 if (ecb
->dte_size
+ rec
->dtrd_size
< ecb
->dte_size
)
10710 ecb
->dte_size
+= rec
->dtrd_size
;
10711 ecb
->dte_needed
= MAX(ecb
->dte_needed
, ecb
->dte_size
);
10715 if ((act
= ecb
->dte_action
) != NULL
&&
10716 !(act
->dta_kind
== DTRACEACT_SPECULATE
&& act
->dta_next
== NULL
) &&
10717 ecb
->dte_size
== sizeof (dtrace_rechdr_t
)) {
10719 * If the size is still sizeof (dtrace_rechdr_t), then all
10720 * actions store no data; set the size to 0.
10725 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, sizeof (dtrace_epid_t
));
10726 ecb
->dte_needed
= P2ROUNDUP(ecb
->dte_needed
, (sizeof (dtrace_epid_t
)));
10727 ecb
->dte_state
->dts_needed
= MAX(ecb
->dte_state
->dts_needed
,
10732 static dtrace_action_t
*
10733 dtrace_ecb_aggregation_create(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10735 dtrace_aggregation_t
*agg
;
10736 size_t size
= sizeof (uint64_t);
10737 int ntuple
= desc
->dtad_ntuple
;
10738 dtrace_action_t
*act
;
10739 dtrace_recdesc_t
*frec
;
10740 dtrace_aggid_t aggid
;
10741 dtrace_state_t
*state
= ecb
->dte_state
;
10743 agg
= kmem_zalloc(sizeof (dtrace_aggregation_t
), KM_SLEEP
);
10744 agg
->dtag_ecb
= ecb
;
10746 ASSERT(DTRACEACT_ISAGG(desc
->dtad_kind
));
10748 switch (desc
->dtad_kind
) {
10749 case DTRACEAGG_MIN
:
10750 agg
->dtag_initial
= INT64_MAX
;
10751 agg
->dtag_aggregate
= dtrace_aggregate_min
;
10754 case DTRACEAGG_MAX
:
10755 agg
->dtag_initial
= INT64_MIN
;
10756 agg
->dtag_aggregate
= dtrace_aggregate_max
;
10759 case DTRACEAGG_COUNT
:
10760 agg
->dtag_aggregate
= dtrace_aggregate_count
;
10763 case DTRACEAGG_QUANTIZE
:
10764 agg
->dtag_aggregate
= dtrace_aggregate_quantize
;
10765 size
= (((sizeof (uint64_t) * NBBY
) - 1) * 2 + 1) *
10769 case DTRACEAGG_LQUANTIZE
: {
10770 uint16_t step
= DTRACE_LQUANTIZE_STEP(desc
->dtad_arg
);
10771 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(desc
->dtad_arg
);
10773 agg
->dtag_initial
= desc
->dtad_arg
;
10774 agg
->dtag_aggregate
= dtrace_aggregate_lquantize
;
10776 if (step
== 0 || levels
== 0)
10779 size
= levels
* sizeof (uint64_t) + 3 * sizeof (uint64_t);
10783 case DTRACEAGG_LLQUANTIZE
: {
10784 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(desc
->dtad_arg
);
10785 uint16_t low
= DTRACE_LLQUANTIZE_LOW(desc
->dtad_arg
);
10786 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(desc
->dtad_arg
);
10787 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(desc
->dtad_arg
);
10790 agg
->dtag_initial
= desc
->dtad_arg
;
10791 agg
->dtag_aggregate
= dtrace_aggregate_llquantize
;
10793 if (factor
< 2 || low
>= high
|| nsteps
< factor
)
10797 * Now check that the number of steps evenly divides a power
10798 * of the factor. (This assures both integer bucket size and
10799 * linearity within each magnitude.)
10801 for (v
= factor
; v
< nsteps
; v
*= factor
)
10804 if ((v
% nsteps
) || (nsteps
% factor
))
10807 size
= (dtrace_aggregate_llquantize_bucket(factor
,
10808 low
, high
, nsteps
, INT64_MAX
) + 2) * sizeof (uint64_t);
10812 case DTRACEAGG_AVG
:
10813 agg
->dtag_aggregate
= dtrace_aggregate_avg
;
10814 size
= sizeof (uint64_t) * 2;
10817 case DTRACEAGG_STDDEV
:
10818 agg
->dtag_aggregate
= dtrace_aggregate_stddev
;
10819 size
= sizeof (uint64_t) * 4;
10822 case DTRACEAGG_SUM
:
10823 agg
->dtag_aggregate
= dtrace_aggregate_sum
;
10830 agg
->dtag_action
.dta_rec
.dtrd_size
= size
;
10836 * We must make sure that we have enough actions for the n-tuple.
10838 for (act
= ecb
->dte_action_last
; act
!= NULL
; act
= act
->dta_prev
) {
10839 if (DTRACEACT_ISAGG(act
->dta_kind
))
10842 if (--ntuple
== 0) {
10844 * This is the action with which our n-tuple begins.
10846 agg
->dtag_first
= act
;
10852 * This n-tuple is short by ntuple elements. Return failure.
10854 ASSERT(ntuple
!= 0);
10856 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10861 * If the last action in the tuple has a size of zero, it's actually
10862 * an expression argument for the aggregating action.
10864 ASSERT(ecb
->dte_action_last
!= NULL
);
10865 act
= ecb
->dte_action_last
;
10867 if (act
->dta_kind
== DTRACEACT_DIFEXPR
) {
10868 ASSERT(act
->dta_difo
!= NULL
);
10870 if (act
->dta_difo
->dtdo_rtype
.dtdt_size
== 0)
10871 agg
->dtag_hasarg
= 1;
10875 * We need to allocate an id for this aggregation.
10877 aggid
= (dtrace_aggid_t
)(uintptr_t)vmem_alloc(state
->dts_aggid_arena
, 1,
10878 VM_BESTFIT
| VM_SLEEP
);
10880 if (aggid
- 1 >= state
->dts_naggregations
) {
10881 dtrace_aggregation_t
**oaggs
= state
->dts_aggregations
;
10882 dtrace_aggregation_t
**aggs
;
10883 int naggs
= state
->dts_naggregations
<< 1;
10884 int onaggs
= state
->dts_naggregations
;
10886 ASSERT(aggid
== state
->dts_naggregations
+ 1);
10889 ASSERT(oaggs
== NULL
);
10893 aggs
= kmem_zalloc(naggs
* sizeof (*aggs
), KM_SLEEP
);
10895 if (oaggs
!= NULL
) {
10896 bcopy(oaggs
, aggs
, onaggs
* sizeof (*aggs
));
10897 kmem_free(oaggs
, onaggs
* sizeof (*aggs
));
10900 state
->dts_aggregations
= aggs
;
10901 state
->dts_naggregations
= naggs
;
10904 ASSERT(state
->dts_aggregations
[aggid
- 1] == NULL
);
10905 state
->dts_aggregations
[(agg
->dtag_id
= aggid
) - 1] = agg
;
10907 frec
= &agg
->dtag_first
->dta_rec
;
10908 if (frec
->dtrd_alignment
< sizeof (dtrace_aggid_t
))
10909 frec
->dtrd_alignment
= sizeof (dtrace_aggid_t
);
10911 for (act
= agg
->dtag_first
; act
!= NULL
; act
= act
->dta_next
) {
10912 ASSERT(!act
->dta_intuple
);
10913 act
->dta_intuple
= 1;
10916 return (&agg
->dtag_action
);
10920 dtrace_ecb_aggregation_destroy(dtrace_ecb_t
*ecb
, dtrace_action_t
*act
)
10922 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10923 dtrace_state_t
*state
= ecb
->dte_state
;
10924 dtrace_aggid_t aggid
= agg
->dtag_id
;
10926 ASSERT(DTRACEACT_ISAGG(act
->dta_kind
));
10927 vmem_free(state
->dts_aggid_arena
, (void *)(uintptr_t)aggid
, 1);
10929 ASSERT(state
->dts_aggregations
[aggid
- 1] == agg
);
10930 state
->dts_aggregations
[aggid
- 1] = NULL
;
10932 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10936 dtrace_ecb_action_add(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10938 dtrace_action_t
*action
, *last
;
10939 dtrace_difo_t
*dp
= desc
->dtad_difo
;
10940 uint32_t size
= 0, align
= sizeof (uint8_t), mask
;
10941 uint16_t format
= 0;
10942 dtrace_recdesc_t
*rec
;
10943 dtrace_state_t
*state
= ecb
->dte_state
;
10944 dtrace_optval_t
*opt
= state
->dts_options
, nframes
, strsize
;
10945 uint64_t arg
= desc
->dtad_arg
;
10947 ASSERT(MUTEX_HELD(&dtrace_lock
));
10948 ASSERT(ecb
->dte_action
== NULL
|| ecb
->dte_action
->dta_refcnt
== 1);
10950 if (DTRACEACT_ISAGG(desc
->dtad_kind
)) {
10952 * If this is an aggregating action, there must be neither
10953 * a speculate nor a commit on the action chain.
10955 dtrace_action_t
*act
;
10957 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10958 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10961 if (act
->dta_kind
== DTRACEACT_SPECULATE
)
10965 action
= dtrace_ecb_aggregation_create(ecb
, desc
);
10967 if (action
== NULL
)
10970 if (DTRACEACT_ISDESTRUCTIVE(desc
->dtad_kind
) ||
10971 (desc
->dtad_kind
== DTRACEACT_DIFEXPR
&&
10972 dp
!= NULL
&& dp
->dtdo_destructive
)) {
10973 state
->dts_destructive
= 1;
10976 switch (desc
->dtad_kind
) {
10977 case DTRACEACT_PRINTF
:
10978 case DTRACEACT_PRINTA
:
10979 case DTRACEACT_SYSTEM
:
10980 case DTRACEACT_FREOPEN
:
10981 case DTRACEACT_DIFEXPR
:
10983 * We know that our arg is a string -- turn it into a
10986 if (arg
== (uintptr_t)NULL
) {
10987 ASSERT(desc
->dtad_kind
== DTRACEACT_PRINTA
||
10988 desc
->dtad_kind
== DTRACEACT_DIFEXPR
);
10991 ASSERT(arg
!= (uintptr_t)NULL
);
10992 ASSERT(arg
> KERNELBASE
);
10993 format
= dtrace_format_add(state
,
10994 (char *)(uintptr_t)arg
);
10998 case DTRACEACT_LIBACT
:
10999 case DTRACEACT_TRACEMEM
:
11000 case DTRACEACT_TRACEMEM_DYNSIZE
:
11004 if ((size
= dp
->dtdo_rtype
.dtdt_size
) != 0)
11007 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
11008 if (!(dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11011 size
= opt
[DTRACEOPT_STRSIZE
];
11016 case DTRACEACT_STACK
:
11017 if ((nframes
= arg
) == 0) {
11018 nframes
= opt
[DTRACEOPT_STACKFRAMES
];
11019 ASSERT(nframes
> 0);
11023 size
= nframes
* sizeof (pc_t
);
11026 case DTRACEACT_JSTACK
:
11027 if ((strsize
= DTRACE_USTACK_STRSIZE(arg
)) == 0)
11028 strsize
= opt
[DTRACEOPT_JSTACKSTRSIZE
];
11030 if ((nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0)
11031 nframes
= opt
[DTRACEOPT_JSTACKFRAMES
];
11033 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
11036 case DTRACEACT_USTACK
:
11037 if (desc
->dtad_kind
!= DTRACEACT_JSTACK
&&
11038 (nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0) {
11039 strsize
= DTRACE_USTACK_STRSIZE(arg
);
11040 nframes
= opt
[DTRACEOPT_USTACKFRAMES
];
11041 ASSERT(nframes
> 0);
11042 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
11046 * Save a slot for the pid.
11048 size
= (nframes
+ 1) * sizeof (uint64_t);
11049 size
+= DTRACE_USTACK_STRSIZE(arg
);
11050 size
= P2ROUNDUP(size
, (uint32_t)(sizeof (uintptr_t)));
11054 case DTRACEACT_SYM
:
11055 case DTRACEACT_MOD
:
11056 if (dp
== NULL
|| ((size
= dp
->dtdo_rtype
.dtdt_size
) !=
11057 sizeof (uint64_t)) ||
11058 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11062 case DTRACEACT_USYM
:
11063 case DTRACEACT_UMOD
:
11064 case DTRACEACT_UADDR
:
11066 (dp
->dtdo_rtype
.dtdt_size
!= sizeof (uint64_t)) ||
11067 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11071 * We have a slot for the pid, plus a slot for the
11072 * argument. To keep things simple (aligned with
11073 * bitness-neutral sizing), we store each as a 64-bit
11076 size
= 2 * sizeof (uint64_t);
11079 case DTRACEACT_STOP
:
11080 case DTRACEACT_BREAKPOINT
:
11081 case DTRACEACT_PANIC
:
11084 case DTRACEACT_CHILL
:
11085 case DTRACEACT_DISCARD
:
11086 case DTRACEACT_RAISE
:
11091 case DTRACEACT_EXIT
:
11093 (size
= dp
->dtdo_rtype
.dtdt_size
) != sizeof (int) ||
11094 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
11098 case DTRACEACT_SPECULATE
:
11099 if (ecb
->dte_size
> sizeof (dtrace_rechdr_t
))
11105 state
->dts_speculates
= 1;
11108 case DTRACEACT_COMMIT
: {
11109 dtrace_action_t
*act
= ecb
->dte_action
;
11111 for (; act
!= NULL
; act
= act
->dta_next
) {
11112 if (act
->dta_kind
== DTRACEACT_COMMIT
)
11125 if (size
!= 0 || desc
->dtad_kind
== DTRACEACT_SPECULATE
) {
11127 * If this is a data-storing action or a speculate,
11128 * we must be sure that there isn't a commit on the
11131 dtrace_action_t
*act
= ecb
->dte_action
;
11133 for (; act
!= NULL
; act
= act
->dta_next
) {
11134 if (act
->dta_kind
== DTRACEACT_COMMIT
)
11139 action
= kmem_zalloc(sizeof (dtrace_action_t
), KM_SLEEP
);
11140 action
->dta_rec
.dtrd_size
= size
;
11143 action
->dta_refcnt
= 1;
11144 rec
= &action
->dta_rec
;
11145 size
= rec
->dtrd_size
;
11147 for (mask
= sizeof (uint64_t) - 1; size
!= 0 && mask
> 0; mask
>>= 1) {
11148 if (!(size
& mask
)) {
11154 action
->dta_kind
= desc
->dtad_kind
;
11156 if ((action
->dta_difo
= dp
) != NULL
)
11157 dtrace_difo_hold(dp
);
11159 rec
->dtrd_action
= action
->dta_kind
;
11160 rec
->dtrd_arg
= arg
;
11161 rec
->dtrd_uarg
= desc
->dtad_uarg
;
11162 rec
->dtrd_alignment
= (uint16_t)align
;
11163 rec
->dtrd_format
= format
;
11165 if ((last
= ecb
->dte_action_last
) != NULL
) {
11166 ASSERT(ecb
->dte_action
!= NULL
);
11167 action
->dta_prev
= last
;
11168 last
->dta_next
= action
;
11170 ASSERT(ecb
->dte_action
== NULL
);
11171 ecb
->dte_action
= action
;
11174 ecb
->dte_action_last
= action
;
11180 dtrace_ecb_action_remove(dtrace_ecb_t
*ecb
)
11182 dtrace_action_t
*act
= ecb
->dte_action
, *next
;
11183 dtrace_vstate_t
*vstate
= &ecb
->dte_state
->dts_vstate
;
11187 if (act
!= NULL
&& act
->dta_refcnt
> 1) {
11188 ASSERT(act
->dta_next
== NULL
|| act
->dta_next
->dta_refcnt
== 1);
11191 for (; act
!= NULL
; act
= next
) {
11192 next
= act
->dta_next
;
11193 ASSERT(next
!= NULL
|| act
== ecb
->dte_action_last
);
11194 ASSERT(act
->dta_refcnt
== 1);
11196 if ((format
= act
->dta_rec
.dtrd_format
) != 0)
11197 dtrace_format_remove(ecb
->dte_state
, format
);
11199 if ((dp
= act
->dta_difo
) != NULL
)
11200 dtrace_difo_release(dp
, vstate
);
11202 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
11203 dtrace_ecb_aggregation_destroy(ecb
, act
);
11205 kmem_free(act
, sizeof (dtrace_action_t
));
11210 ecb
->dte_action
= NULL
;
11211 ecb
->dte_action_last
= NULL
;
11216 dtrace_ecb_disable(dtrace_ecb_t
*ecb
)
11219 * We disable the ECB by removing it from its probe.
11221 dtrace_ecb_t
*pecb
, *prev
= NULL
;
11222 dtrace_probe_t
*probe
= ecb
->dte_probe
;
11224 ASSERT(MUTEX_HELD(&dtrace_lock
));
11226 if (probe
== NULL
) {
11228 * This is the NULL probe; there is nothing to disable.
11233 for (pecb
= probe
->dtpr_ecb
; pecb
!= NULL
; pecb
= pecb
->dte_next
) {
11239 ASSERT(pecb
!= NULL
);
11241 if (prev
== NULL
) {
11242 probe
->dtpr_ecb
= ecb
->dte_next
;
11244 prev
->dte_next
= ecb
->dte_next
;
11247 if (ecb
== probe
->dtpr_ecb_last
) {
11248 ASSERT(ecb
->dte_next
== NULL
);
11249 probe
->dtpr_ecb_last
= prev
;
11253 * The ECB has been disconnected from the probe; now sync to assure
11254 * that all CPUs have seen the change before returning.
11258 if (probe
->dtpr_ecb
== NULL
) {
11260 * That was the last ECB on the probe; clear the predicate
11261 * cache ID for the probe, disable it and sync one more time
11262 * to assure that we'll never hit it again.
11264 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
11266 ASSERT(ecb
->dte_next
== NULL
);
11267 ASSERT(probe
->dtpr_ecb_last
== NULL
);
11268 probe
->dtpr_predcache
= DTRACE_CACHEIDNONE
;
11269 prov
->dtpv_pops
.dtps_disable(prov
->dtpv_arg
,
11270 probe
->dtpr_id
, probe
->dtpr_arg
);
11274 * There is at least one ECB remaining on the probe. If there
11275 * is _exactly_ one, set the probe's predicate cache ID to be
11276 * the predicate cache ID of the remaining ECB.
11278 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
11279 ASSERT(probe
->dtpr_predcache
== DTRACE_CACHEIDNONE
);
11281 if (probe
->dtpr_ecb
== probe
->dtpr_ecb_last
) {
11282 dtrace_predicate_t
*p
= probe
->dtpr_ecb
->dte_predicate
;
11284 ASSERT(probe
->dtpr_ecb
->dte_next
== NULL
);
11287 probe
->dtpr_predcache
= p
->dtp_cacheid
;
11290 ecb
->dte_next
= NULL
;
11295 dtrace_ecb_destroy(dtrace_ecb_t
*ecb
)
11297 dtrace_state_t
*state
= ecb
->dte_state
;
11298 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
11299 dtrace_predicate_t
*pred
;
11300 dtrace_epid_t epid
= ecb
->dte_epid
;
11302 ASSERT(MUTEX_HELD(&dtrace_lock
));
11303 ASSERT(ecb
->dte_next
== NULL
);
11304 ASSERT(ecb
->dte_probe
== NULL
|| ecb
->dte_probe
->dtpr_ecb
!= ecb
);
11306 if ((pred
= ecb
->dte_predicate
) != NULL
)
11307 dtrace_predicate_release(pred
, vstate
);
11309 dtrace_ecb_action_remove(ecb
);
11311 ASSERT(state
->dts_ecbs
[epid
- 1] == ecb
);
11312 state
->dts_ecbs
[epid
- 1] = NULL
;
11314 kmem_free(ecb
, sizeof (dtrace_ecb_t
));
11317 static dtrace_ecb_t
*
11318 dtrace_ecb_create(dtrace_state_t
*state
, dtrace_probe_t
*probe
,
11319 dtrace_enabling_t
*enab
)
11322 dtrace_predicate_t
*pred
;
11323 dtrace_actdesc_t
*act
;
11324 dtrace_provider_t
*prov
;
11325 dtrace_ecbdesc_t
*desc
= enab
->dten_current
;
11327 ASSERT(MUTEX_HELD(&dtrace_lock
));
11328 ASSERT(state
!= NULL
);
11330 ecb
= dtrace_ecb_add(state
, probe
);
11331 ecb
->dte_uarg
= desc
->dted_uarg
;
11333 if ((pred
= desc
->dted_pred
.dtpdd_predicate
) != NULL
) {
11334 dtrace_predicate_hold(pred
);
11335 ecb
->dte_predicate
= pred
;
11338 if (probe
!= NULL
) {
11340 * If the provider shows more leg than the consumer is old
11341 * enough to see, we need to enable the appropriate implicit
11342 * predicate bits to prevent the ecb from activating at
11345 * Providers specifying DTRACE_PRIV_USER at register time
11346 * are stating that they need the /proc-style privilege
11347 * model to be enforced, and this is what DTRACE_COND_OWNER
11348 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11350 prov
= probe
->dtpr_provider
;
11351 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLPROC
) &&
11352 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
11353 ecb
->dte_cond
|= DTRACE_COND_OWNER
;
11355 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLZONE
) &&
11356 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
11357 ecb
->dte_cond
|= DTRACE_COND_ZONEOWNER
;
11360 * If the provider shows us kernel innards and the user
11361 * is lacking sufficient privilege, enable the
11362 * DTRACE_COND_USERMODE implicit predicate.
11364 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) &&
11365 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_KERNEL
))
11366 ecb
->dte_cond
|= DTRACE_COND_USERMODE
;
11369 if (dtrace_ecb_create_cache
!= NULL
) {
11371 * If we have a cached ecb, we'll use its action list instead
11372 * of creating our own (saving both time and space).
11374 dtrace_ecb_t
*cached
= dtrace_ecb_create_cache
;
11375 dtrace_action_t
*act
= cached
->dte_action
;
11378 ASSERT(act
->dta_refcnt
> 0);
11380 ecb
->dte_action
= act
;
11381 ecb
->dte_action_last
= cached
->dte_action_last
;
11382 ecb
->dte_needed
= cached
->dte_needed
;
11383 ecb
->dte_size
= cached
->dte_size
;
11384 ecb
->dte_alignment
= cached
->dte_alignment
;
11390 for (act
= desc
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
11391 if ((enab
->dten_error
= dtrace_ecb_action_add(ecb
, act
)) != 0) {
11392 dtrace_ecb_destroy(ecb
);
11397 if ((enab
->dten_error
= dtrace_ecb_resize(ecb
)) != 0) {
11398 dtrace_ecb_destroy(ecb
);
11402 return (dtrace_ecb_create_cache
= ecb
);
11406 dtrace_ecb_create_enable(dtrace_probe_t
*probe
, void *arg
)
11409 dtrace_enabling_t
*enab
= arg
;
11410 dtrace_state_t
*state
= enab
->dten_vstate
->dtvs_state
;
11412 ASSERT(state
!= NULL
);
11414 if (probe
!= NULL
&& probe
->dtpr_gen
< enab
->dten_probegen
) {
11416 * This probe was created in a generation for which this
11417 * enabling has previously created ECBs; we don't want to
11418 * enable it again, so just kick out.
11420 return (DTRACE_MATCH_NEXT
);
11423 if ((ecb
= dtrace_ecb_create(state
, probe
, enab
)) == NULL
)
11424 return (DTRACE_MATCH_DONE
);
11426 if (dtrace_ecb_enable(ecb
) < 0)
11427 return (DTRACE_MATCH_FAIL
);
11429 return (DTRACE_MATCH_NEXT
);
11432 static dtrace_ecb_t
*
11433 dtrace_epid2ecb(dtrace_state_t
*state
, dtrace_epid_t id
)
11437 ASSERT(MUTEX_HELD(&dtrace_lock
));
11439 if (id
== 0 || id
> state
->dts_necbs
)
11442 ASSERT(state
->dts_necbs
> 0 && state
->dts_ecbs
!= NULL
);
11443 ASSERT((ecb
= state
->dts_ecbs
[id
- 1]) == NULL
|| ecb
->dte_epid
== id
);
11445 return (state
->dts_ecbs
[id
- 1]);
11448 static dtrace_aggregation_t
*
11449 dtrace_aggid2agg(dtrace_state_t
*state
, dtrace_aggid_t id
)
11451 dtrace_aggregation_t
*agg
;
11453 ASSERT(MUTEX_HELD(&dtrace_lock
));
11455 if (id
== 0 || id
> state
->dts_naggregations
)
11458 ASSERT(state
->dts_naggregations
> 0 && state
->dts_aggregations
!= NULL
);
11459 ASSERT((agg
= state
->dts_aggregations
[id
- 1]) == NULL
||
11460 agg
->dtag_id
== id
);
11462 return (state
->dts_aggregations
[id
- 1]);
11466 * DTrace Buffer Functions
11468 * The following functions manipulate DTrace buffers. Most of these functions
11469 * are called in the context of establishing or processing consumer state;
11470 * exceptions are explicitly noted.
11474 * Note: called from cross call context. This function switches the two
11475 * buffers on a given CPU. The atomicity of this operation is assured by
11476 * disabling interrupts while the actual switch takes place; the disabling of
11477 * interrupts serializes the execution with any execution of dtrace_probe() on
11481 dtrace_buffer_switch(dtrace_buffer_t
*buf
)
11483 caddr_t tomax
= buf
->dtb_tomax
;
11484 caddr_t xamot
= buf
->dtb_xamot
;
11485 dtrace_icookie_t cookie
;
11488 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11489 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_RING
));
11491 cookie
= dtrace_interrupt_disable();
11492 now
= dtrace_gethrtime();
11493 buf
->dtb_tomax
= xamot
;
11494 buf
->dtb_xamot
= tomax
;
11495 buf
->dtb_xamot_drops
= buf
->dtb_drops
;
11496 buf
->dtb_xamot_offset
= buf
->dtb_offset
;
11497 buf
->dtb_xamot_errors
= buf
->dtb_errors
;
11498 buf
->dtb_xamot_flags
= buf
->dtb_flags
;
11499 buf
->dtb_offset
= 0;
11500 buf
->dtb_drops
= 0;
11501 buf
->dtb_errors
= 0;
11502 buf
->dtb_flags
&= ~(DTRACEBUF_ERROR
| DTRACEBUF_DROPPED
);
11503 buf
->dtb_interval
= now
- buf
->dtb_switched
;
11504 buf
->dtb_switched
= now
;
11505 dtrace_interrupt_enable(cookie
);
11509 * Note: called from cross call context. This function activates a buffer
11510 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11511 * is guaranteed by the disabling of interrupts.
11514 dtrace_buffer_activate(dtrace_state_t
*state
)
11516 dtrace_buffer_t
*buf
;
11517 dtrace_icookie_t cookie
= dtrace_interrupt_disable();
11519 buf
= &state
->dts_buffer
[CPU
->cpu_id
];
11521 if (buf
->dtb_tomax
!= NULL
) {
11523 * We might like to assert that the buffer is marked inactive,
11524 * but this isn't necessarily true: the buffer for the CPU
11525 * that processes the BEGIN probe has its buffer activated
11526 * manually. In this case, we take the (harmless) action
11527 * re-clearing the bit INACTIVE bit.
11529 buf
->dtb_flags
&= ~DTRACEBUF_INACTIVE
;
11532 dtrace_interrupt_enable(cookie
);
11536 dtrace_buffer_alloc(dtrace_buffer_t
*bufs
, size_t size
, int flags
,
11537 processorid_t cpu
, int *factor
)
11540 dtrace_buffer_t
*buf
;
11541 int allocated
= 0, desired
= 0;
11543 ASSERT(MUTEX_HELD(&cpu_lock
));
11544 ASSERT(MUTEX_HELD(&dtrace_lock
));
11548 if (size
> dtrace_nonroot_maxsize
&&
11549 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL
, B_FALSE
))
11555 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11558 buf
= &bufs
[cp
->cpu_id
];
11561 * If there is already a buffer allocated for this CPU, it
11562 * is only possible that this is a DR event. In this case,
11563 * the buffer size must match our specified size.
11565 if (buf
->dtb_tomax
!= NULL
) {
11566 ASSERT(buf
->dtb_size
== size
);
11570 ASSERT(buf
->dtb_xamot
== NULL
);
11572 if ((buf
->dtb_tomax
= kmem_zalloc(size
,
11573 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
11576 buf
->dtb_size
= size
;
11577 buf
->dtb_flags
= flags
;
11578 buf
->dtb_offset
= 0;
11579 buf
->dtb_drops
= 0;
11581 if (flags
& DTRACEBUF_NOSWITCH
)
11584 if ((buf
->dtb_xamot
= kmem_zalloc(size
,
11585 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
11587 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11595 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11598 buf
= &bufs
[cp
->cpu_id
];
11601 if (buf
->dtb_xamot
!= NULL
) {
11602 ASSERT(buf
->dtb_tomax
!= NULL
);
11603 ASSERT(buf
->dtb_size
== size
);
11604 kmem_free(buf
->dtb_xamot
, size
);
11608 if (buf
->dtb_tomax
!= NULL
) {
11609 ASSERT(buf
->dtb_size
== size
);
11610 kmem_free(buf
->dtb_tomax
, size
);
11614 buf
->dtb_tomax
= NULL
;
11615 buf
->dtb_xamot
= NULL
;
11617 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11619 *factor
= desired
/ (allocated
> 0 ? allocated
: 1);
11625 * Note: called from probe context. This function just increments the drop
11626 * count on a buffer. It has been made a function to allow for the
11627 * possibility of understanding the source of mysterious drop counts. (A
11628 * problem for which one may be particularly disappointed that DTrace cannot
11629 * be used to understand DTrace.)
11632 dtrace_buffer_drop(dtrace_buffer_t
*buf
)
11638 * Note: called from probe context. This function is called to reserve space
11639 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11640 * mstate. Returns the new offset in the buffer, or a negative value if an
11641 * error has occurred.
11644 dtrace_buffer_reserve(dtrace_buffer_t
*buf
, size_t needed
, size_t align
,
11645 dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
11647 intptr_t offs
= buf
->dtb_offset
, soffs
;
11652 if (buf
->dtb_flags
& DTRACEBUF_INACTIVE
)
11655 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
11656 dtrace_buffer_drop(buf
);
11660 if (!(buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
))) {
11661 while (offs
& (align
- 1)) {
11663 * Assert that our alignment is off by a number which
11664 * is itself sizeof (uint32_t) aligned.
11666 ASSERT(!((align
- (offs
& (align
- 1))) &
11667 (sizeof (uint32_t) - 1)));
11668 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11669 offs
+= sizeof (uint32_t);
11672 if ((soffs
= offs
+ needed
) > buf
->dtb_size
) {
11673 dtrace_buffer_drop(buf
);
11677 if (mstate
== NULL
)
11680 mstate
->dtms_scratch_base
= (uintptr_t)tomax
+ soffs
;
11681 mstate
->dtms_scratch_size
= buf
->dtb_size
- soffs
;
11682 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11687 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11688 if (state
->dts_activity
!= DTRACE_ACTIVITY_COOLDOWN
&&
11689 (buf
->dtb_flags
& DTRACEBUF_FULL
))
11694 total
= needed
+ (offs
& (align
- 1));
11697 * For a ring buffer, life is quite a bit more complicated. Before
11698 * we can store any padding, we need to adjust our wrapping offset.
11699 * (If we've never before wrapped or we're not about to, no adjustment
11702 if ((buf
->dtb_flags
& DTRACEBUF_WRAPPED
) ||
11703 offs
+ total
> buf
->dtb_size
) {
11704 woffs
= buf
->dtb_xamot_offset
;
11706 if (offs
+ total
> buf
->dtb_size
) {
11708 * We can't fit in the end of the buffer. First, a
11709 * sanity check that we can fit in the buffer at all.
11711 if (total
> buf
->dtb_size
) {
11712 dtrace_buffer_drop(buf
);
11717 * We're going to be storing at the top of the buffer,
11718 * so now we need to deal with the wrapped offset. We
11719 * only reset our wrapped offset to 0 if it is
11720 * currently greater than the current offset. If it
11721 * is less than the current offset, it is because a
11722 * previous allocation induced a wrap -- but the
11723 * allocation didn't subsequently take the space due
11724 * to an error or false predicate evaluation. In this
11725 * case, we'll just leave the wrapped offset alone: if
11726 * the wrapped offset hasn't been advanced far enough
11727 * for this allocation, it will be adjusted in the
11730 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
11738 * Now we know that we're going to be storing to the
11739 * top of the buffer and that there is room for us
11740 * there. We need to clear the buffer from the current
11741 * offset to the end (there may be old gunk there).
11743 while (offs
< buf
->dtb_size
)
11747 * We need to set our offset to zero. And because we
11748 * are wrapping, we need to set the bit indicating as
11749 * much. We can also adjust our needed space back
11750 * down to the space required by the ECB -- we know
11751 * that the top of the buffer is aligned.
11755 buf
->dtb_flags
|= DTRACEBUF_WRAPPED
;
11758 * There is room for us in the buffer, so we simply
11759 * need to check the wrapped offset.
11761 if (woffs
< offs
) {
11763 * The wrapped offset is less than the offset.
11764 * This can happen if we allocated buffer space
11765 * that induced a wrap, but then we didn't
11766 * subsequently take the space due to an error
11767 * or false predicate evaluation. This is
11768 * okay; we know that _this_ allocation isn't
11769 * going to induce a wrap. We still can't
11770 * reset the wrapped offset to be zero,
11771 * however: the space may have been trashed in
11772 * the previous failed probe attempt. But at
11773 * least the wrapped offset doesn't need to
11774 * be adjusted at all...
11780 while (offs
+ total
> woffs
) {
11781 dtrace_epid_t epid
= *(uint32_t *)(tomax
+ woffs
);
11784 if (epid
== DTRACE_EPIDNONE
) {
11785 size
= sizeof (uint32_t);
11787 ASSERT3U(epid
, <=, state
->dts_necbs
);
11788 ASSERT(state
->dts_ecbs
[epid
- 1] != NULL
);
11790 size
= state
->dts_ecbs
[epid
- 1]->dte_size
;
11793 ASSERT(woffs
+ size
<= buf
->dtb_size
);
11796 if (woffs
+ size
== buf
->dtb_size
) {
11798 * We've reached the end of the buffer; we want
11799 * to set the wrapped offset to 0 and break
11800 * out. However, if the offs is 0, then we're
11801 * in a strange edge-condition: the amount of
11802 * space that we want to reserve plus the size
11803 * of the record that we're overwriting is
11804 * greater than the size of the buffer. This
11805 * is problematic because if we reserve the
11806 * space but subsequently don't consume it (due
11807 * to a failed predicate or error) the wrapped
11808 * offset will be 0 -- yet the EPID at offset 0
11809 * will not be committed. This situation is
11810 * relatively easy to deal with: if we're in
11811 * this case, the buffer is indistinguishable
11812 * from one that hasn't wrapped; we need only
11813 * finish the job by clearing the wrapped bit,
11814 * explicitly setting the offset to be 0, and
11815 * zero'ing out the old data in the buffer.
11818 buf
->dtb_flags
&= ~DTRACEBUF_WRAPPED
;
11819 buf
->dtb_offset
= 0;
11822 while (woffs
< buf
->dtb_size
)
11823 tomax
[woffs
++] = 0;
11834 * We have a wrapped offset. It may be that the wrapped offset
11835 * has become zero -- that's okay.
11837 buf
->dtb_xamot_offset
= woffs
;
11842 * Now we can plow the buffer with any necessary padding.
11844 while (offs
& (align
- 1)) {
11846 * Assert that our alignment is off by a number which
11847 * is itself sizeof (uint32_t) aligned.
11849 ASSERT(!((align
- (offs
& (align
- 1))) &
11850 (sizeof (uint32_t) - 1)));
11851 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11852 offs
+= sizeof (uint32_t);
11855 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11856 if (offs
+ needed
> buf
->dtb_size
- state
->dts_reserve
) {
11857 buf
->dtb_flags
|= DTRACEBUF_FULL
;
11862 if (mstate
== NULL
)
11866 * For ring buffers and fill buffers, the scratch space is always
11867 * the inactive buffer.
11869 mstate
->dtms_scratch_base
= (uintptr_t)buf
->dtb_xamot
;
11870 mstate
->dtms_scratch_size
= buf
->dtb_size
;
11871 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11877 dtrace_buffer_polish(dtrace_buffer_t
*buf
)
11879 ASSERT(buf
->dtb_flags
& DTRACEBUF_RING
);
11880 ASSERT(MUTEX_HELD(&dtrace_lock
));
11882 if (!(buf
->dtb_flags
& DTRACEBUF_WRAPPED
))
11886 * We need to polish the ring buffer. There are three cases:
11888 * - The first (and presumably most common) is that there is no gap
11889 * between the buffer offset and the wrapped offset. In this case,
11890 * there is nothing in the buffer that isn't valid data; we can
11891 * mark the buffer as polished and return.
11893 * - The second (less common than the first but still more common
11894 * than the third) is that there is a gap between the buffer offset
11895 * and the wrapped offset, and the wrapped offset is larger than the
11896 * buffer offset. This can happen because of an alignment issue, or
11897 * can happen because of a call to dtrace_buffer_reserve() that
11898 * didn't subsequently consume the buffer space. In this case,
11899 * we need to zero the data from the buffer offset to the wrapped
11902 * - The third (and least common) is that there is a gap between the
11903 * buffer offset and the wrapped offset, but the wrapped offset is
11904 * _less_ than the buffer offset. This can only happen because a
11905 * call to dtrace_buffer_reserve() induced a wrap, but the space
11906 * was not subsequently consumed. In this case, we need to zero the
11907 * space from the offset to the end of the buffer _and_ from the
11908 * top of the buffer to the wrapped offset.
11910 if (buf
->dtb_offset
< buf
->dtb_xamot_offset
) {
11911 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11912 buf
->dtb_xamot_offset
- buf
->dtb_offset
);
11915 if (buf
->dtb_offset
> buf
->dtb_xamot_offset
) {
11916 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11917 buf
->dtb_size
- buf
->dtb_offset
);
11918 bzero(buf
->dtb_tomax
, buf
->dtb_xamot_offset
);
11923 * This routine determines if data generated at the specified time has likely
11924 * been entirely consumed at user-level. This routine is called to determine
11925 * if an ECB on a defunct probe (but for an active enabling) can be safely
11926 * disabled and destroyed.
11929 dtrace_buffer_consumed(dtrace_buffer_t
*bufs
, hrtime_t when
)
11933 for (i
= 0; i
< NCPU
; i
++) {
11934 dtrace_buffer_t
*buf
= &bufs
[i
];
11936 if (buf
->dtb_size
== 0)
11939 if (buf
->dtb_flags
& DTRACEBUF_RING
)
11942 if (!buf
->dtb_switched
&& buf
->dtb_offset
!= 0)
11945 if (buf
->dtb_switched
- buf
->dtb_interval
< when
)
11953 dtrace_buffer_free(dtrace_buffer_t
*bufs
)
11957 for (i
= 0; i
< NCPU
; i
++) {
11958 dtrace_buffer_t
*buf
= &bufs
[i
];
11960 if (buf
->dtb_tomax
== NULL
) {
11961 ASSERT(buf
->dtb_xamot
== NULL
);
11962 ASSERT(buf
->dtb_size
== 0);
11966 if (buf
->dtb_xamot
!= NULL
) {
11967 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11968 kmem_free(buf
->dtb_xamot
, buf
->dtb_size
);
11971 kmem_free(buf
->dtb_tomax
, buf
->dtb_size
);
11973 buf
->dtb_tomax
= NULL
;
11974 buf
->dtb_xamot
= NULL
;
11979 * DTrace Enabling Functions
11981 static dtrace_enabling_t
*
11982 dtrace_enabling_create(dtrace_vstate_t
*vstate
)
11984 dtrace_enabling_t
*enab
;
11986 enab
= kmem_zalloc(sizeof (dtrace_enabling_t
), KM_SLEEP
);
11987 enab
->dten_vstate
= vstate
;
11993 dtrace_enabling_add(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
)
11995 dtrace_ecbdesc_t
**ndesc
;
11996 size_t osize
, nsize
;
11999 * We can't add to enablings after we've enabled them, or after we've
12002 ASSERT(enab
->dten_probegen
== 0);
12003 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
12005 if (enab
->dten_ndesc
< enab
->dten_maxdesc
) {
12006 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
12010 osize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
12012 if (enab
->dten_maxdesc
== 0) {
12013 enab
->dten_maxdesc
= 1;
12015 enab
->dten_maxdesc
<<= 1;
12018 ASSERT(enab
->dten_ndesc
< enab
->dten_maxdesc
);
12020 nsize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
12021 ndesc
= kmem_zalloc(nsize
, KM_SLEEP
);
12022 bcopy(enab
->dten_desc
, ndesc
, osize
);
12023 kmem_free(enab
->dten_desc
, osize
);
12025 enab
->dten_desc
= ndesc
;
12026 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
12030 dtrace_enabling_addlike(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
,
12031 dtrace_probedesc_t
*pd
)
12033 dtrace_ecbdesc_t
*new;
12034 dtrace_predicate_t
*pred
;
12035 dtrace_actdesc_t
*act
;
12038 * We're going to create a new ECB description that matches the
12039 * specified ECB in every way, but has the specified probe description.
12041 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
12043 if ((pred
= ecb
->dted_pred
.dtpdd_predicate
) != NULL
)
12044 dtrace_predicate_hold(pred
);
12046 for (act
= ecb
->dted_action
; act
!= NULL
; act
= act
->dtad_next
)
12047 dtrace_actdesc_hold(act
);
12049 new->dted_action
= ecb
->dted_action
;
12050 new->dted_pred
= ecb
->dted_pred
;
12051 new->dted_probe
= *pd
;
12052 new->dted_uarg
= ecb
->dted_uarg
;
12054 dtrace_enabling_add(enab
, new);
12058 dtrace_enabling_dump(dtrace_enabling_t
*enab
)
12062 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12063 dtrace_probedesc_t
*desc
= &enab
->dten_desc
[i
]->dted_probe
;
12065 cmn_err(CE_NOTE
, "enabling probe %d (%s:%s:%s:%s)", i
,
12066 desc
->dtpd_provider
, desc
->dtpd_mod
,
12067 desc
->dtpd_func
, desc
->dtpd_name
);
12072 dtrace_enabling_destroy(dtrace_enabling_t
*enab
)
12075 dtrace_ecbdesc_t
*ep
;
12076 dtrace_vstate_t
*vstate
= enab
->dten_vstate
;
12078 ASSERT(MUTEX_HELD(&dtrace_lock
));
12080 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12081 dtrace_actdesc_t
*act
, *next
;
12082 dtrace_predicate_t
*pred
;
12084 ep
= enab
->dten_desc
[i
];
12086 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
)
12087 dtrace_predicate_release(pred
, vstate
);
12089 for (act
= ep
->dted_action
; act
!= NULL
; act
= next
) {
12090 next
= act
->dtad_next
;
12091 dtrace_actdesc_release(act
, vstate
);
12094 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
12097 kmem_free(enab
->dten_desc
,
12098 enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*));
12101 * If this was a retained enabling, decrement the dts_nretained count
12102 * and take it off of the dtrace_retained list.
12104 if (enab
->dten_prev
!= NULL
|| enab
->dten_next
!= NULL
||
12105 dtrace_retained
== enab
) {
12106 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12107 ASSERT(enab
->dten_vstate
->dtvs_state
->dts_nretained
> 0);
12108 enab
->dten_vstate
->dtvs_state
->dts_nretained
--;
12109 dtrace_retained_gen
++;
12112 if (enab
->dten_prev
== NULL
) {
12113 if (dtrace_retained
== enab
) {
12114 dtrace_retained
= enab
->dten_next
;
12116 if (dtrace_retained
!= NULL
)
12117 dtrace_retained
->dten_prev
= NULL
;
12120 ASSERT(enab
!= dtrace_retained
);
12121 ASSERT(dtrace_retained
!= NULL
);
12122 enab
->dten_prev
->dten_next
= enab
->dten_next
;
12125 if (enab
->dten_next
!= NULL
) {
12126 ASSERT(dtrace_retained
!= NULL
);
12127 enab
->dten_next
->dten_prev
= enab
->dten_prev
;
12130 kmem_free(enab
, sizeof (dtrace_enabling_t
));
12134 dtrace_enabling_retain(dtrace_enabling_t
*enab
)
12136 dtrace_state_t
*state
;
12138 ASSERT(MUTEX_HELD(&dtrace_lock
));
12139 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
12140 ASSERT(enab
->dten_vstate
!= NULL
);
12142 state
= enab
->dten_vstate
->dtvs_state
;
12143 ASSERT(state
!= NULL
);
12146 * We only allow each state to retain dtrace_retain_max enablings.
12148 if (state
->dts_nretained
>= dtrace_retain_max
)
12151 state
->dts_nretained
++;
12152 dtrace_retained_gen
++;
12154 if (dtrace_retained
== NULL
) {
12155 dtrace_retained
= enab
;
12159 enab
->dten_next
= dtrace_retained
;
12160 dtrace_retained
->dten_prev
= enab
;
12161 dtrace_retained
= enab
;
12167 dtrace_enabling_replicate(dtrace_state_t
*state
, dtrace_probedesc_t
*match
,
12168 dtrace_probedesc_t
*create
)
12170 dtrace_enabling_t
*new, *enab
;
12171 int found
= 0, err
= ENOENT
;
12173 ASSERT(MUTEX_HELD(&dtrace_lock
));
12174 ASSERT(strlen(match
->dtpd_provider
) < DTRACE_PROVNAMELEN
);
12175 ASSERT(strlen(match
->dtpd_mod
) < DTRACE_MODNAMELEN
);
12176 ASSERT(strlen(match
->dtpd_func
) < DTRACE_FUNCNAMELEN
);
12177 ASSERT(strlen(match
->dtpd_name
) < DTRACE_NAMELEN
);
12179 new = dtrace_enabling_create(&state
->dts_vstate
);
12182 * Iterate over all retained enablings, looking for enablings that
12183 * match the specified state.
12185 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12189 * dtvs_state can only be NULL for helper enablings -- and
12190 * helper enablings can't be retained.
12192 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12194 if (enab
->dten_vstate
->dtvs_state
!= state
)
12198 * Now iterate over each probe description; we're looking for
12199 * an exact match to the specified probe description.
12201 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12202 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
12203 dtrace_probedesc_t
*pd
= &ep
->dted_probe
;
12205 if (strcmp(pd
->dtpd_provider
, match
->dtpd_provider
))
12208 if (strcmp(pd
->dtpd_mod
, match
->dtpd_mod
))
12211 if (strcmp(pd
->dtpd_func
, match
->dtpd_func
))
12214 if (strcmp(pd
->dtpd_name
, match
->dtpd_name
))
12218 * We have a winning probe! Add it to our growing
12222 dtrace_enabling_addlike(new, ep
, create
);
12226 if (!found
|| (err
= dtrace_enabling_retain(new)) != 0) {
12227 dtrace_enabling_destroy(new);
12235 dtrace_enabling_retract(dtrace_state_t
*state
)
12237 dtrace_enabling_t
*enab
, *next
;
12239 ASSERT(MUTEX_HELD(&dtrace_lock
));
12242 * Iterate over all retained enablings, destroy the enablings retained
12243 * for the specified state.
12245 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= next
) {
12246 next
= enab
->dten_next
;
12249 * dtvs_state can only be NULL for helper enablings -- and
12250 * helper enablings can't be retained.
12252 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12254 if (enab
->dten_vstate
->dtvs_state
== state
) {
12255 ASSERT(state
->dts_nretained
> 0);
12256 dtrace_enabling_destroy(enab
);
12260 ASSERT(state
->dts_nretained
== 0);
12264 dtrace_enabling_match(dtrace_enabling_t
*enab
, int *nmatched
)
12267 int total_matched
= 0, matched
= 0;
12269 ASSERT(MUTEX_HELD(&cpu_lock
));
12270 ASSERT(MUTEX_HELD(&dtrace_lock
));
12272 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12273 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
12275 enab
->dten_current
= ep
;
12276 enab
->dten_error
= 0;
12279 * If a provider failed to enable a probe then get out and
12280 * let the consumer know we failed.
12282 if ((matched
= dtrace_probe_enable(&ep
->dted_probe
, enab
)) < 0)
12285 total_matched
+= matched
;
12287 if (enab
->dten_error
!= 0) {
12289 * If we get an error half-way through enabling the
12290 * probes, we kick out -- perhaps with some number of
12291 * them enabled. Leaving enabled probes enabled may
12292 * be slightly confusing for user-level, but we expect
12293 * that no one will attempt to actually drive on in
12294 * the face of such errors. If this is an anonymous
12295 * enabling (indicated with a NULL nmatched pointer),
12296 * we cmn_err() a message. We aren't expecting to
12297 * get such an error -- such as it can exist at all,
12298 * it would be a result of corrupted DOF in the driver
12301 if (nmatched
== NULL
) {
12302 cmn_err(CE_WARN
, "dtrace_enabling_match() "
12303 "error on %p: %d", (void *)ep
,
12307 return (enab
->dten_error
);
12311 enab
->dten_probegen
= dtrace_probegen
;
12312 if (nmatched
!= NULL
)
12313 *nmatched
= total_matched
;
12319 dtrace_enabling_matchall(void)
12321 dtrace_enabling_t
*enab
;
12323 mutex_enter(&cpu_lock
);
12324 mutex_enter(&dtrace_lock
);
12327 * Iterate over all retained enablings to see if any probes match
12328 * against them. We only perform this operation on enablings for which
12329 * we have sufficient permissions by virtue of being in the global zone
12330 * or in the same zone as the DTrace client. Because we can be called
12331 * after dtrace_detach() has been called, we cannot assert that there
12332 * are retained enablings. We can safely load from dtrace_retained,
12333 * however: the taskq_destroy() at the end of dtrace_detach() will
12334 * block pending our completion.
12336 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12337 dtrace_cred_t
*dcr
= &enab
->dten_vstate
->dtvs_state
->dts_cred
;
12338 cred_t
*cr
= dcr
->dcr_cred
;
12339 zoneid_t zone
= cr
!= NULL
? crgetzoneid(cr
) : 0;
12341 if ((dcr
->dcr_visible
& DTRACE_CRV_ALLZONE
) || (cr
!= NULL
&&
12342 (zone
== GLOBAL_ZONEID
|| getzoneid() == zone
)))
12343 (void) dtrace_enabling_match(enab
, NULL
);
12346 mutex_exit(&dtrace_lock
);
12347 mutex_exit(&cpu_lock
);
12351 * If an enabling is to be enabled without having matched probes (that is, if
12352 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12353 * enabling must be _primed_ by creating an ECB for every ECB description.
12354 * This must be done to assure that we know the number of speculations, the
12355 * number of aggregations, the minimum buffer size needed, etc. before we
12356 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12357 * enabling any probes, we create ECBs for every ECB decription, but with a
12358 * NULL probe -- which is exactly what this function does.
12361 dtrace_enabling_prime(dtrace_state_t
*state
)
12363 dtrace_enabling_t
*enab
;
12366 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
12367 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
12369 if (enab
->dten_vstate
->dtvs_state
!= state
)
12373 * We don't want to prime an enabling more than once, lest
12374 * we allow a malicious user to induce resource exhaustion.
12375 * (The ECBs that result from priming an enabling aren't
12376 * leaked -- but they also aren't deallocated until the
12377 * consumer state is destroyed.)
12379 if (enab
->dten_primed
)
12382 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12383 enab
->dten_current
= enab
->dten_desc
[i
];
12384 (void) dtrace_probe_enable(NULL
, enab
);
12387 enab
->dten_primed
= 1;
12392 * Called to indicate that probes should be provided due to retained
12393 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12394 * must take an initial lap through the enabling calling the dtps_provide()
12395 * entry point explicitly to allow for autocreated probes.
12398 dtrace_enabling_provide(dtrace_provider_t
*prv
)
12401 dtrace_probedesc_t desc
;
12402 dtrace_genid_t gen
;
12404 ASSERT(MUTEX_HELD(&dtrace_lock
));
12405 ASSERT(MUTEX_HELD(&dtrace_provider_lock
));
12409 prv
= dtrace_provider
;
12413 dtrace_enabling_t
*enab
;
12414 void *parg
= prv
->dtpv_arg
;
12417 gen
= dtrace_retained_gen
;
12418 for (enab
= dtrace_retained
; enab
!= NULL
;
12419 enab
= enab
->dten_next
) {
12420 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
12421 desc
= enab
->dten_desc
[i
]->dted_probe
;
12422 mutex_exit(&dtrace_lock
);
12423 prv
->dtpv_pops
.dtps_provide(parg
, &desc
);
12424 mutex_enter(&dtrace_lock
);
12426 * Process the retained enablings again if
12427 * they have changed while we weren't holding
12430 if (gen
!= dtrace_retained_gen
)
12434 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
12436 mutex_exit(&dtrace_lock
);
12437 dtrace_probe_provide(NULL
, all
? NULL
: prv
);
12438 mutex_enter(&dtrace_lock
);
12442 * Called to reap ECBs that are attached to probes from defunct providers.
12445 dtrace_enabling_reap(void)
12447 dtrace_provider_t
*prov
;
12448 dtrace_probe_t
*probe
;
12453 mutex_enter(&cpu_lock
);
12454 mutex_enter(&dtrace_lock
);
12456 for (i
= 0; i
< dtrace_nprobes
; i
++) {
12457 if ((probe
= dtrace_probes
[i
]) == NULL
)
12460 if (probe
->dtpr_ecb
== NULL
)
12463 prov
= probe
->dtpr_provider
;
12465 if ((when
= prov
->dtpv_defunct
) == 0)
12469 * We have ECBs on a defunct provider: we want to reap these
12470 * ECBs to allow the provider to unregister. The destruction
12471 * of these ECBs must be done carefully: if we destroy the ECB
12472 * and the consumer later wishes to consume an EPID that
12473 * corresponds to the destroyed ECB (and if the EPID metadata
12474 * has not been previously consumed), the consumer will abort
12475 * processing on the unknown EPID. To reduce (but not, sadly,
12476 * eliminate) the possibility of this, we will only destroy an
12477 * ECB for a defunct provider if, for the state that
12478 * corresponds to the ECB:
12480 * (a) There is no speculative tracing (which can effectively
12481 * cache an EPID for an arbitrary amount of time).
12483 * (b) The principal buffers have been switched twice since the
12484 * provider became defunct.
12486 * (c) The aggregation buffers are of zero size or have been
12487 * switched twice since the provider became defunct.
12489 * We use dts_speculates to determine (a) and call a function
12490 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12491 * that as soon as we've been unable to destroy one of the ECBs
12492 * associated with the probe, we quit trying -- reaping is only
12493 * fruitful in as much as we can destroy all ECBs associated
12494 * with the defunct provider's probes.
12496 while ((ecb
= probe
->dtpr_ecb
) != NULL
) {
12497 dtrace_state_t
*state
= ecb
->dte_state
;
12498 dtrace_buffer_t
*buf
= state
->dts_buffer
;
12499 dtrace_buffer_t
*aggbuf
= state
->dts_aggbuffer
;
12501 if (state
->dts_speculates
)
12504 if (!dtrace_buffer_consumed(buf
, when
))
12507 if (!dtrace_buffer_consumed(aggbuf
, when
))
12510 dtrace_ecb_disable(ecb
);
12511 ASSERT(probe
->dtpr_ecb
!= ecb
);
12512 dtrace_ecb_destroy(ecb
);
12516 mutex_exit(&dtrace_lock
);
12517 mutex_exit(&cpu_lock
);
12521 * DTrace DOF Functions
12525 dtrace_dof_error(dof_hdr_t
*dof
, const char *str
)
12527 if (dtrace_err_verbose
)
12528 cmn_err(CE_WARN
, "failed to process DOF: %s", str
);
12530 #ifdef DTRACE_ERRDEBUG
12531 dtrace_errdebug(str
);
12536 * Create DOF out of a currently enabled state. Right now, we only create
12537 * DOF containing the run-time options -- but this could be expanded to create
12538 * complete DOF representing the enabled state.
12541 dtrace_dof_create(dtrace_state_t
*state
)
12545 dof_optdesc_t
*opt
;
12546 int i
, len
= sizeof (dof_hdr_t
) +
12547 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)) +
12548 sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12550 ASSERT(MUTEX_HELD(&dtrace_lock
));
12552 dof
= kmem_zalloc(len
, KM_SLEEP
);
12553 dof
->dofh_ident
[DOF_ID_MAG0
] = DOF_MAG_MAG0
;
12554 dof
->dofh_ident
[DOF_ID_MAG1
] = DOF_MAG_MAG1
;
12555 dof
->dofh_ident
[DOF_ID_MAG2
] = DOF_MAG_MAG2
;
12556 dof
->dofh_ident
[DOF_ID_MAG3
] = DOF_MAG_MAG3
;
12558 dof
->dofh_ident
[DOF_ID_MODEL
] = DOF_MODEL_NATIVE
;
12559 dof
->dofh_ident
[DOF_ID_ENCODING
] = DOF_ENCODE_NATIVE
;
12560 dof
->dofh_ident
[DOF_ID_VERSION
] = DOF_VERSION
;
12561 dof
->dofh_ident
[DOF_ID_DIFVERS
] = DIF_VERSION
;
12562 dof
->dofh_ident
[DOF_ID_DIFIREG
] = DIF_DIR_NREGS
;
12563 dof
->dofh_ident
[DOF_ID_DIFTREG
] = DIF_DTR_NREGS
;
12565 dof
->dofh_flags
= 0;
12566 dof
->dofh_hdrsize
= sizeof (dof_hdr_t
);
12567 dof
->dofh_secsize
= sizeof (dof_sec_t
);
12568 dof
->dofh_secnum
= 1; /* only DOF_SECT_OPTDESC */
12569 dof
->dofh_secoff
= sizeof (dof_hdr_t
);
12570 dof
->dofh_loadsz
= len
;
12571 dof
->dofh_filesz
= len
;
12575 * Fill in the option section header...
12577 sec
= (dof_sec_t
*)((uintptr_t)dof
+ sizeof (dof_hdr_t
));
12578 sec
->dofs_type
= DOF_SECT_OPTDESC
;
12579 sec
->dofs_align
= sizeof (uint64_t);
12580 sec
->dofs_flags
= DOF_SECF_LOAD
;
12581 sec
->dofs_entsize
= sizeof (dof_optdesc_t
);
12583 opt
= (dof_optdesc_t
*)((uintptr_t)sec
+
12584 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)));
12586 sec
->dofs_offset
= (uintptr_t)opt
- (uintptr_t)dof
;
12587 sec
->dofs_size
= sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12589 for (i
= 0; i
< DTRACEOPT_MAX
; i
++) {
12590 opt
[i
].dofo_option
= i
;
12591 opt
[i
].dofo_strtab
= DOF_SECIDX_NONE
;
12592 opt
[i
].dofo_value
= state
->dts_options
[i
];
12599 dtrace_dof_copyin(uintptr_t uarg
, int *errp
)
12601 dof_hdr_t hdr
, *dof
;
12603 ASSERT(!MUTEX_HELD(&dtrace_lock
));
12606 * First, we're going to copyin() the sizeof (dof_hdr_t).
12608 if (copyin((void *)uarg
, &hdr
, sizeof (hdr
)) != 0) {
12609 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12615 * Now we'll allocate the entire DOF and copy it in -- provided
12616 * that the length isn't outrageous.
12618 if (hdr
.dofh_loadsz
>= dtrace_dof_maxsize
) {
12619 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12624 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12625 dtrace_dof_error(&hdr
, "invalid load size");
12630 dof
= kmem_alloc(hdr
.dofh_loadsz
, KM_SLEEP
);
12632 if (copyin((void *)uarg
, dof
, hdr
.dofh_loadsz
) != 0 ||
12633 dof
->dofh_loadsz
!= hdr
.dofh_loadsz
) {
12634 kmem_free(dof
, hdr
.dofh_loadsz
);
12643 dtrace_dof_property(const char *name
)
12647 unsigned int len
, i
;
12651 * Unfortunately, array of values in .conf files are always (and
12652 * only) interpreted to be integer arrays. We must read our DOF
12653 * as an integer array, and then squeeze it into a byte array.
12655 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY
, dtrace_devi
, 0,
12656 (char *)name
, (int **)&buf
, &len
) != DDI_PROP_SUCCESS
)
12659 for (i
= 0; i
< len
; i
++)
12660 buf
[i
] = (uchar_t
)(((int *)buf
)[i
]);
12662 if (len
< sizeof (dof_hdr_t
)) {
12663 ddi_prop_free(buf
);
12664 dtrace_dof_error(NULL
, "truncated header");
12668 if (len
< (loadsz
= ((dof_hdr_t
*)buf
)->dofh_loadsz
)) {
12669 ddi_prop_free(buf
);
12670 dtrace_dof_error(NULL
, "truncated DOF");
12674 if (loadsz
>= dtrace_dof_maxsize
) {
12675 ddi_prop_free(buf
);
12676 dtrace_dof_error(NULL
, "oversized DOF");
12680 dof
= kmem_alloc(loadsz
, KM_SLEEP
);
12681 bcopy(buf
, dof
, loadsz
);
12682 ddi_prop_free(buf
);
12688 dtrace_dof_destroy(dof_hdr_t
*dof
)
12690 kmem_free(dof
, dof
->dofh_loadsz
);
12694 * Return the dof_sec_t pointer corresponding to a given section index. If the
12695 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12696 * a type other than DOF_SECT_NONE is specified, the header is checked against
12697 * this type and NULL is returned if the types do not match.
12700 dtrace_dof_sect(dof_hdr_t
*dof
, uint32_t type
, dof_secidx_t i
)
12702 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)
12703 ((uintptr_t)dof
+ dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12705 if (i
>= dof
->dofh_secnum
) {
12706 dtrace_dof_error(dof
, "referenced section index is invalid");
12710 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
12711 dtrace_dof_error(dof
, "referenced section is not loadable");
12715 if (type
!= DOF_SECT_NONE
&& type
!= sec
->dofs_type
) {
12716 dtrace_dof_error(dof
, "referenced section is the wrong type");
12723 static dtrace_probedesc_t
*
12724 dtrace_dof_probedesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_probedesc_t
*desc
)
12726 dof_probedesc_t
*probe
;
12728 uintptr_t daddr
= (uintptr_t)dof
;
12732 if (sec
->dofs_type
!= DOF_SECT_PROBEDESC
) {
12733 dtrace_dof_error(dof
, "invalid probe section");
12737 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12738 dtrace_dof_error(dof
, "bad alignment in probe description");
12742 if (sec
->dofs_offset
+ sizeof (dof_probedesc_t
) > dof
->dofh_loadsz
) {
12743 dtrace_dof_error(dof
, "truncated probe description");
12747 probe
= (dof_probedesc_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12748 strtab
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, probe
->dofp_strtab
);
12750 if (strtab
== NULL
)
12753 str
= daddr
+ strtab
->dofs_offset
;
12754 size
= strtab
->dofs_size
;
12756 if (probe
->dofp_provider
>= strtab
->dofs_size
) {
12757 dtrace_dof_error(dof
, "corrupt probe provider");
12761 (void) strncpy(desc
->dtpd_provider
,
12762 (char *)(str
+ probe
->dofp_provider
),
12763 MIN(DTRACE_PROVNAMELEN
- 1, size
- probe
->dofp_provider
));
12765 if (probe
->dofp_mod
>= strtab
->dofs_size
) {
12766 dtrace_dof_error(dof
, "corrupt probe module");
12770 (void) strncpy(desc
->dtpd_mod
, (char *)(str
+ probe
->dofp_mod
),
12771 MIN(DTRACE_MODNAMELEN
- 1, size
- probe
->dofp_mod
));
12773 if (probe
->dofp_func
>= strtab
->dofs_size
) {
12774 dtrace_dof_error(dof
, "corrupt probe function");
12778 (void) strncpy(desc
->dtpd_func
, (char *)(str
+ probe
->dofp_func
),
12779 MIN(DTRACE_FUNCNAMELEN
- 1, size
- probe
->dofp_func
));
12781 if (probe
->dofp_name
>= strtab
->dofs_size
) {
12782 dtrace_dof_error(dof
, "corrupt probe name");
12786 (void) strncpy(desc
->dtpd_name
, (char *)(str
+ probe
->dofp_name
),
12787 MIN(DTRACE_NAMELEN
- 1, size
- probe
->dofp_name
));
12792 static dtrace_difo_t
*
12793 dtrace_dof_difo(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12798 dof_difohdr_t
*dofd
;
12799 uintptr_t daddr
= (uintptr_t)dof
;
12800 size_t max
= dtrace_difo_maxsize
;
12803 static const struct {
12811 { DOF_SECT_DIF
, offsetof(dtrace_difo_t
, dtdo_buf
),
12812 offsetof(dtrace_difo_t
, dtdo_len
), sizeof (dif_instr_t
),
12813 sizeof (dif_instr_t
), "multiple DIF sections" },
12815 { DOF_SECT_INTTAB
, offsetof(dtrace_difo_t
, dtdo_inttab
),
12816 offsetof(dtrace_difo_t
, dtdo_intlen
), sizeof (uint64_t),
12817 sizeof (uint64_t), "multiple integer tables" },
12819 { DOF_SECT_STRTAB
, offsetof(dtrace_difo_t
, dtdo_strtab
),
12820 offsetof(dtrace_difo_t
, dtdo_strlen
), 0,
12821 sizeof (char), "multiple string tables" },
12823 { DOF_SECT_VARTAB
, offsetof(dtrace_difo_t
, dtdo_vartab
),
12824 offsetof(dtrace_difo_t
, dtdo_varlen
), sizeof (dtrace_difv_t
),
12825 sizeof (uint_t
), "multiple variable tables" },
12827 { DOF_SECT_NONE
, 0, 0, 0, 0, NULL
}
12830 if (sec
->dofs_type
!= DOF_SECT_DIFOHDR
) {
12831 dtrace_dof_error(dof
, "invalid DIFO header section");
12835 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12836 dtrace_dof_error(dof
, "bad alignment in DIFO header");
12840 if (sec
->dofs_size
< sizeof (dof_difohdr_t
) ||
12841 sec
->dofs_size
% sizeof (dof_secidx_t
)) {
12842 dtrace_dof_error(dof
, "bad size in DIFO header");
12846 dofd
= (dof_difohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12847 n
= (sec
->dofs_size
- sizeof (*dofd
)) / sizeof (dof_secidx_t
) + 1;
12849 dp
= kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
12850 dp
->dtdo_rtype
= dofd
->dofd_rtype
;
12852 for (l
= 0; l
< n
; l
++) {
12857 if ((subsec
= dtrace_dof_sect(dof
, DOF_SECT_NONE
,
12858 dofd
->dofd_links
[l
])) == NULL
)
12859 goto err
; /* invalid section link */
12861 if (ttl
+ subsec
->dofs_size
> max
) {
12862 dtrace_dof_error(dof
, "exceeds maximum size");
12866 ttl
+= subsec
->dofs_size
;
12868 for (i
= 0; difo
[i
].section
!= DOF_SECT_NONE
; i
++) {
12869 if (subsec
->dofs_type
!= difo
[i
].section
)
12872 if (!(subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12873 dtrace_dof_error(dof
, "section not loaded");
12877 if (subsec
->dofs_align
!= difo
[i
].align
) {
12878 dtrace_dof_error(dof
, "bad alignment");
12882 bufp
= (void **)((uintptr_t)dp
+ difo
[i
].bufoffs
);
12883 lenp
= (uint32_t *)((uintptr_t)dp
+ difo
[i
].lenoffs
);
12885 if (*bufp
!= NULL
) {
12886 dtrace_dof_error(dof
, difo
[i
].msg
);
12890 if (difo
[i
].entsize
!= subsec
->dofs_entsize
) {
12891 dtrace_dof_error(dof
, "entry size mismatch");
12895 if (subsec
->dofs_entsize
!= 0 &&
12896 (subsec
->dofs_size
% subsec
->dofs_entsize
) != 0) {
12897 dtrace_dof_error(dof
, "corrupt entry size");
12901 *lenp
= subsec
->dofs_size
;
12902 *bufp
= kmem_alloc(subsec
->dofs_size
, KM_SLEEP
);
12903 bcopy((char *)(uintptr_t)(daddr
+ subsec
->dofs_offset
),
12904 *bufp
, subsec
->dofs_size
);
12906 if (subsec
->dofs_entsize
!= 0)
12907 *lenp
/= subsec
->dofs_entsize
;
12913 * If we encounter a loadable DIFO sub-section that is not
12914 * known to us, assume this is a broken program and fail.
12916 if (difo
[i
].section
== DOF_SECT_NONE
&&
12917 (subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12918 dtrace_dof_error(dof
, "unrecognized DIFO subsection");
12923 if (dp
->dtdo_buf
== NULL
) {
12925 * We can't have a DIF object without DIF text.
12927 dtrace_dof_error(dof
, "missing DIF text");
12932 * Before we validate the DIF object, run through the variable table
12933 * looking for the strings -- if any of their size are under, we'll set
12934 * their size to be the system-wide default string size. Note that
12935 * this should _not_ happen if the "strsize" option has been set --
12936 * in this case, the compiler should have set the size to reflect the
12937 * setting of the option.
12939 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
12940 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
12941 dtrace_diftype_t
*t
= &v
->dtdv_type
;
12943 if (v
->dtdv_id
< DIF_VAR_OTHER_UBASE
)
12946 if (t
->dtdt_kind
== DIF_TYPE_STRING
&& t
->dtdt_size
== 0)
12947 t
->dtdt_size
= dtrace_strsize_default
;
12950 if (dtrace_difo_validate(dp
, vstate
, DIF_DIR_NREGS
, cr
) != 0)
12953 dtrace_difo_init(dp
, vstate
);
12957 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
12958 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
12959 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
12960 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
12962 kmem_free(dp
, sizeof (dtrace_difo_t
));
12966 static dtrace_predicate_t
*
12967 dtrace_dof_predicate(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12972 if ((dp
= dtrace_dof_difo(dof
, sec
, vstate
, cr
)) == NULL
)
12975 return (dtrace_predicate_create(dp
));
12978 static dtrace_actdesc_t
*
12979 dtrace_dof_actdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12982 dtrace_actdesc_t
*act
, *first
= NULL
, *last
= NULL
, *next
;
12983 dof_actdesc_t
*desc
;
12984 dof_sec_t
*difosec
;
12986 uintptr_t daddr
= (uintptr_t)dof
;
12988 dtrace_actkind_t kind
;
12990 if (sec
->dofs_type
!= DOF_SECT_ACTDESC
) {
12991 dtrace_dof_error(dof
, "invalid action section");
12995 if (sec
->dofs_offset
+ sizeof (dof_actdesc_t
) > dof
->dofh_loadsz
) {
12996 dtrace_dof_error(dof
, "truncated action description");
13000 if (sec
->dofs_align
!= sizeof (uint64_t)) {
13001 dtrace_dof_error(dof
, "bad alignment in action description");
13005 if (sec
->dofs_size
< sec
->dofs_entsize
) {
13006 dtrace_dof_error(dof
, "section entry size exceeds total size");
13010 if (sec
->dofs_entsize
!= sizeof (dof_actdesc_t
)) {
13011 dtrace_dof_error(dof
, "bad entry size in action description");
13015 if (sec
->dofs_size
/ sec
->dofs_entsize
> dtrace_actions_max
) {
13016 dtrace_dof_error(dof
, "actions exceed dtrace_actions_max");
13020 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= sec
->dofs_entsize
) {
13021 desc
= (dof_actdesc_t
*)(daddr
+
13022 (uintptr_t)sec
->dofs_offset
+ offs
);
13023 kind
= (dtrace_actkind_t
)desc
->dofa_kind
;
13025 if ((DTRACEACT_ISPRINTFLIKE(kind
) &&
13026 (kind
!= DTRACEACT_PRINTA
||
13027 desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) ||
13028 (kind
== DTRACEACT_DIFEXPR
&&
13029 desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) {
13035 * The argument to these actions is an index into the
13036 * DOF string table. For printf()-like actions, this
13037 * is the format string. For print(), this is the
13038 * CTF type of the expression result.
13040 if ((strtab
= dtrace_dof_sect(dof
,
13041 DOF_SECT_STRTAB
, desc
->dofa_strtab
)) == NULL
)
13044 str
= (char *)((uintptr_t)dof
+
13045 (uintptr_t)strtab
->dofs_offset
);
13047 for (i
= desc
->dofa_arg
; i
< strtab
->dofs_size
; i
++) {
13048 if (str
[i
] == '\0')
13052 if (i
>= strtab
->dofs_size
) {
13053 dtrace_dof_error(dof
, "bogus format string");
13057 if (i
== desc
->dofa_arg
) {
13058 dtrace_dof_error(dof
, "empty format string");
13062 i
-= desc
->dofa_arg
;
13063 fmt
= kmem_alloc(i
+ 1, KM_SLEEP
);
13064 bcopy(&str
[desc
->dofa_arg
], fmt
, i
+ 1);
13065 arg
= (uint64_t)(uintptr_t)fmt
;
13067 if (kind
== DTRACEACT_PRINTA
) {
13068 ASSERT(desc
->dofa_strtab
== DOF_SECIDX_NONE
);
13071 arg
= desc
->dofa_arg
;
13075 act
= dtrace_actdesc_create(kind
, desc
->dofa_ntuple
,
13076 desc
->dofa_uarg
, arg
);
13078 if (last
!= NULL
) {
13079 last
->dtad_next
= act
;
13086 if (desc
->dofa_difo
== DOF_SECIDX_NONE
)
13089 if ((difosec
= dtrace_dof_sect(dof
,
13090 DOF_SECT_DIFOHDR
, desc
->dofa_difo
)) == NULL
)
13093 act
->dtad_difo
= dtrace_dof_difo(dof
, difosec
, vstate
, cr
);
13095 if (act
->dtad_difo
== NULL
)
13099 ASSERT(first
!= NULL
);
13103 for (act
= first
; act
!= NULL
; act
= next
) {
13104 next
= act
->dtad_next
;
13105 dtrace_actdesc_release(act
, vstate
);
13111 static dtrace_ecbdesc_t
*
13112 dtrace_dof_ecbdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
13115 dtrace_ecbdesc_t
*ep
;
13116 dof_ecbdesc_t
*ecb
;
13117 dtrace_probedesc_t
*desc
;
13118 dtrace_predicate_t
*pred
= NULL
;
13120 if (sec
->dofs_size
< sizeof (dof_ecbdesc_t
)) {
13121 dtrace_dof_error(dof
, "truncated ECB description");
13125 if (sec
->dofs_align
!= sizeof (uint64_t)) {
13126 dtrace_dof_error(dof
, "bad alignment in ECB description");
13130 ecb
= (dof_ecbdesc_t
*)((uintptr_t)dof
+ (uintptr_t)sec
->dofs_offset
);
13131 sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBEDESC
, ecb
->dofe_probes
);
13136 ep
= kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
13137 ep
->dted_uarg
= ecb
->dofe_uarg
;
13138 desc
= &ep
->dted_probe
;
13140 if (dtrace_dof_probedesc(dof
, sec
, desc
) == NULL
)
13143 if (ecb
->dofe_pred
!= DOF_SECIDX_NONE
) {
13144 if ((sec
= dtrace_dof_sect(dof
,
13145 DOF_SECT_DIFOHDR
, ecb
->dofe_pred
)) == NULL
)
13148 if ((pred
= dtrace_dof_predicate(dof
, sec
, vstate
, cr
)) == NULL
)
13151 ep
->dted_pred
.dtpdd_predicate
= pred
;
13154 if (ecb
->dofe_actions
!= DOF_SECIDX_NONE
) {
13155 if ((sec
= dtrace_dof_sect(dof
,
13156 DOF_SECT_ACTDESC
, ecb
->dofe_actions
)) == NULL
)
13159 ep
->dted_action
= dtrace_dof_actdesc(dof
, sec
, vstate
, cr
);
13161 if (ep
->dted_action
== NULL
)
13169 dtrace_predicate_release(pred
, vstate
);
13170 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
13175 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13176 * specified DOF. At present, this amounts to simply adding 'ubase' to the
13177 * site of any user SETX relocations to account for load object base address.
13178 * In the future, if we need other relocations, this function can be extended.
13181 dtrace_dof_relocate(dof_hdr_t
*dof
, dof_sec_t
*sec
, uint64_t ubase
)
13183 uintptr_t daddr
= (uintptr_t)dof
;
13185 dof_relohdr_t
*dofr
=
13186 (dof_relohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
13187 dof_sec_t
*ss
, *rs
, *ts
;
13191 if (sec
->dofs_size
< sizeof (dof_relohdr_t
) ||
13192 sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
13193 dtrace_dof_error(dof
, "invalid relocation header");
13197 ss
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, dofr
->dofr_strtab
);
13198 rs
= dtrace_dof_sect(dof
, DOF_SECT_RELTAB
, dofr
->dofr_relsec
);
13199 ts
= dtrace_dof_sect(dof
, DOF_SECT_NONE
, dofr
->dofr_tgtsec
);
13200 ts_end
= (uintptr_t)ts
+ sizeof (dof_sec_t
);
13202 if (ss
== NULL
|| rs
== NULL
|| ts
== NULL
)
13203 return (-1); /* dtrace_dof_error() has been called already */
13205 if (rs
->dofs_entsize
< sizeof (dof_relodesc_t
) ||
13206 rs
->dofs_align
!= sizeof (uint64_t)) {
13207 dtrace_dof_error(dof
, "invalid relocation section");
13211 r
= (dof_relodesc_t
*)(uintptr_t)(daddr
+ rs
->dofs_offset
);
13212 n
= rs
->dofs_size
/ rs
->dofs_entsize
;
13214 for (i
= 0; i
< n
; i
++) {
13215 uintptr_t taddr
= daddr
+ ts
->dofs_offset
+ r
->dofr_offset
;
13217 switch (r
->dofr_type
) {
13218 case DOF_RELO_NONE
:
13220 case DOF_RELO_SETX
:
13221 if (r
->dofr_offset
>= ts
->dofs_size
|| r
->dofr_offset
+
13222 sizeof (uint64_t) > ts
->dofs_size
) {
13223 dtrace_dof_error(dof
, "bad relocation offset");
13227 if (taddr
>= (uintptr_t)ts
&& taddr
< ts_end
) {
13228 dtrace_dof_error(dof
, "bad relocation offset");
13232 if (!IS_P2ALIGNED(taddr
, sizeof (uint64_t))) {
13233 dtrace_dof_error(dof
, "misaligned setx relo");
13237 *(uint64_t *)taddr
+= ubase
;
13240 dtrace_dof_error(dof
, "invalid relocation type");
13244 r
= (dof_relodesc_t
*)((uintptr_t)r
+ rs
->dofs_entsize
);
13251 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13252 * header: it should be at the front of a memory region that is at least
13253 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13254 * size. It need not be validated in any other way.
13257 dtrace_dof_slurp(dof_hdr_t
*dof
, dtrace_vstate_t
*vstate
, cred_t
*cr
,
13258 dtrace_enabling_t
**enabp
, uint64_t ubase
, int noprobes
)
13260 uint64_t len
= dof
->dofh_loadsz
, seclen
;
13261 uintptr_t daddr
= (uintptr_t)dof
;
13262 dtrace_ecbdesc_t
*ep
;
13263 dtrace_enabling_t
*enab
;
13266 ASSERT(MUTEX_HELD(&dtrace_lock
));
13267 ASSERT(dof
->dofh_loadsz
>= sizeof (dof_hdr_t
));
13270 * Check the DOF header identification bytes. In addition to checking
13271 * valid settings, we also verify that unused bits/bytes are zeroed so
13272 * we can use them later without fear of regressing existing binaries.
13274 if (bcmp(&dof
->dofh_ident
[DOF_ID_MAG0
],
13275 DOF_MAG_STRING
, DOF_MAG_STRLEN
) != 0) {
13276 dtrace_dof_error(dof
, "DOF magic string mismatch");
13280 if (dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_ILP32
&&
13281 dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_LP64
) {
13282 dtrace_dof_error(dof
, "DOF has invalid data model");
13286 if (dof
->dofh_ident
[DOF_ID_ENCODING
] != DOF_ENCODE_NATIVE
) {
13287 dtrace_dof_error(dof
, "DOF encoding mismatch");
13291 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
13292 dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_2
) {
13293 dtrace_dof_error(dof
, "DOF version mismatch");
13297 if (dof
->dofh_ident
[DOF_ID_DIFVERS
] != DIF_VERSION_2
) {
13298 dtrace_dof_error(dof
, "DOF uses unsupported instruction set");
13302 if (dof
->dofh_ident
[DOF_ID_DIFIREG
] > DIF_DIR_NREGS
) {
13303 dtrace_dof_error(dof
, "DOF uses too many integer registers");
13307 if (dof
->dofh_ident
[DOF_ID_DIFTREG
] > DIF_DTR_NREGS
) {
13308 dtrace_dof_error(dof
, "DOF uses too many tuple registers");
13312 for (i
= DOF_ID_PAD
; i
< DOF_ID_SIZE
; i
++) {
13313 if (dof
->dofh_ident
[i
] != 0) {
13314 dtrace_dof_error(dof
, "DOF has invalid ident byte set");
13319 if (dof
->dofh_flags
& ~DOF_FL_VALID
) {
13320 dtrace_dof_error(dof
, "DOF has invalid flag bits set");
13324 if (dof
->dofh_secsize
== 0) {
13325 dtrace_dof_error(dof
, "zero section header size");
13330 * Check that the section headers don't exceed the amount of DOF
13331 * data. Note that we cast the section size and number of sections
13332 * to uint64_t's to prevent possible overflow in the multiplication.
13334 seclen
= (uint64_t)dof
->dofh_secnum
* (uint64_t)dof
->dofh_secsize
;
13336 if (dof
->dofh_secoff
> len
|| seclen
> len
||
13337 dof
->dofh_secoff
+ seclen
> len
) {
13338 dtrace_dof_error(dof
, "truncated section headers");
13342 if (!IS_P2ALIGNED(dof
->dofh_secoff
, sizeof (uint64_t))) {
13343 dtrace_dof_error(dof
, "misaligned section headers");
13347 if (!IS_P2ALIGNED(dof
->dofh_secsize
, sizeof (uint64_t))) {
13348 dtrace_dof_error(dof
, "misaligned section size");
13353 * Take an initial pass through the section headers to be sure that
13354 * the headers don't have stray offsets. If the 'noprobes' flag is
13355 * set, do not permit sections relating to providers, probes, or args.
13357 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13358 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13359 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13362 switch (sec
->dofs_type
) {
13363 case DOF_SECT_PROVIDER
:
13364 case DOF_SECT_PROBES
:
13365 case DOF_SECT_PRARGS
:
13366 case DOF_SECT_PROFFS
:
13367 dtrace_dof_error(dof
, "illegal sections "
13373 if (DOF_SEC_ISLOADABLE(sec
->dofs_type
) &&
13374 !(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
13375 dtrace_dof_error(dof
, "loadable section with load "
13380 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
13381 continue; /* just ignore non-loadable sections */
13383 if (!ISP2(sec
->dofs_align
)) {
13384 dtrace_dof_error(dof
, "bad section alignment");
13388 if (sec
->dofs_offset
& (sec
->dofs_align
- 1)) {
13389 dtrace_dof_error(dof
, "misaligned section");
13393 if (sec
->dofs_offset
> len
|| sec
->dofs_size
> len
||
13394 sec
->dofs_offset
+ sec
->dofs_size
> len
) {
13395 dtrace_dof_error(dof
, "corrupt section header");
13399 if (sec
->dofs_type
== DOF_SECT_STRTAB
&& *((char *)daddr
+
13400 sec
->dofs_offset
+ sec
->dofs_size
- 1) != '\0') {
13401 dtrace_dof_error(dof
, "non-terminating string table");
13407 * Take a second pass through the sections and locate and perform any
13408 * relocations that are present. We do this after the first pass to
13409 * be sure that all sections have had their headers validated.
13411 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13412 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13413 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13415 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
13416 continue; /* skip sections that are not loadable */
13418 switch (sec
->dofs_type
) {
13419 case DOF_SECT_URELHDR
:
13420 if (dtrace_dof_relocate(dof
, sec
, ubase
) != 0)
13426 if ((enab
= *enabp
) == NULL
)
13427 enab
= *enabp
= dtrace_enabling_create(vstate
);
13429 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13430 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
13431 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13433 if (sec
->dofs_type
!= DOF_SECT_ECBDESC
)
13436 if ((ep
= dtrace_dof_ecbdesc(dof
, sec
, vstate
, cr
)) == NULL
) {
13437 dtrace_enabling_destroy(enab
);
13442 dtrace_enabling_add(enab
, ep
);
13449 * Process DOF for any options. This routine assumes that the DOF has been
13450 * at least processed by dtrace_dof_slurp().
13453 dtrace_dof_options(dof_hdr_t
*dof
, dtrace_state_t
*state
)
13458 dof_optdesc_t
*desc
;
13460 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
13461 dof_sec_t
*sec
= (dof_sec_t
*)((uintptr_t)dof
+
13462 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
13464 if (sec
->dofs_type
!= DOF_SECT_OPTDESC
)
13467 if (sec
->dofs_align
!= sizeof (uint64_t)) {
13468 dtrace_dof_error(dof
, "bad alignment in "
13469 "option description");
13473 if ((entsize
= sec
->dofs_entsize
) == 0) {
13474 dtrace_dof_error(dof
, "zeroed option entry size");
13478 if (entsize
< sizeof (dof_optdesc_t
)) {
13479 dtrace_dof_error(dof
, "bad option entry size");
13483 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= entsize
) {
13484 desc
= (dof_optdesc_t
*)((uintptr_t)dof
+
13485 (uintptr_t)sec
->dofs_offset
+ offs
);
13487 if (desc
->dofo_strtab
!= DOF_SECIDX_NONE
) {
13488 dtrace_dof_error(dof
, "non-zero option string");
13492 if (desc
->dofo_value
== DTRACEOPT_UNSET
) {
13493 dtrace_dof_error(dof
, "unset option");
13497 if ((rval
= dtrace_state_option(state
,
13498 desc
->dofo_option
, desc
->dofo_value
)) != 0) {
13499 dtrace_dof_error(dof
, "rejected option");
13509 * DTrace Consumer State Functions
13512 dtrace_dstate_init(dtrace_dstate_t
*dstate
, size_t size
)
13514 size_t hashsize
, maxper
, min
, chunksize
= dstate
->dtds_chunksize
;
13517 dtrace_dynvar_t
*dvar
, *next
, *start
;
13520 ASSERT(MUTEX_HELD(&dtrace_lock
));
13521 ASSERT(dstate
->dtds_base
== NULL
&& dstate
->dtds_percpu
== NULL
);
13523 bzero(dstate
, sizeof (dtrace_dstate_t
));
13525 if ((dstate
->dtds_chunksize
= chunksize
) == 0)
13526 dstate
->dtds_chunksize
= DTRACE_DYNVAR_CHUNKSIZE
;
13528 VERIFY(dstate
->dtds_chunksize
< LONG_MAX
);
13530 if (size
< (min
= dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
)))
13533 if ((base
= kmem_zalloc(size
, KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
)
13536 dstate
->dtds_size
= size
;
13537 dstate
->dtds_base
= base
;
13538 dstate
->dtds_percpu
= kmem_cache_alloc(dtrace_state_cache
, KM_SLEEP
);
13539 bzero(dstate
->dtds_percpu
, NCPU
* sizeof (dtrace_dstate_percpu_t
));
13541 hashsize
= size
/ (dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
));
13543 if (hashsize
!= 1 && (hashsize
& 1))
13546 dstate
->dtds_hashsize
= hashsize
;
13547 dstate
->dtds_hash
= dstate
->dtds_base
;
13550 * Set all of our hash buckets to point to the single sink, and (if
13551 * it hasn't already been set), set the sink's hash value to be the
13552 * sink sentinel value. The sink is needed for dynamic variable
13553 * lookups to know that they have iterated over an entire, valid hash
13556 for (i
= 0; i
< hashsize
; i
++)
13557 dstate
->dtds_hash
[i
].dtdh_chain
= &dtrace_dynhash_sink
;
13559 if (dtrace_dynhash_sink
.dtdv_hashval
!= DTRACE_DYNHASH_SINK
)
13560 dtrace_dynhash_sink
.dtdv_hashval
= DTRACE_DYNHASH_SINK
;
13563 * Determine number of active CPUs. Divide free list evenly among
13566 start
= (dtrace_dynvar_t
*)
13567 ((uintptr_t)base
+ hashsize
* sizeof (dtrace_dynhash_t
));
13568 limit
= (uintptr_t)base
+ size
;
13570 VERIFY((uintptr_t)start
< limit
);
13571 VERIFY((uintptr_t)start
>= (uintptr_t)base
);
13573 maxper
= (limit
- (uintptr_t)start
) / NCPU
;
13574 maxper
= (maxper
/ dstate
->dtds_chunksize
) * dstate
->dtds_chunksize
;
13576 for (i
= 0; i
< NCPU
; i
++) {
13577 dstate
->dtds_percpu
[i
].dtdsc_free
= dvar
= start
;
13580 * If we don't even have enough chunks to make it once through
13581 * NCPUs, we're just going to allocate everything to the first
13582 * CPU. And if we're on the last CPU, we're going to allocate
13583 * whatever is left over. In either case, we set the limit to
13584 * be the limit of the dynamic variable space.
13586 if (maxper
== 0 || i
== NCPU
- 1) {
13587 limit
= (uintptr_t)base
+ size
;
13590 limit
= (uintptr_t)start
+ maxper
;
13591 start
= (dtrace_dynvar_t
*)limit
;
13594 VERIFY(limit
<= (uintptr_t)base
+ size
);
13597 next
= (dtrace_dynvar_t
*)((uintptr_t)dvar
+
13598 dstate
->dtds_chunksize
);
13600 if ((uintptr_t)next
+ dstate
->dtds_chunksize
>= limit
)
13603 VERIFY((uintptr_t)dvar
>= (uintptr_t)base
&&
13604 (uintptr_t)dvar
<= (uintptr_t)base
+ size
);
13605 dvar
->dtdv_next
= next
;
13617 dtrace_dstate_fini(dtrace_dstate_t
*dstate
)
13619 ASSERT(MUTEX_HELD(&cpu_lock
));
13621 if (dstate
->dtds_base
== NULL
)
13624 kmem_free(dstate
->dtds_base
, dstate
->dtds_size
);
13625 kmem_cache_free(dtrace_state_cache
, dstate
->dtds_percpu
);
13629 dtrace_vstate_fini(dtrace_vstate_t
*vstate
)
13632 * Logical XOR, where are you?
13634 ASSERT((vstate
->dtvs_nglobals
== 0) ^ (vstate
->dtvs_globals
!= NULL
));
13636 if (vstate
->dtvs_nglobals
> 0) {
13637 kmem_free(vstate
->dtvs_globals
, vstate
->dtvs_nglobals
*
13638 sizeof (dtrace_statvar_t
*));
13641 if (vstate
->dtvs_ntlocals
> 0) {
13642 kmem_free(vstate
->dtvs_tlocals
, vstate
->dtvs_ntlocals
*
13643 sizeof (dtrace_difv_t
));
13646 ASSERT((vstate
->dtvs_nlocals
== 0) ^ (vstate
->dtvs_locals
!= NULL
));
13648 if (vstate
->dtvs_nlocals
> 0) {
13649 kmem_free(vstate
->dtvs_locals
, vstate
->dtvs_nlocals
*
13650 sizeof (dtrace_statvar_t
*));
13655 dtrace_state_clean(dtrace_state_t
*state
)
13657 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
)
13660 dtrace_dynvar_clean(&state
->dts_vstate
.dtvs_dynvars
);
13661 dtrace_speculation_clean(state
);
13665 dtrace_state_deadman(dtrace_state_t
*state
)
13671 now
= dtrace_gethrtime();
13673 if (state
!= dtrace_anon
.dta_state
&&
13674 now
- state
->dts_laststatus
>= dtrace_deadman_user
)
13678 * We must be sure that dts_alive never appears to be less than the
13679 * value upon entry to dtrace_state_deadman(), and because we lack a
13680 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13681 * store INT64_MAX to it, followed by a memory barrier, followed by
13682 * the new value. This assures that dts_alive never appears to be
13683 * less than its true value, regardless of the order in which the
13684 * stores to the underlying storage are issued.
13686 state
->dts_alive
= INT64_MAX
;
13687 dtrace_membar_producer();
13688 state
->dts_alive
= now
;
13692 dtrace_state_create(dev_t
*devp
, cred_t
*cr
)
13697 dtrace_state_t
*state
;
13698 dtrace_optval_t
*opt
;
13699 int bufsize
= NCPU
* sizeof (dtrace_buffer_t
), i
;
13701 ASSERT(MUTEX_HELD(&dtrace_lock
));
13702 ASSERT(MUTEX_HELD(&cpu_lock
));
13704 minor
= (minor_t
)(uintptr_t)vmem_alloc(dtrace_minor
, 1,
13705 VM_BESTFIT
| VM_SLEEP
);
13707 if (ddi_soft_state_zalloc(dtrace_softstate
, minor
) != DDI_SUCCESS
) {
13708 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
13712 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
13713 state
->dts_epid
= DTRACE_EPIDNONE
+ 1;
13715 (void) snprintf(c
, sizeof (c
), "dtrace_aggid_%d", minor
);
13716 state
->dts_aggid_arena
= vmem_create(c
, (void *)1, UINT32_MAX
, 1,
13717 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
13719 if (devp
!= NULL
) {
13720 major
= getemajor(*devp
);
13722 major
= ddi_driver_major(dtrace_devi
);
13725 state
->dts_dev
= makedevice(major
, minor
);
13728 *devp
= state
->dts_dev
;
13731 * We allocate NCPU buffers. On the one hand, this can be quite
13732 * a bit of memory per instance (nearly 36K on a Starcat). On the
13733 * other hand, it saves an additional memory reference in the probe
13736 state
->dts_buffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13737 state
->dts_aggbuffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13738 state
->dts_cleaner
= CYCLIC_NONE
;
13739 state
->dts_deadman
= CYCLIC_NONE
;
13740 state
->dts_vstate
.dtvs_state
= state
;
13742 for (i
= 0; i
< DTRACEOPT_MAX
; i
++)
13743 state
->dts_options
[i
] = DTRACEOPT_UNSET
;
13746 * Set the default options.
13748 opt
= state
->dts_options
;
13749 opt
[DTRACEOPT_BUFPOLICY
] = DTRACEOPT_BUFPOLICY_SWITCH
;
13750 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_AUTO
;
13751 opt
[DTRACEOPT_NSPEC
] = dtrace_nspec_default
;
13752 opt
[DTRACEOPT_SPECSIZE
] = dtrace_specsize_default
;
13753 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)DTRACE_CPUALL
;
13754 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_default
;
13755 opt
[DTRACEOPT_STACKFRAMES
] = dtrace_stackframes_default
;
13756 opt
[DTRACEOPT_USTACKFRAMES
] = dtrace_ustackframes_default
;
13757 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_default
;
13758 opt
[DTRACEOPT_AGGRATE
] = dtrace_aggrate_default
;
13759 opt
[DTRACEOPT_SWITCHRATE
] = dtrace_switchrate_default
;
13760 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_default
;
13761 opt
[DTRACEOPT_JSTACKFRAMES
] = dtrace_jstackframes_default
;
13762 opt
[DTRACEOPT_JSTACKSTRSIZE
] = dtrace_jstackstrsize_default
;
13764 state
->dts_activity
= DTRACE_ACTIVITY_INACTIVE
;
13767 * Depending on the user credentials, we set flag bits which alter probe
13768 * visibility or the amount of destructiveness allowed. In the case of
13769 * actual anonymous tracing, or the possession of all privileges, all of
13770 * the normal checks are bypassed.
13772 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13773 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13774 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13777 * Set up the credentials for this instantiation. We take a
13778 * hold on the credential to prevent it from disappearing on
13779 * us; this in turn prevents the zone_t referenced by this
13780 * credential from disappearing. This means that we can
13781 * examine the credential and the zone from probe context.
13784 state
->dts_cred
.dcr_cred
= cr
;
13787 * CRA_PROC means "we have *some* privilege for dtrace" and
13788 * unlocks the use of variables like pid, zonename, etc.
13790 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
) ||
13791 PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13792 state
->dts_cred
.dcr_action
|= DTRACE_CRA_PROC
;
13796 * dtrace_user allows use of syscall and profile providers.
13797 * If the user also has proc_owner and/or proc_zone, we
13798 * extend the scope to include additional visibility and
13799 * destructive power.
13801 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
)) {
13802 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
)) {
13803 state
->dts_cred
.dcr_visible
|=
13804 DTRACE_CRV_ALLPROC
;
13806 state
->dts_cred
.dcr_action
|=
13807 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13810 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
)) {
13811 state
->dts_cred
.dcr_visible
|=
13812 DTRACE_CRV_ALLZONE
;
13814 state
->dts_cred
.dcr_action
|=
13815 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13819 * If we have all privs in whatever zone this is,
13820 * we can do destructive things to processes which
13821 * have altered credentials.
13823 if (priv_isequalset(priv_getset(cr
, PRIV_EFFECTIVE
),
13824 cr
->cr_zone
->zone_privset
)) {
13825 state
->dts_cred
.dcr_action
|=
13826 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13831 * Holding the dtrace_kernel privilege also implies that
13832 * the user has the dtrace_user privilege from a visibility
13833 * perspective. But without further privileges, some
13834 * destructive actions are not available.
13836 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
)) {
13838 * Make all probes in all zones visible. However,
13839 * this doesn't mean that all actions become available
13842 state
->dts_cred
.dcr_visible
|= DTRACE_CRV_KERNEL
|
13843 DTRACE_CRV_ALLPROC
| DTRACE_CRV_ALLZONE
;
13845 state
->dts_cred
.dcr_action
|= DTRACE_CRA_KERNEL
|
13848 * Holding proc_owner means that destructive actions
13849 * for *this* zone are allowed.
13851 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13852 state
->dts_cred
.dcr_action
|=
13853 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13856 * Holding proc_zone means that destructive actions
13857 * for this user/group ID in all zones is allowed.
13859 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13860 state
->dts_cred
.dcr_action
|=
13861 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13864 * If we have all privs in whatever zone this is,
13865 * we can do destructive things to processes which
13866 * have altered credentials.
13868 if (priv_isequalset(priv_getset(cr
, PRIV_EFFECTIVE
),
13869 cr
->cr_zone
->zone_privset
)) {
13870 state
->dts_cred
.dcr_action
|=
13871 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13876 * Holding the dtrace_proc privilege gives control over fasttrap
13877 * and pid providers. We need to grant wider destructive
13878 * privileges in the event that the user has proc_owner and/or
13881 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13882 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13883 state
->dts_cred
.dcr_action
|=
13884 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13886 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13887 state
->dts_cred
.dcr_action
|=
13888 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13896 dtrace_state_buffer(dtrace_state_t
*state
, dtrace_buffer_t
*buf
, int which
)
13898 dtrace_optval_t
*opt
= state
->dts_options
, size
;
13900 int flags
= 0, rval
, factor
, divisor
= 1;
13902 ASSERT(MUTEX_HELD(&dtrace_lock
));
13903 ASSERT(MUTEX_HELD(&cpu_lock
));
13904 ASSERT(which
< DTRACEOPT_MAX
);
13905 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
||
13906 (state
== dtrace_anon
.dta_state
&&
13907 state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
));
13909 if (opt
[which
] == DTRACEOPT_UNSET
|| opt
[which
] == 0)
13912 if (opt
[DTRACEOPT_CPU
] != DTRACEOPT_UNSET
)
13913 cpu
= opt
[DTRACEOPT_CPU
];
13915 if (which
== DTRACEOPT_SPECSIZE
)
13916 flags
|= DTRACEBUF_NOSWITCH
;
13918 if (which
== DTRACEOPT_BUFSIZE
) {
13919 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_RING
)
13920 flags
|= DTRACEBUF_RING
;
13922 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_FILL
)
13923 flags
|= DTRACEBUF_FILL
;
13925 if (state
!= dtrace_anon
.dta_state
||
13926 state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
13927 flags
|= DTRACEBUF_INACTIVE
;
13930 for (size
= opt
[which
]; size
>= sizeof (uint64_t); size
/= divisor
) {
13932 * The size must be 8-byte aligned. If the size is not 8-byte
13933 * aligned, drop it down by the difference.
13935 if (size
& (sizeof (uint64_t) - 1))
13936 size
-= size
& (sizeof (uint64_t) - 1);
13938 if (size
< state
->dts_reserve
) {
13940 * Buffers always must be large enough to accommodate
13941 * their prereserved space. We return E2BIG instead
13942 * of ENOMEM in this case to allow for user-level
13943 * software to differentiate the cases.
13948 rval
= dtrace_buffer_alloc(buf
, size
, flags
, cpu
, &factor
);
13950 if (rval
!= ENOMEM
) {
13955 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13958 for (divisor
= 2; divisor
< factor
; divisor
<<= 1)
13966 dtrace_state_buffers(dtrace_state_t
*state
)
13968 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13971 if ((rval
= dtrace_state_buffer(state
, state
->dts_buffer
,
13972 DTRACEOPT_BUFSIZE
)) != 0)
13975 if ((rval
= dtrace_state_buffer(state
, state
->dts_aggbuffer
,
13976 DTRACEOPT_AGGSIZE
)) != 0)
13979 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13980 if ((rval
= dtrace_state_buffer(state
,
13981 spec
[i
].dtsp_buffer
, DTRACEOPT_SPECSIZE
)) != 0)
13989 dtrace_state_prereserve(dtrace_state_t
*state
)
13992 dtrace_probe_t
*probe
;
13994 state
->dts_reserve
= 0;
13996 if (state
->dts_options
[DTRACEOPT_BUFPOLICY
] != DTRACEOPT_BUFPOLICY_FILL
)
14000 * If our buffer policy is a "fill" buffer policy, we need to set the
14001 * prereserved space to be the space required by the END probes.
14003 probe
= dtrace_probes
[dtrace_probeid_end
- 1];
14004 ASSERT(probe
!= NULL
);
14006 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
14007 if (ecb
->dte_state
!= state
)
14010 state
->dts_reserve
+= ecb
->dte_needed
+ ecb
->dte_alignment
;
14015 dtrace_state_go(dtrace_state_t
*state
, processorid_t
*cpu
)
14017 dtrace_optval_t
*opt
= state
->dts_options
, sz
, nspec
;
14018 dtrace_speculation_t
*spec
;
14019 dtrace_buffer_t
*buf
;
14020 cyc_handler_t hdlr
;
14022 int rval
= 0, i
, bufsize
= NCPU
* sizeof (dtrace_buffer_t
);
14023 dtrace_icookie_t cookie
;
14025 mutex_enter(&cpu_lock
);
14026 mutex_enter(&dtrace_lock
);
14028 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
14034 * Before we can perform any checks, we must prime all of the
14035 * retained enablings that correspond to this state.
14037 dtrace_enabling_prime(state
);
14039 if (state
->dts_destructive
&& !state
->dts_cred
.dcr_destructive
) {
14044 dtrace_state_prereserve(state
);
14047 * Now we want to do is try to allocate our speculations.
14048 * We do not automatically resize the number of speculations; if
14049 * this fails, we will fail the operation.
14051 nspec
= opt
[DTRACEOPT_NSPEC
];
14052 ASSERT(nspec
!= DTRACEOPT_UNSET
);
14054 if (nspec
> INT_MAX
) {
14059 spec
= kmem_zalloc(nspec
* sizeof (dtrace_speculation_t
),
14060 KM_NOSLEEP
| KM_NORMALPRI
);
14062 if (spec
== NULL
) {
14067 state
->dts_speculations
= spec
;
14068 state
->dts_nspeculations
= (int)nspec
;
14070 for (i
= 0; i
< nspec
; i
++) {
14071 if ((buf
= kmem_zalloc(bufsize
,
14072 KM_NOSLEEP
| KM_NORMALPRI
)) == NULL
) {
14077 spec
[i
].dtsp_buffer
= buf
;
14080 if (opt
[DTRACEOPT_GRABANON
] != DTRACEOPT_UNSET
) {
14081 if (dtrace_anon
.dta_state
== NULL
) {
14086 if (state
->dts_necbs
!= 0) {
14091 state
->dts_anon
= dtrace_anon_grab();
14092 ASSERT(state
->dts_anon
!= NULL
);
14093 state
= state
->dts_anon
;
14096 * We want "grabanon" to be set in the grabbed state, so we'll
14097 * copy that option value from the grabbing state into the
14100 state
->dts_options
[DTRACEOPT_GRABANON
] =
14101 opt
[DTRACEOPT_GRABANON
];
14103 *cpu
= dtrace_anon
.dta_beganon
;
14106 * If the anonymous state is active (as it almost certainly
14107 * is if the anonymous enabling ultimately matched anything),
14108 * we don't allow any further option processing -- but we
14109 * don't return failure.
14111 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
14115 if (opt
[DTRACEOPT_AGGSIZE
] != DTRACEOPT_UNSET
&&
14116 opt
[DTRACEOPT_AGGSIZE
] != 0) {
14117 if (state
->dts_aggregations
== NULL
) {
14119 * We're not going to create an aggregation buffer
14120 * because we don't have any ECBs that contain
14121 * aggregations -- set this option to 0.
14123 opt
[DTRACEOPT_AGGSIZE
] = 0;
14126 * If we have an aggregation buffer, we must also have
14127 * a buffer to use as scratch.
14129 if (opt
[DTRACEOPT_BUFSIZE
] == DTRACEOPT_UNSET
||
14130 opt
[DTRACEOPT_BUFSIZE
] < state
->dts_needed
) {
14131 opt
[DTRACEOPT_BUFSIZE
] = state
->dts_needed
;
14136 if (opt
[DTRACEOPT_SPECSIZE
] != DTRACEOPT_UNSET
&&
14137 opt
[DTRACEOPT_SPECSIZE
] != 0) {
14138 if (!state
->dts_speculates
) {
14140 * We're not going to create speculation buffers
14141 * because we don't have any ECBs that actually
14142 * speculate -- set the speculation size to 0.
14144 opt
[DTRACEOPT_SPECSIZE
] = 0;
14149 * The bare minimum size for any buffer that we're actually going to
14150 * do anything to is sizeof (uint64_t).
14152 sz
= sizeof (uint64_t);
14154 if ((state
->dts_needed
!= 0 && opt
[DTRACEOPT_BUFSIZE
] < sz
) ||
14155 (state
->dts_speculates
&& opt
[DTRACEOPT_SPECSIZE
] < sz
) ||
14156 (state
->dts_aggregations
!= NULL
&& opt
[DTRACEOPT_AGGSIZE
] < sz
)) {
14158 * A buffer size has been explicitly set to 0 (or to a size
14159 * that will be adjusted to 0) and we need the space -- we
14160 * need to return failure. We return ENOSPC to differentiate
14161 * it from failing to allocate a buffer due to failure to meet
14162 * the reserve (for which we return E2BIG).
14168 if ((rval
= dtrace_state_buffers(state
)) != 0)
14171 if ((sz
= opt
[DTRACEOPT_DYNVARSIZE
]) == DTRACEOPT_UNSET
)
14172 sz
= dtrace_dstate_defsize
;
14175 rval
= dtrace_dstate_init(&state
->dts_vstate
.dtvs_dynvars
, sz
);
14180 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
14182 } while (sz
>>= 1);
14184 opt
[DTRACEOPT_DYNVARSIZE
] = sz
;
14189 if (opt
[DTRACEOPT_STATUSRATE
] > dtrace_statusrate_max
)
14190 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_max
;
14192 if (opt
[DTRACEOPT_CLEANRATE
] == 0)
14193 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
14195 if (opt
[DTRACEOPT_CLEANRATE
] < dtrace_cleanrate_min
)
14196 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_min
;
14198 if (opt
[DTRACEOPT_CLEANRATE
] > dtrace_cleanrate_max
)
14199 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
14201 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_clean
;
14202 hdlr
.cyh_arg
= state
;
14203 hdlr
.cyh_level
= CY_LOW_LEVEL
;
14206 when
.cyt_interval
= opt
[DTRACEOPT_CLEANRATE
];
14208 state
->dts_cleaner
= cyclic_add(&hdlr
, &when
);
14210 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_deadman
;
14211 hdlr
.cyh_arg
= state
;
14212 hdlr
.cyh_level
= CY_LOW_LEVEL
;
14215 when
.cyt_interval
= dtrace_deadman_interval
;
14217 state
->dts_alive
= state
->dts_laststatus
= dtrace_gethrtime();
14218 state
->dts_deadman
= cyclic_add(&hdlr
, &when
);
14220 state
->dts_activity
= DTRACE_ACTIVITY_WARMUP
;
14222 if (state
->dts_getf
!= 0 &&
14223 !(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)) {
14225 * We don't have kernel privs but we have at least one call
14226 * to getf(); we need to bump our zone's count, and (if
14227 * this is the first enabling to have an unprivileged call
14228 * to getf()) we need to hook into closef().
14230 state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
++;
14232 if (dtrace_getf
++ == 0) {
14233 ASSERT(dtrace_closef
== NULL
);
14234 dtrace_closef
= dtrace_getf_barrier
;
14239 * Now it's time to actually fire the BEGIN probe. We need to disable
14240 * interrupts here both to record the CPU on which we fired the BEGIN
14241 * probe (the data from this CPU will be processed first at user
14242 * level) and to manually activate the buffer for this CPU.
14244 cookie
= dtrace_interrupt_disable();
14245 *cpu
= CPU
->cpu_id
;
14246 ASSERT(state
->dts_buffer
[*cpu
].dtb_flags
& DTRACEBUF_INACTIVE
);
14247 state
->dts_buffer
[*cpu
].dtb_flags
&= ~DTRACEBUF_INACTIVE
;
14249 dtrace_probe(dtrace_probeid_begin
,
14250 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
14251 dtrace_interrupt_enable(cookie
);
14253 * We may have had an exit action from a BEGIN probe; only change our
14254 * state to ACTIVE if we're still in WARMUP.
14256 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
||
14257 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
);
14259 if (state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
)
14260 state
->dts_activity
= DTRACE_ACTIVITY_ACTIVE
;
14263 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14264 * want each CPU to transition its principal buffer out of the
14265 * INACTIVE state. Doing this assures that no CPU will suddenly begin
14266 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14267 * atomically transition from processing none of a state's ECBs to
14268 * processing all of them.
14270 dtrace_xcall(DTRACE_CPUALL
,
14271 (dtrace_xcall_t
)dtrace_buffer_activate
, state
);
14275 dtrace_buffer_free(state
->dts_buffer
);
14276 dtrace_buffer_free(state
->dts_aggbuffer
);
14278 if ((nspec
= state
->dts_nspeculations
) == 0) {
14279 ASSERT(state
->dts_speculations
== NULL
);
14283 spec
= state
->dts_speculations
;
14284 ASSERT(spec
!= NULL
);
14286 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
14287 if ((buf
= spec
[i
].dtsp_buffer
) == NULL
)
14290 dtrace_buffer_free(buf
);
14291 kmem_free(buf
, bufsize
);
14294 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
14295 state
->dts_nspeculations
= 0;
14296 state
->dts_speculations
= NULL
;
14299 mutex_exit(&dtrace_lock
);
14300 mutex_exit(&cpu_lock
);
14306 dtrace_state_stop(dtrace_state_t
*state
, processorid_t
*cpu
)
14308 dtrace_icookie_t cookie
;
14310 ASSERT(MUTEX_HELD(&dtrace_lock
));
14312 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
&&
14313 state
->dts_activity
!= DTRACE_ACTIVITY_DRAINING
)
14317 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14318 * to be sure that every CPU has seen it. See below for the details
14319 * on why this is done.
14321 state
->dts_activity
= DTRACE_ACTIVITY_DRAINING
;
14325 * By this point, it is impossible for any CPU to be still processing
14326 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
14327 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14328 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
14329 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14330 * iff we're in the END probe.
14332 state
->dts_activity
= DTRACE_ACTIVITY_COOLDOWN
;
14334 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_COOLDOWN
);
14337 * Finally, we can release the reserve and call the END probe. We
14338 * disable interrupts across calling the END probe to allow us to
14339 * return the CPU on which we actually called the END probe. This
14340 * allows user-land to be sure that this CPU's principal buffer is
14343 state
->dts_reserve
= 0;
14345 cookie
= dtrace_interrupt_disable();
14346 *cpu
= CPU
->cpu_id
;
14347 dtrace_probe(dtrace_probeid_end
,
14348 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
14349 dtrace_interrupt_enable(cookie
);
14351 state
->dts_activity
= DTRACE_ACTIVITY_STOPPED
;
14354 if (state
->dts_getf
!= 0 &&
14355 !(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)) {
14357 * We don't have kernel privs but we have at least one call
14358 * to getf(); we need to lower our zone's count, and (if
14359 * this is the last enabling to have an unprivileged call
14360 * to getf()) we need to clear the closef() hook.
14362 ASSERT(state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
> 0);
14363 ASSERT(dtrace_closef
== dtrace_getf_barrier
);
14364 ASSERT(dtrace_getf
> 0);
14366 state
->dts_cred
.dcr_cred
->cr_zone
->zone_dtrace_getf
--;
14368 if (--dtrace_getf
== 0)
14369 dtrace_closef
= NULL
;
14376 dtrace_state_option(dtrace_state_t
*state
, dtrace_optid_t option
,
14377 dtrace_optval_t val
)
14379 ASSERT(MUTEX_HELD(&dtrace_lock
));
14381 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
14384 if (option
>= DTRACEOPT_MAX
)
14387 if (option
!= DTRACEOPT_CPU
&& val
< 0)
14391 case DTRACEOPT_DESTRUCTIVE
:
14392 if (dtrace_destructive_disallow
)
14395 state
->dts_cred
.dcr_destructive
= 1;
14398 case DTRACEOPT_BUFSIZE
:
14399 case DTRACEOPT_DYNVARSIZE
:
14400 case DTRACEOPT_AGGSIZE
:
14401 case DTRACEOPT_SPECSIZE
:
14402 case DTRACEOPT_STRSIZE
:
14406 if (val
>= LONG_MAX
) {
14408 * If this is an otherwise negative value, set it to
14409 * the highest multiple of 128m less than LONG_MAX.
14410 * Technically, we're adjusting the size without
14411 * regard to the buffer resizing policy, but in fact,
14412 * this has no effect -- if we set the buffer size to
14413 * ~LONG_MAX and the buffer policy is ultimately set to
14414 * be "manual", the buffer allocation is guaranteed to
14415 * fail, if only because the allocation requires two
14416 * buffers. (We set the the size to the highest
14417 * multiple of 128m because it ensures that the size
14418 * will remain a multiple of a megabyte when
14419 * repeatedly halved -- all the way down to 15m.)
14421 val
= LONG_MAX
- (1 << 27) + 1;
14425 state
->dts_options
[option
] = val
;
14431 dtrace_state_destroy(dtrace_state_t
*state
)
14434 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
14435 minor_t minor
= getminor(state
->dts_dev
);
14436 int i
, bufsize
= NCPU
* sizeof (dtrace_buffer_t
);
14437 dtrace_speculation_t
*spec
= state
->dts_speculations
;
14438 int nspec
= state
->dts_nspeculations
;
14441 ASSERT(MUTEX_HELD(&dtrace_lock
));
14442 ASSERT(MUTEX_HELD(&cpu_lock
));
14445 * First, retract any retained enablings for this state.
14447 dtrace_enabling_retract(state
);
14448 ASSERT(state
->dts_nretained
== 0);
14450 if (state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
||
14451 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
) {
14453 * We have managed to come into dtrace_state_destroy() on a
14454 * hot enabling -- almost certainly because of a disorderly
14455 * shutdown of a consumer. (That is, a consumer that is
14456 * exiting without having called dtrace_stop().) In this case,
14457 * we're going to set our activity to be KILLED, and then
14458 * issue a sync to be sure that everyone is out of probe
14459 * context before we start blowing away ECBs.
14461 state
->dts_activity
= DTRACE_ACTIVITY_KILLED
;
14466 * Release the credential hold we took in dtrace_state_create().
14468 if (state
->dts_cred
.dcr_cred
!= NULL
)
14469 crfree(state
->dts_cred
.dcr_cred
);
14472 * Now we can safely disable and destroy any enabled probes. Because
14473 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14474 * (especially if they're all enabled), we take two passes through the
14475 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14476 * in the second we disable whatever is left over.
14478 for (match
= DTRACE_PRIV_KERNEL
; ; match
= 0) {
14479 for (i
= 0; i
< state
->dts_necbs
; i
++) {
14480 if ((ecb
= state
->dts_ecbs
[i
]) == NULL
)
14483 if (match
&& ecb
->dte_probe
!= NULL
) {
14484 dtrace_probe_t
*probe
= ecb
->dte_probe
;
14485 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
14487 if (!(prov
->dtpv_priv
.dtpp_flags
& match
))
14491 dtrace_ecb_disable(ecb
);
14492 dtrace_ecb_destroy(ecb
);
14500 * Before we free the buffers, perform one more sync to assure that
14501 * every CPU is out of probe context.
14505 dtrace_buffer_free(state
->dts_buffer
);
14506 dtrace_buffer_free(state
->dts_aggbuffer
);
14508 for (i
= 0; i
< nspec
; i
++)
14509 dtrace_buffer_free(spec
[i
].dtsp_buffer
);
14511 if (state
->dts_cleaner
!= CYCLIC_NONE
)
14512 cyclic_remove(state
->dts_cleaner
);
14514 if (state
->dts_deadman
!= CYCLIC_NONE
)
14515 cyclic_remove(state
->dts_deadman
);
14517 dtrace_dstate_fini(&vstate
->dtvs_dynvars
);
14518 dtrace_vstate_fini(vstate
);
14519 kmem_free(state
->dts_ecbs
, state
->dts_necbs
* sizeof (dtrace_ecb_t
*));
14521 if (state
->dts_aggregations
!= NULL
) {
14523 for (i
= 0; i
< state
->dts_naggregations
; i
++)
14524 ASSERT(state
->dts_aggregations
[i
] == NULL
);
14526 ASSERT(state
->dts_naggregations
> 0);
14527 kmem_free(state
->dts_aggregations
,
14528 state
->dts_naggregations
* sizeof (dtrace_aggregation_t
*));
14531 kmem_free(state
->dts_buffer
, bufsize
);
14532 kmem_free(state
->dts_aggbuffer
, bufsize
);
14534 for (i
= 0; i
< nspec
; i
++)
14535 kmem_free(spec
[i
].dtsp_buffer
, bufsize
);
14537 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
14539 dtrace_format_destroy(state
);
14541 vmem_destroy(state
->dts_aggid_arena
);
14542 ddi_soft_state_free(dtrace_softstate
, minor
);
14543 vmem_free(dtrace_minor
, (void *)(uintptr_t)minor
, 1);
14547 * DTrace Anonymous Enabling Functions
14549 static dtrace_state_t
*
14550 dtrace_anon_grab(void)
14552 dtrace_state_t
*state
;
14554 ASSERT(MUTEX_HELD(&dtrace_lock
));
14556 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14557 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14561 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14562 ASSERT(dtrace_retained
!= NULL
);
14564 dtrace_enabling_destroy(dtrace_anon
.dta_enabling
);
14565 dtrace_anon
.dta_enabling
= NULL
;
14566 dtrace_anon
.dta_state
= NULL
;
14572 dtrace_anon_property(void)
14575 dtrace_state_t
*state
;
14577 char c
[32]; /* enough for "dof-data-" + digits */
14579 ASSERT(MUTEX_HELD(&dtrace_lock
));
14580 ASSERT(MUTEX_HELD(&cpu_lock
));
14582 for (i
= 0; ; i
++) {
14583 (void) snprintf(c
, sizeof (c
), "dof-data-%d", i
);
14585 dtrace_err_verbose
= 1;
14587 if ((dof
= dtrace_dof_property(c
)) == NULL
) {
14588 dtrace_err_verbose
= 0;
14593 * We want to create anonymous state, so we need to transition
14594 * the kernel debugger to indicate that DTrace is active. If
14595 * this fails (e.g. because the debugger has modified text in
14596 * some way), we won't continue with the processing.
14598 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
14599 cmn_err(CE_NOTE
, "kernel debugger active; anonymous "
14600 "enabling ignored.");
14601 dtrace_dof_destroy(dof
);
14606 * If we haven't allocated an anonymous state, we'll do so now.
14608 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14609 state
= dtrace_state_create(NULL
, NULL
);
14610 dtrace_anon
.dta_state
= state
;
14612 if (state
== NULL
) {
14614 * This basically shouldn't happen: the only
14615 * failure mode from dtrace_state_create() is a
14616 * failure of ddi_soft_state_zalloc() that
14617 * itself should never happen. Still, the
14618 * interface allows for a failure mode, and
14619 * we want to fail as gracefully as possible:
14620 * we'll emit an error message and cease
14621 * processing anonymous state in this case.
14623 cmn_err(CE_WARN
, "failed to create "
14624 "anonymous state");
14625 dtrace_dof_destroy(dof
);
14630 rv
= dtrace_dof_slurp(dof
, &state
->dts_vstate
, CRED(),
14631 &dtrace_anon
.dta_enabling
, 0, B_TRUE
);
14634 rv
= dtrace_dof_options(dof
, state
);
14636 dtrace_err_verbose
= 0;
14637 dtrace_dof_destroy(dof
);
14641 * This is malformed DOF; chuck any anonymous state
14644 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14645 dtrace_state_destroy(state
);
14646 dtrace_anon
.dta_state
= NULL
;
14650 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14653 if (dtrace_anon
.dta_enabling
!= NULL
) {
14657 * dtrace_enabling_retain() can only fail because we are
14658 * trying to retain more enablings than are allowed -- but
14659 * we only have one anonymous enabling, and we are guaranteed
14660 * to be allowed at least one retained enabling; we assert
14661 * that dtrace_enabling_retain() returns success.
14663 rval
= dtrace_enabling_retain(dtrace_anon
.dta_enabling
);
14666 dtrace_enabling_dump(dtrace_anon
.dta_enabling
);
14671 * DTrace Helper Functions
14674 dtrace_helper_trace(dtrace_helper_action_t
*helper
,
14675 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
, int where
)
14677 uint32_t size
, next
, nnext
, i
;
14678 dtrace_helptrace_t
*ent
, *buffer
;
14679 uint16_t flags
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14681 if ((buffer
= dtrace_helptrace_buffer
) == NULL
)
14684 ASSERT(vstate
->dtvs_nlocals
<= dtrace_helptrace_nlocals
);
14687 * What would a tracing framework be without its own tracing
14688 * framework? (Well, a hell of a lot simpler, for starters...)
14690 size
= sizeof (dtrace_helptrace_t
) + dtrace_helptrace_nlocals
*
14691 sizeof (uint64_t) - sizeof (uint64_t);
14694 * Iterate until we can allocate a slot in the trace buffer.
14697 next
= dtrace_helptrace_next
;
14699 if (next
+ size
< dtrace_helptrace_bufsize
) {
14700 nnext
= next
+ size
;
14704 } while (dtrace_cas32(&dtrace_helptrace_next
, next
, nnext
) != next
);
14707 * We have our slot; fill it in.
14709 if (nnext
== size
) {
14710 dtrace_helptrace_wrapped
++;
14714 ent
= (dtrace_helptrace_t
*)((uintptr_t)buffer
+ next
);
14715 ent
->dtht_helper
= helper
;
14716 ent
->dtht_where
= where
;
14717 ent
->dtht_nlocals
= vstate
->dtvs_nlocals
;
14719 ent
->dtht_fltoffs
= (mstate
->dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
14720 mstate
->dtms_fltoffs
: -1;
14721 ent
->dtht_fault
= DTRACE_FLAGS2FLT(flags
);
14722 ent
->dtht_illval
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
14724 for (i
= 0; i
< vstate
->dtvs_nlocals
; i
++) {
14725 dtrace_statvar_t
*svar
;
14727 if ((svar
= vstate
->dtvs_locals
[i
]) == NULL
)
14730 ASSERT(svar
->dtsv_size
>= NCPU
* sizeof (uint64_t));
14731 ent
->dtht_locals
[i
] =
14732 ((uint64_t *)(uintptr_t)svar
->dtsv_data
)[CPU
->cpu_id
];
14737 dtrace_helper(int which
, dtrace_mstate_t
*mstate
,
14738 dtrace_state_t
*state
, uint64_t arg0
, uint64_t arg1
)
14740 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14741 uint64_t sarg0
= mstate
->dtms_arg
[0];
14742 uint64_t sarg1
= mstate
->dtms_arg
[1];
14744 dtrace_helpers_t
*helpers
= curproc
->p_dtrace_helpers
;
14745 dtrace_helper_action_t
*helper
;
14746 dtrace_vstate_t
*vstate
;
14747 dtrace_difo_t
*pred
;
14748 int i
, trace
= dtrace_helptrace_buffer
!= NULL
;
14750 ASSERT(which
>= 0 && which
< DTRACE_NHELPER_ACTIONS
);
14752 if (helpers
== NULL
)
14753 return ((uintptr_t)NULL
);
14755 if ((helper
= helpers
->dthps_actions
[which
]) == NULL
)
14756 return ((uintptr_t)NULL
);
14758 vstate
= &helpers
->dthps_vstate
;
14759 mstate
->dtms_arg
[0] = arg0
;
14760 mstate
->dtms_arg
[1] = arg1
;
14763 * Now iterate over each helper. If its predicate evaluates to 'true',
14764 * we'll call the corresponding actions. Note that the below calls
14765 * to dtrace_dif_emulate() may set faults in machine state. This is
14766 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14767 * the stored DIF offset with its own (which is the desired behavior).
14768 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14769 * from machine state; this is okay, too.
14771 for (; helper
!= NULL
; helper
= helper
->dtha_next
) {
14772 if ((pred
= helper
->dtha_predicate
) != NULL
) {
14774 dtrace_helper_trace(helper
, mstate
, vstate
, 0);
14776 if (!dtrace_dif_emulate(pred
, mstate
, vstate
, state
))
14779 if (*flags
& CPU_DTRACE_FAULT
)
14783 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14785 dtrace_helper_trace(helper
,
14786 mstate
, vstate
, i
+ 1);
14788 rval
= dtrace_dif_emulate(helper
->dtha_actions
[i
],
14789 mstate
, vstate
, state
);
14791 if (*flags
& CPU_DTRACE_FAULT
)
14797 dtrace_helper_trace(helper
, mstate
, vstate
,
14798 DTRACE_HELPTRACE_NEXT
);
14802 dtrace_helper_trace(helper
, mstate
, vstate
,
14803 DTRACE_HELPTRACE_DONE
);
14806 * Restore the arg0 that we saved upon entry.
14808 mstate
->dtms_arg
[0] = sarg0
;
14809 mstate
->dtms_arg
[1] = sarg1
;
14815 dtrace_helper_trace(helper
, mstate
, vstate
,
14816 DTRACE_HELPTRACE_ERR
);
14819 * Restore the arg0 that we saved upon entry.
14821 mstate
->dtms_arg
[0] = sarg0
;
14822 mstate
->dtms_arg
[1] = sarg1
;
14824 return ((uintptr_t)NULL
);
14828 dtrace_helper_action_destroy(dtrace_helper_action_t
*helper
,
14829 dtrace_vstate_t
*vstate
)
14833 if (helper
->dtha_predicate
!= NULL
)
14834 dtrace_difo_release(helper
->dtha_predicate
, vstate
);
14836 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14837 ASSERT(helper
->dtha_actions
[i
] != NULL
);
14838 dtrace_difo_release(helper
->dtha_actions
[i
], vstate
);
14841 kmem_free(helper
->dtha_actions
,
14842 helper
->dtha_nactions
* sizeof (dtrace_difo_t
*));
14843 kmem_free(helper
, sizeof (dtrace_helper_action_t
));
14847 dtrace_helper_destroygen(int gen
)
14849 proc_t
*p
= curproc
;
14850 dtrace_helpers_t
*help
= p
->p_dtrace_helpers
;
14851 dtrace_vstate_t
*vstate
;
14854 ASSERT(MUTEX_HELD(&dtrace_lock
));
14856 if (help
== NULL
|| gen
> help
->dthps_generation
)
14859 vstate
= &help
->dthps_vstate
;
14861 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
14862 dtrace_helper_action_t
*last
= NULL
, *h
, *next
;
14864 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
14865 next
= h
->dtha_next
;
14867 if (h
->dtha_generation
== gen
) {
14868 if (last
!= NULL
) {
14869 last
->dtha_next
= next
;
14871 help
->dthps_actions
[i
] = next
;
14874 dtrace_helper_action_destroy(h
, vstate
);
14882 * Interate until we've cleared out all helper providers with the
14883 * given generation number.
14886 dtrace_helper_provider_t
*prov
;
14889 * Look for a helper provider with the right generation. We
14890 * have to start back at the beginning of the list each time
14891 * because we drop dtrace_lock. It's unlikely that we'll make
14892 * more than two passes.
14894 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14895 prov
= help
->dthps_provs
[i
];
14897 if (prov
->dthp_generation
== gen
)
14902 * If there were no matches, we're done.
14904 if (i
== help
->dthps_nprovs
)
14908 * Move the last helper provider into this slot.
14910 help
->dthps_nprovs
--;
14911 help
->dthps_provs
[i
] = help
->dthps_provs
[help
->dthps_nprovs
];
14912 help
->dthps_provs
[help
->dthps_nprovs
] = NULL
;
14914 mutex_exit(&dtrace_lock
);
14917 * If we have a meta provider, remove this helper provider.
14919 mutex_enter(&dtrace_meta_lock
);
14920 if (dtrace_meta_pid
!= NULL
) {
14921 ASSERT(dtrace_deferred_pid
== NULL
);
14922 dtrace_helper_provider_remove(&prov
->dthp_prov
,
14925 mutex_exit(&dtrace_meta_lock
);
14927 dtrace_helper_provider_destroy(prov
);
14929 mutex_enter(&dtrace_lock
);
14936 dtrace_helper_validate(dtrace_helper_action_t
*helper
)
14941 if ((dp
= helper
->dtha_predicate
) != NULL
)
14942 err
+= dtrace_difo_validate_helper(dp
);
14944 for (i
= 0; i
< helper
->dtha_nactions
; i
++)
14945 err
+= dtrace_difo_validate_helper(helper
->dtha_actions
[i
]);
14951 dtrace_helper_action_add(int which
, dtrace_ecbdesc_t
*ep
)
14953 dtrace_helpers_t
*help
;
14954 dtrace_helper_action_t
*helper
, *last
;
14955 dtrace_actdesc_t
*act
;
14956 dtrace_vstate_t
*vstate
;
14957 dtrace_predicate_t
*pred
;
14958 int count
= 0, nactions
= 0, i
;
14960 if (which
< 0 || which
>= DTRACE_NHELPER_ACTIONS
)
14963 help
= curproc
->p_dtrace_helpers
;
14964 last
= help
->dthps_actions
[which
];
14965 vstate
= &help
->dthps_vstate
;
14967 for (count
= 0; last
!= NULL
; last
= last
->dtha_next
) {
14969 if (last
->dtha_next
== NULL
)
14974 * If we already have dtrace_helper_actions_max helper actions for this
14975 * helper action type, we'll refuse to add a new one.
14977 if (count
>= dtrace_helper_actions_max
)
14980 helper
= kmem_zalloc(sizeof (dtrace_helper_action_t
), KM_SLEEP
);
14981 helper
->dtha_generation
= help
->dthps_generation
;
14983 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
) {
14984 ASSERT(pred
->dtp_difo
!= NULL
);
14985 dtrace_difo_hold(pred
->dtp_difo
);
14986 helper
->dtha_predicate
= pred
->dtp_difo
;
14989 for (act
= ep
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
14990 if (act
->dtad_kind
!= DTRACEACT_DIFEXPR
)
14993 if (act
->dtad_difo
== NULL
)
14999 helper
->dtha_actions
= kmem_zalloc(sizeof (dtrace_difo_t
*) *
15000 (helper
->dtha_nactions
= nactions
), KM_SLEEP
);
15002 for (act
= ep
->dted_action
, i
= 0; act
!= NULL
; act
= act
->dtad_next
) {
15003 dtrace_difo_hold(act
->dtad_difo
);
15004 helper
->dtha_actions
[i
++] = act
->dtad_difo
;
15007 if (!dtrace_helper_validate(helper
))
15010 if (last
== NULL
) {
15011 help
->dthps_actions
[which
] = helper
;
15013 last
->dtha_next
= helper
;
15016 if (vstate
->dtvs_nlocals
> dtrace_helptrace_nlocals
) {
15017 dtrace_helptrace_nlocals
= vstate
->dtvs_nlocals
;
15018 dtrace_helptrace_next
= 0;
15023 dtrace_helper_action_destroy(helper
, vstate
);
15028 dtrace_helper_provider_register(proc_t
*p
, dtrace_helpers_t
*help
,
15029 dof_helper_t
*dofhp
)
15031 ASSERT(MUTEX_NOT_HELD(&dtrace_lock
));
15033 mutex_enter(&dtrace_meta_lock
);
15034 mutex_enter(&dtrace_lock
);
15036 if (!dtrace_attached() || dtrace_meta_pid
== NULL
) {
15038 * If the dtrace module is loaded but not attached, or if
15039 * there aren't isn't a meta provider registered to deal with
15040 * these provider descriptions, we need to postpone creating
15041 * the actual providers until later.
15044 if (help
->dthps_next
== NULL
&& help
->dthps_prev
== NULL
&&
15045 dtrace_deferred_pid
!= help
) {
15046 help
->dthps_deferred
= 1;
15047 help
->dthps_pid
= p
->p_pid
;
15048 help
->dthps_next
= dtrace_deferred_pid
;
15049 help
->dthps_prev
= NULL
;
15050 if (dtrace_deferred_pid
!= NULL
)
15051 dtrace_deferred_pid
->dthps_prev
= help
;
15052 dtrace_deferred_pid
= help
;
15055 mutex_exit(&dtrace_lock
);
15057 } else if (dofhp
!= NULL
) {
15059 * If the dtrace module is loaded and we have a particular
15060 * helper provider description, pass that off to the
15064 mutex_exit(&dtrace_lock
);
15066 dtrace_helper_provide(dofhp
, p
->p_pid
);
15070 * Otherwise, just pass all the helper provider descriptions
15071 * off to the meta provider.
15075 mutex_exit(&dtrace_lock
);
15077 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15078 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
15083 mutex_exit(&dtrace_meta_lock
);
15087 dtrace_helper_provider_add(dof_helper_t
*dofhp
, int gen
)
15089 dtrace_helpers_t
*help
;
15090 dtrace_helper_provider_t
*hprov
, **tmp_provs
;
15091 uint_t tmp_maxprovs
, i
;
15093 ASSERT(MUTEX_HELD(&dtrace_lock
));
15095 help
= curproc
->p_dtrace_helpers
;
15096 ASSERT(help
!= NULL
);
15099 * If we already have dtrace_helper_providers_max helper providers,
15100 * we're refuse to add a new one.
15102 if (help
->dthps_nprovs
>= dtrace_helper_providers_max
)
15106 * Check to make sure this isn't a duplicate.
15108 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15109 if (dofhp
->dofhp_addr
==
15110 help
->dthps_provs
[i
]->dthp_prov
.dofhp_addr
)
15114 hprov
= kmem_zalloc(sizeof (dtrace_helper_provider_t
), KM_SLEEP
);
15115 hprov
->dthp_prov
= *dofhp
;
15116 hprov
->dthp_ref
= 1;
15117 hprov
->dthp_generation
= gen
;
15120 * Allocate a bigger table for helper providers if it's already full.
15122 if (help
->dthps_maxprovs
== help
->dthps_nprovs
) {
15123 tmp_maxprovs
= help
->dthps_maxprovs
;
15124 tmp_provs
= help
->dthps_provs
;
15126 if (help
->dthps_maxprovs
== 0)
15127 help
->dthps_maxprovs
= 2;
15129 help
->dthps_maxprovs
*= 2;
15130 if (help
->dthps_maxprovs
> dtrace_helper_providers_max
)
15131 help
->dthps_maxprovs
= dtrace_helper_providers_max
;
15133 ASSERT(tmp_maxprovs
< help
->dthps_maxprovs
);
15135 help
->dthps_provs
= kmem_zalloc(help
->dthps_maxprovs
*
15136 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15138 if (tmp_provs
!= NULL
) {
15139 bcopy(tmp_provs
, help
->dthps_provs
, tmp_maxprovs
*
15140 sizeof (dtrace_helper_provider_t
*));
15141 kmem_free(tmp_provs
, tmp_maxprovs
*
15142 sizeof (dtrace_helper_provider_t
*));
15146 help
->dthps_provs
[help
->dthps_nprovs
] = hprov
;
15147 help
->dthps_nprovs
++;
15153 dtrace_helper_provider_destroy(dtrace_helper_provider_t
*hprov
)
15155 mutex_enter(&dtrace_lock
);
15157 if (--hprov
->dthp_ref
== 0) {
15159 mutex_exit(&dtrace_lock
);
15160 dof
= (dof_hdr_t
*)(uintptr_t)hprov
->dthp_prov
.dofhp_dof
;
15161 dtrace_dof_destroy(dof
);
15162 kmem_free(hprov
, sizeof (dtrace_helper_provider_t
));
15164 mutex_exit(&dtrace_lock
);
15169 dtrace_helper_provider_validate(dof_hdr_t
*dof
, dof_sec_t
*sec
)
15171 uintptr_t daddr
= (uintptr_t)dof
;
15172 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
15173 dof_provider_t
*provider
;
15174 dof_probe_t
*probe
;
15176 char *strtab
, *typestr
;
15177 dof_stridx_t typeidx
;
15179 uint_t nprobes
, j
, k
;
15181 ASSERT(sec
->dofs_type
== DOF_SECT_PROVIDER
);
15183 if (sec
->dofs_offset
& (sizeof (uint_t
) - 1)) {
15184 dtrace_dof_error(dof
, "misaligned section offset");
15189 * The section needs to be large enough to contain the DOF provider
15190 * structure appropriate for the given version.
15192 if (sec
->dofs_size
<
15193 ((dof
->dofh_ident
[DOF_ID_VERSION
] == DOF_VERSION_1
) ?
15194 offsetof(dof_provider_t
, dofpv_prenoffs
) :
15195 sizeof (dof_provider_t
))) {
15196 dtrace_dof_error(dof
, "provider section too small");
15200 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
15201 str_sec
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, provider
->dofpv_strtab
);
15202 prb_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBES
, provider
->dofpv_probes
);
15203 arg_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRARGS
, provider
->dofpv_prargs
);
15204 off_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROFFS
, provider
->dofpv_proffs
);
15206 if (str_sec
== NULL
|| prb_sec
== NULL
||
15207 arg_sec
== NULL
|| off_sec
== NULL
)
15212 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
15213 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
&&
15214 (enoff_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRENOFFS
,
15215 provider
->dofpv_prenoffs
)) == NULL
)
15218 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
15220 if (provider
->dofpv_name
>= str_sec
->dofs_size
||
15221 strlen(strtab
+ provider
->dofpv_name
) >= DTRACE_PROVNAMELEN
) {
15222 dtrace_dof_error(dof
, "invalid provider name");
15226 if (prb_sec
->dofs_entsize
== 0 ||
15227 prb_sec
->dofs_entsize
> prb_sec
->dofs_size
) {
15228 dtrace_dof_error(dof
, "invalid entry size");
15232 if (prb_sec
->dofs_entsize
& (sizeof (uintptr_t) - 1)) {
15233 dtrace_dof_error(dof
, "misaligned entry size");
15237 if (off_sec
->dofs_entsize
!= sizeof (uint32_t)) {
15238 dtrace_dof_error(dof
, "invalid entry size");
15242 if (off_sec
->dofs_offset
& (sizeof (uint32_t) - 1)) {
15243 dtrace_dof_error(dof
, "misaligned section offset");
15247 if (arg_sec
->dofs_entsize
!= sizeof (uint8_t)) {
15248 dtrace_dof_error(dof
, "invalid entry size");
15252 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
15254 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
15257 * Take a pass through the probes to check for errors.
15259 for (j
= 0; j
< nprobes
; j
++) {
15260 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
15261 prb_sec
->dofs_offset
+ j
* prb_sec
->dofs_entsize
);
15263 if (probe
->dofpr_func
>= str_sec
->dofs_size
) {
15264 dtrace_dof_error(dof
, "invalid function name");
15268 if (strlen(strtab
+ probe
->dofpr_func
) >= DTRACE_FUNCNAMELEN
) {
15269 dtrace_dof_error(dof
, "function name too long");
15273 if (probe
->dofpr_name
>= str_sec
->dofs_size
||
15274 strlen(strtab
+ probe
->dofpr_name
) >= DTRACE_NAMELEN
) {
15275 dtrace_dof_error(dof
, "invalid probe name");
15280 * The offset count must not wrap the index, and the offsets
15281 * must also not overflow the section's data.
15283 if (probe
->dofpr_offidx
+ probe
->dofpr_noffs
<
15284 probe
->dofpr_offidx
||
15285 (probe
->dofpr_offidx
+ probe
->dofpr_noffs
) *
15286 off_sec
->dofs_entsize
> off_sec
->dofs_size
) {
15287 dtrace_dof_error(dof
, "invalid probe offset");
15291 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
) {
15293 * If there's no is-enabled offset section, make sure
15294 * there aren't any is-enabled offsets. Otherwise
15295 * perform the same checks as for probe offsets
15296 * (immediately above).
15298 if (enoff_sec
== NULL
) {
15299 if (probe
->dofpr_enoffidx
!= 0 ||
15300 probe
->dofpr_nenoffs
!= 0) {
15301 dtrace_dof_error(dof
, "is-enabled "
15302 "offsets with null section");
15305 } else if (probe
->dofpr_enoffidx
+
15306 probe
->dofpr_nenoffs
< probe
->dofpr_enoffidx
||
15307 (probe
->dofpr_enoffidx
+ probe
->dofpr_nenoffs
) *
15308 enoff_sec
->dofs_entsize
> enoff_sec
->dofs_size
) {
15309 dtrace_dof_error(dof
, "invalid is-enabled "
15314 if (probe
->dofpr_noffs
+ probe
->dofpr_nenoffs
== 0) {
15315 dtrace_dof_error(dof
, "zero probe and "
15316 "is-enabled offsets");
15319 } else if (probe
->dofpr_noffs
== 0) {
15320 dtrace_dof_error(dof
, "zero probe offsets");
15324 if (probe
->dofpr_argidx
+ probe
->dofpr_xargc
<
15325 probe
->dofpr_argidx
||
15326 (probe
->dofpr_argidx
+ probe
->dofpr_xargc
) *
15327 arg_sec
->dofs_entsize
> arg_sec
->dofs_size
) {
15328 dtrace_dof_error(dof
, "invalid args");
15332 typeidx
= probe
->dofpr_nargv
;
15333 typestr
= strtab
+ probe
->dofpr_nargv
;
15334 for (k
= 0; k
< probe
->dofpr_nargc
; k
++) {
15335 if (typeidx
>= str_sec
->dofs_size
) {
15336 dtrace_dof_error(dof
, "bad "
15337 "native argument type");
15341 typesz
= strlen(typestr
) + 1;
15342 if (typesz
> DTRACE_ARGTYPELEN
) {
15343 dtrace_dof_error(dof
, "native "
15344 "argument type too long");
15351 typeidx
= probe
->dofpr_xargv
;
15352 typestr
= strtab
+ probe
->dofpr_xargv
;
15353 for (k
= 0; k
< probe
->dofpr_xargc
; k
++) {
15354 if (arg
[probe
->dofpr_argidx
+ k
] > probe
->dofpr_nargc
) {
15355 dtrace_dof_error(dof
, "bad "
15356 "native argument index");
15360 if (typeidx
>= str_sec
->dofs_size
) {
15361 dtrace_dof_error(dof
, "bad "
15362 "translated argument type");
15366 typesz
= strlen(typestr
) + 1;
15367 if (typesz
> DTRACE_ARGTYPELEN
) {
15368 dtrace_dof_error(dof
, "translated argument "
15382 dtrace_helper_slurp(dof_hdr_t
*dof
, dof_helper_t
*dhp
)
15384 dtrace_helpers_t
*help
;
15385 dtrace_vstate_t
*vstate
;
15386 dtrace_enabling_t
*enab
= NULL
;
15387 int i
, gen
, rv
, nhelpers
= 0, nprovs
= 0, destroy
= 1;
15388 uintptr_t daddr
= (uintptr_t)dof
;
15390 ASSERT(MUTEX_HELD(&dtrace_lock
));
15392 if ((help
= curproc
->p_dtrace_helpers
) == NULL
)
15393 help
= dtrace_helpers_create(curproc
);
15395 vstate
= &help
->dthps_vstate
;
15397 if ((rv
= dtrace_dof_slurp(dof
, vstate
, NULL
, &enab
,
15398 dhp
!= NULL
? dhp
->dofhp_addr
: 0, B_FALSE
)) != 0) {
15399 dtrace_dof_destroy(dof
);
15404 * Look for helper providers and validate their descriptions.
15407 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
15408 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
15409 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
15411 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
15414 if (dtrace_helper_provider_validate(dof
, sec
) != 0) {
15415 dtrace_enabling_destroy(enab
);
15416 dtrace_dof_destroy(dof
);
15425 * Now we need to walk through the ECB descriptions in the enabling.
15427 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
15428 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
15429 dtrace_probedesc_t
*desc
= &ep
->dted_probe
;
15431 if (strcmp(desc
->dtpd_provider
, "dtrace") != 0)
15434 if (strcmp(desc
->dtpd_mod
, "helper") != 0)
15437 if (strcmp(desc
->dtpd_func
, "ustack") != 0)
15440 if ((rv
= dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK
,
15443 * Adding this helper action failed -- we are now going
15444 * to rip out the entire generation and return failure.
15446 (void) dtrace_helper_destroygen(help
->dthps_generation
);
15447 dtrace_enabling_destroy(enab
);
15448 dtrace_dof_destroy(dof
);
15455 if (nhelpers
< enab
->dten_ndesc
)
15456 dtrace_dof_error(dof
, "unmatched helpers");
15458 gen
= help
->dthps_generation
++;
15459 dtrace_enabling_destroy(enab
);
15461 if (dhp
!= NULL
&& nprovs
> 0) {
15463 * Now that this is in-kernel, we change the sense of the
15464 * members: dofhp_dof denotes the in-kernel copy of the DOF
15465 * and dofhp_addr denotes the address at user-level.
15467 dhp
->dofhp_addr
= dhp
->dofhp_dof
;
15468 dhp
->dofhp_dof
= (uint64_t)(uintptr_t)dof
;
15470 if (dtrace_helper_provider_add(dhp
, gen
) == 0) {
15471 mutex_exit(&dtrace_lock
);
15472 dtrace_helper_provider_register(curproc
, help
, dhp
);
15473 mutex_enter(&dtrace_lock
);
15480 dtrace_dof_destroy(dof
);
15485 static dtrace_helpers_t
*
15486 dtrace_helpers_create(proc_t
*p
)
15488 dtrace_helpers_t
*help
;
15490 ASSERT(MUTEX_HELD(&dtrace_lock
));
15491 ASSERT(p
->p_dtrace_helpers
== NULL
);
15493 help
= kmem_zalloc(sizeof (dtrace_helpers_t
), KM_SLEEP
);
15494 help
->dthps_actions
= kmem_zalloc(sizeof (dtrace_helper_action_t
*) *
15495 DTRACE_NHELPER_ACTIONS
, KM_SLEEP
);
15497 p
->p_dtrace_helpers
= help
;
15504 dtrace_helpers_destroy(proc_t
*p
)
15506 dtrace_helpers_t
*help
;
15507 dtrace_vstate_t
*vstate
;
15510 mutex_enter(&dtrace_lock
);
15512 ASSERT(p
->p_dtrace_helpers
!= NULL
);
15513 ASSERT(dtrace_helpers
> 0);
15515 help
= p
->p_dtrace_helpers
;
15516 vstate
= &help
->dthps_vstate
;
15519 * We're now going to lose the help from this process.
15521 p
->p_dtrace_helpers
= NULL
;
15522 if (p
== curproc
) {
15526 * It is sometimes necessary to clean up dtrace helpers from a
15527 * an incomplete child process as part of a failed fork
15528 * operation. In such situations, a dtrace_sync() call should
15529 * be unnecessary as the process should be devoid of threads,
15530 * much less any in probe context.
15532 VERIFY(p
->p_stat
== SIDL
);
15536 * Destroy the helper actions.
15538 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15539 dtrace_helper_action_t
*h
, *next
;
15541 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
15542 next
= h
->dtha_next
;
15543 dtrace_helper_action_destroy(h
, vstate
);
15548 mutex_exit(&dtrace_lock
);
15551 * Destroy the helper providers.
15553 if (help
->dthps_maxprovs
> 0) {
15554 mutex_enter(&dtrace_meta_lock
);
15555 if (dtrace_meta_pid
!= NULL
) {
15556 ASSERT(dtrace_deferred_pid
== NULL
);
15558 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15559 dtrace_helper_provider_remove(
15560 &help
->dthps_provs
[i
]->dthp_prov
, p
->p_pid
);
15563 mutex_enter(&dtrace_lock
);
15564 ASSERT(help
->dthps_deferred
== 0 ||
15565 help
->dthps_next
!= NULL
||
15566 help
->dthps_prev
!= NULL
||
15567 help
== dtrace_deferred_pid
);
15570 * Remove the helper from the deferred list.
15572 if (help
->dthps_next
!= NULL
)
15573 help
->dthps_next
->dthps_prev
= help
->dthps_prev
;
15574 if (help
->dthps_prev
!= NULL
)
15575 help
->dthps_prev
->dthps_next
= help
->dthps_next
;
15576 if (dtrace_deferred_pid
== help
) {
15577 dtrace_deferred_pid
= help
->dthps_next
;
15578 ASSERT(help
->dthps_prev
== NULL
);
15581 mutex_exit(&dtrace_lock
);
15584 mutex_exit(&dtrace_meta_lock
);
15586 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15587 dtrace_helper_provider_destroy(help
->dthps_provs
[i
]);
15590 kmem_free(help
->dthps_provs
, help
->dthps_maxprovs
*
15591 sizeof (dtrace_helper_provider_t
*));
15594 mutex_enter(&dtrace_lock
);
15596 dtrace_vstate_fini(&help
->dthps_vstate
);
15597 kmem_free(help
->dthps_actions
,
15598 sizeof (dtrace_helper_action_t
*) * DTRACE_NHELPER_ACTIONS
);
15599 kmem_free(help
, sizeof (dtrace_helpers_t
));
15602 mutex_exit(&dtrace_lock
);
15606 dtrace_helpers_duplicate(proc_t
*from
, proc_t
*to
)
15608 dtrace_helpers_t
*help
, *newhelp
;
15609 dtrace_helper_action_t
*helper
, *new, *last
;
15611 dtrace_vstate_t
*vstate
;
15612 int i
, j
, sz
, hasprovs
= 0;
15614 mutex_enter(&dtrace_lock
);
15615 ASSERT(from
->p_dtrace_helpers
!= NULL
);
15616 ASSERT(dtrace_helpers
> 0);
15618 help
= from
->p_dtrace_helpers
;
15619 newhelp
= dtrace_helpers_create(to
);
15620 ASSERT(to
->p_dtrace_helpers
!= NULL
);
15622 newhelp
->dthps_generation
= help
->dthps_generation
;
15623 vstate
= &newhelp
->dthps_vstate
;
15626 * Duplicate the helper actions.
15628 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15629 if ((helper
= help
->dthps_actions
[i
]) == NULL
)
15632 for (last
= NULL
; helper
!= NULL
; helper
= helper
->dtha_next
) {
15633 new = kmem_zalloc(sizeof (dtrace_helper_action_t
),
15635 new->dtha_generation
= helper
->dtha_generation
;
15637 if ((dp
= helper
->dtha_predicate
) != NULL
) {
15638 dp
= dtrace_difo_duplicate(dp
, vstate
);
15639 new->dtha_predicate
= dp
;
15642 new->dtha_nactions
= helper
->dtha_nactions
;
15643 sz
= sizeof (dtrace_difo_t
*) * new->dtha_nactions
;
15644 new->dtha_actions
= kmem_alloc(sz
, KM_SLEEP
);
15646 for (j
= 0; j
< new->dtha_nactions
; j
++) {
15647 dtrace_difo_t
*dp
= helper
->dtha_actions
[j
];
15649 ASSERT(dp
!= NULL
);
15650 dp
= dtrace_difo_duplicate(dp
, vstate
);
15651 new->dtha_actions
[j
] = dp
;
15654 if (last
!= NULL
) {
15655 last
->dtha_next
= new;
15657 newhelp
->dthps_actions
[i
] = new;
15665 * Duplicate the helper providers and register them with the
15666 * DTrace framework.
15668 if (help
->dthps_nprovs
> 0) {
15669 newhelp
->dthps_nprovs
= help
->dthps_nprovs
;
15670 newhelp
->dthps_maxprovs
= help
->dthps_nprovs
;
15671 newhelp
->dthps_provs
= kmem_alloc(newhelp
->dthps_nprovs
*
15672 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15673 for (i
= 0; i
< newhelp
->dthps_nprovs
; i
++) {
15674 newhelp
->dthps_provs
[i
] = help
->dthps_provs
[i
];
15675 newhelp
->dthps_provs
[i
]->dthp_ref
++;
15681 mutex_exit(&dtrace_lock
);
15684 dtrace_helper_provider_register(to
, newhelp
, NULL
);
15688 * DTrace Hook Functions
15691 dtrace_module_loaded(struct modctl
*ctl
)
15693 dtrace_provider_t
*prv
;
15695 mutex_enter(&dtrace_provider_lock
);
15696 mutex_enter(&mod_lock
);
15698 ASSERT(ctl
->mod_busy
);
15701 * We're going to call each providers per-module provide operation
15702 * specifying only this module.
15704 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
15705 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
15707 mutex_exit(&mod_lock
);
15708 mutex_exit(&dtrace_provider_lock
);
15711 * If we have any retained enablings, we need to match against them.
15712 * Enabling probes requires that cpu_lock be held, and we cannot hold
15713 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15714 * module. (In particular, this happens when loading scheduling
15715 * classes.) So if we have any retained enablings, we need to dispatch
15716 * our task queue to do the match for us.
15718 mutex_enter(&dtrace_lock
);
15720 if (dtrace_retained
== NULL
) {
15721 mutex_exit(&dtrace_lock
);
15725 (void) taskq_dispatch(dtrace_taskq
,
15726 (task_func_t
*)dtrace_enabling_matchall
, NULL
, TQ_SLEEP
);
15728 mutex_exit(&dtrace_lock
);
15731 * And now, for a little heuristic sleaze: in general, we want to
15732 * match modules as soon as they load. However, we cannot guarantee
15733 * this, because it would lead us to the lock ordering violation
15734 * outlined above. The common case, of course, is that cpu_lock is
15735 * _not_ held -- so we delay here for a clock tick, hoping that that's
15736 * long enough for the task queue to do its work. If it's not, it's
15737 * not a serious problem -- it just means that the module that we
15738 * just loaded may not be immediately instrumentable.
15744 dtrace_module_unloaded(struct modctl
*ctl
)
15746 dtrace_probe_t
template, *probe
, *first
, *next
;
15747 dtrace_provider_t
*prov
;
15749 template.dtpr_mod
= ctl
->mod_modname
;
15751 mutex_enter(&dtrace_provider_lock
);
15752 mutex_enter(&mod_lock
);
15753 mutex_enter(&dtrace_lock
);
15755 if (dtrace_bymod
== NULL
) {
15757 * The DTrace module is loaded (obviously) but not attached;
15758 * we don't have any work to do.
15760 mutex_exit(&dtrace_provider_lock
);
15761 mutex_exit(&mod_lock
);
15762 mutex_exit(&dtrace_lock
);
15766 for (probe
= first
= dtrace_hash_lookup(dtrace_bymod
, &template);
15767 probe
!= NULL
; probe
= probe
->dtpr_nextmod
) {
15768 if (probe
->dtpr_ecb
!= NULL
) {
15769 mutex_exit(&dtrace_provider_lock
);
15770 mutex_exit(&mod_lock
);
15771 mutex_exit(&dtrace_lock
);
15774 * This shouldn't _actually_ be possible -- we're
15775 * unloading a module that has an enabled probe in it.
15776 * (It's normally up to the provider to make sure that
15777 * this can't happen.) However, because dtps_enable()
15778 * doesn't have a failure mode, there can be an
15779 * enable/unload race. Upshot: we don't want to
15780 * assert, but we're not going to disable the
15783 if (dtrace_err_verbose
) {
15784 cmn_err(CE_WARN
, "unloaded module '%s' had "
15785 "enabled probes", ctl
->mod_modname
);
15794 for (first
= NULL
; probe
!= NULL
; probe
= next
) {
15795 ASSERT(dtrace_probes
[probe
->dtpr_id
- 1] == probe
);
15797 dtrace_probes
[probe
->dtpr_id
- 1] = NULL
;
15799 next
= probe
->dtpr_nextmod
;
15800 dtrace_hash_remove(dtrace_bymod
, probe
);
15801 dtrace_hash_remove(dtrace_byfunc
, probe
);
15802 dtrace_hash_remove(dtrace_byname
, probe
);
15804 if (first
== NULL
) {
15806 probe
->dtpr_nextmod
= NULL
;
15808 probe
->dtpr_nextmod
= first
;
15814 * We've removed all of the module's probes from the hash chains and
15815 * from the probe array. Now issue a dtrace_sync() to be sure that
15816 * everyone has cleared out from any probe array processing.
15820 for (probe
= first
; probe
!= NULL
; probe
= first
) {
15821 first
= probe
->dtpr_nextmod
;
15822 prov
= probe
->dtpr_provider
;
15823 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, probe
->dtpr_id
,
15825 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
15826 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
15827 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
15828 vmem_free(dtrace_arena
, (void *)(uintptr_t)probe
->dtpr_id
, 1);
15829 kmem_free(probe
, sizeof (dtrace_probe_t
));
15832 mutex_exit(&dtrace_lock
);
15833 mutex_exit(&mod_lock
);
15834 mutex_exit(&dtrace_provider_lock
);
15838 dtrace_suspend(void)
15840 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_suspend
));
15844 dtrace_resume(void)
15846 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_resume
));
15850 dtrace_cpu_setup(cpu_setup_t what
, processorid_t cpu
)
15852 ASSERT(MUTEX_HELD(&cpu_lock
));
15853 mutex_enter(&dtrace_lock
);
15857 dtrace_state_t
*state
;
15858 dtrace_optval_t
*opt
, rs
, c
;
15861 * For now, we only allocate a new buffer for anonymous state.
15863 if ((state
= dtrace_anon
.dta_state
) == NULL
)
15866 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
15869 opt
= state
->dts_options
;
15870 c
= opt
[DTRACEOPT_CPU
];
15872 if (c
!= DTRACE_CPUALL
&& c
!= DTRACEOPT_UNSET
&& c
!= cpu
)
15876 * Regardless of what the actual policy is, we're going to
15877 * temporarily set our resize policy to be manual. We're
15878 * also going to temporarily set our CPU option to denote
15879 * the newly configured CPU.
15881 rs
= opt
[DTRACEOPT_BUFRESIZE
];
15882 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_MANUAL
;
15883 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)cpu
;
15885 (void) dtrace_state_buffers(state
);
15887 opt
[DTRACEOPT_BUFRESIZE
] = rs
;
15888 opt
[DTRACEOPT_CPU
] = c
;
15895 * We don't free the buffer in the CPU_UNCONFIG case. (The
15896 * buffer will be freed when the consumer exits.)
15904 mutex_exit(&dtrace_lock
);
15909 dtrace_cpu_setup_initial(processorid_t cpu
)
15911 (void) dtrace_cpu_setup(CPU_CONFIG
, cpu
);
15915 dtrace_toxrange_add(uintptr_t base
, uintptr_t limit
)
15917 if (dtrace_toxranges
>= dtrace_toxranges_max
) {
15919 dtrace_toxrange_t
*range
;
15921 osize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15924 ASSERT(dtrace_toxrange
== NULL
);
15925 ASSERT(dtrace_toxranges_max
== 0);
15926 dtrace_toxranges_max
= 1;
15928 dtrace_toxranges_max
<<= 1;
15931 nsize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
15932 range
= kmem_zalloc(nsize
, KM_SLEEP
);
15934 if (dtrace_toxrange
!= NULL
) {
15935 ASSERT(osize
!= 0);
15936 bcopy(dtrace_toxrange
, range
, osize
);
15937 kmem_free(dtrace_toxrange
, osize
);
15940 dtrace_toxrange
= range
;
15943 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_base
== (uintptr_t)NULL
);
15944 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_limit
== (uintptr_t)NULL
);
15946 dtrace_toxrange
[dtrace_toxranges
].dtt_base
= base
;
15947 dtrace_toxrange
[dtrace_toxranges
].dtt_limit
= limit
;
15948 dtrace_toxranges
++;
15952 dtrace_getf_barrier()
15955 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15956 * that contain calls to getf(), this routine will be called on every
15957 * closef() before either the underlying vnode is released or the
15958 * file_t itself is freed. By the time we are here, it is essential
15959 * that the file_t can no longer be accessed from a call to getf()
15960 * in probe context -- that assures that a dtrace_sync() can be used
15961 * to clear out any enablings referring to the old structures.
15963 if (curthread
->t_procp
->p_zone
->zone_dtrace_getf
!= 0 ||
15964 kcred
->cr_zone
->zone_dtrace_getf
!= 0)
15969 * DTrace Driver Cookbook Functions
15973 dtrace_attach(dev_info_t
*devi
, ddi_attach_cmd_t cmd
)
15975 dtrace_provider_id_t id
;
15976 dtrace_state_t
*state
= NULL
;
15977 dtrace_enabling_t
*enab
;
15979 mutex_enter(&cpu_lock
);
15980 mutex_enter(&dtrace_provider_lock
);
15981 mutex_enter(&dtrace_lock
);
15983 if (ddi_soft_state_init(&dtrace_softstate
,
15984 sizeof (dtrace_state_t
), 0) != 0) {
15985 cmn_err(CE_NOTE
, "/dev/dtrace failed to initialize soft state");
15986 mutex_exit(&cpu_lock
);
15987 mutex_exit(&dtrace_provider_lock
);
15988 mutex_exit(&dtrace_lock
);
15989 return (DDI_FAILURE
);
15992 if (ddi_create_minor_node(devi
, DTRACEMNR_DTRACE
, S_IFCHR
,
15993 DTRACEMNRN_DTRACE
, DDI_PSEUDO
, 0) == DDI_FAILURE
||
15994 ddi_create_minor_node(devi
, DTRACEMNR_HELPER
, S_IFCHR
,
15995 DTRACEMNRN_HELPER
, DDI_PSEUDO
, 0) == DDI_FAILURE
) {
15996 cmn_err(CE_NOTE
, "/dev/dtrace couldn't create minor nodes");
15997 ddi_remove_minor_node(devi
, NULL
);
15998 ddi_soft_state_fini(&dtrace_softstate
);
15999 mutex_exit(&cpu_lock
);
16000 mutex_exit(&dtrace_provider_lock
);
16001 mutex_exit(&dtrace_lock
);
16002 return (DDI_FAILURE
);
16005 ddi_report_dev(devi
);
16006 dtrace_devi
= devi
;
16008 dtrace_modload
= dtrace_module_loaded
;
16009 dtrace_modunload
= dtrace_module_unloaded
;
16010 dtrace_cpu_init
= dtrace_cpu_setup_initial
;
16011 dtrace_helpers_cleanup
= dtrace_helpers_destroy
;
16012 dtrace_helpers_fork
= dtrace_helpers_duplicate
;
16013 dtrace_cpustart_init
= dtrace_suspend
;
16014 dtrace_cpustart_fini
= dtrace_resume
;
16015 dtrace_debugger_init
= dtrace_suspend
;
16016 dtrace_debugger_fini
= dtrace_resume
;
16018 register_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
16020 ASSERT(MUTEX_HELD(&cpu_lock
));
16022 dtrace_arena
= vmem_create("dtrace", (void *)1, UINT32_MAX
, 1,
16023 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
16024 dtrace_minor
= vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE
,
16025 UINT32_MAX
- DTRACEMNRN_CLONE
, 1, NULL
, NULL
, NULL
, 0,
16026 VM_SLEEP
| VMC_IDENTIFIER
);
16027 dtrace_taskq
= taskq_create("dtrace_taskq", 1, maxclsyspri
,
16030 dtrace_state_cache
= kmem_cache_create("dtrace_state_cache",
16031 sizeof (dtrace_dstate_percpu_t
) * NCPU
, DTRACE_STATE_ALIGN
,
16032 NULL
, NULL
, NULL
, NULL
, NULL
, 0);
16034 ASSERT(MUTEX_HELD(&cpu_lock
));
16035 dtrace_bymod
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_mod
),
16036 offsetof(dtrace_probe_t
, dtpr_nextmod
),
16037 offsetof(dtrace_probe_t
, dtpr_prevmod
));
16039 dtrace_byfunc
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_func
),
16040 offsetof(dtrace_probe_t
, dtpr_nextfunc
),
16041 offsetof(dtrace_probe_t
, dtpr_prevfunc
));
16043 dtrace_byname
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_name
),
16044 offsetof(dtrace_probe_t
, dtpr_nextname
),
16045 offsetof(dtrace_probe_t
, dtpr_prevname
));
16047 if (dtrace_retain_max
< 1) {
16048 cmn_err(CE_WARN
, "illegal value (%lu) for dtrace_retain_max; "
16049 "setting to 1", dtrace_retain_max
);
16050 dtrace_retain_max
= 1;
16054 * Now discover our toxic ranges.
16056 dtrace_toxic_ranges(dtrace_toxrange_add
);
16059 * Before we register ourselves as a provider to our own framework,
16060 * we would like to assert that dtrace_provider is NULL -- but that's
16061 * not true if we were loaded as a dependency of a DTrace provider.
16062 * Once we've registered, we can assert that dtrace_provider is our
16065 (void) dtrace_register("dtrace", &dtrace_provider_attr
,
16066 DTRACE_PRIV_NONE
, 0, &dtrace_provider_ops
, NULL
, &id
);
16068 ASSERT(dtrace_provider
!= NULL
);
16069 ASSERT((dtrace_provider_id_t
)dtrace_provider
== id
);
16071 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16072 dtrace_provider
, NULL
, NULL
, "BEGIN", 0, NULL
);
16073 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16074 dtrace_provider
, NULL
, NULL
, "END", 0, NULL
);
16075 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16076 dtrace_provider
, NULL
, NULL
, "ERROR", 1, NULL
);
16078 dtrace_anon_property();
16079 mutex_exit(&cpu_lock
);
16082 * If there are already providers, we must ask them to provide their
16083 * probes, and then match any anonymous enabling against them. Note
16084 * that there should be no other retained enablings at this time:
16085 * the only retained enablings at this time should be the anonymous
16088 if (dtrace_anon
.dta_enabling
!= NULL
) {
16089 ASSERT(dtrace_retained
== dtrace_anon
.dta_enabling
);
16091 dtrace_enabling_provide(NULL
);
16092 state
= dtrace_anon
.dta_state
;
16095 * We couldn't hold cpu_lock across the above call to
16096 * dtrace_enabling_provide(), but we must hold it to actually
16097 * enable the probes. We have to drop all of our locks, pick
16098 * up cpu_lock, and regain our locks before matching the
16099 * retained anonymous enabling.
16101 mutex_exit(&dtrace_lock
);
16102 mutex_exit(&dtrace_provider_lock
);
16104 mutex_enter(&cpu_lock
);
16105 mutex_enter(&dtrace_provider_lock
);
16106 mutex_enter(&dtrace_lock
);
16108 if ((enab
= dtrace_anon
.dta_enabling
) != NULL
)
16109 (void) dtrace_enabling_match(enab
, NULL
);
16111 mutex_exit(&cpu_lock
);
16114 mutex_exit(&dtrace_lock
);
16115 mutex_exit(&dtrace_provider_lock
);
16117 if (state
!= NULL
) {
16119 * If we created any anonymous state, set it going now.
16121 (void) dtrace_state_go(state
, &dtrace_anon
.dta_beganon
);
16124 return (DDI_SUCCESS
);
16129 dtrace_open(dev_t
*devp
, int flag
, int otyp
, cred_t
*cred_p
)
16131 dtrace_state_t
*state
;
16136 if (getminor(*devp
) == DTRACEMNRN_HELPER
)
16140 * If this wasn't an open with the "helper" minor, then it must be
16141 * the "dtrace" minor.
16143 if (getminor(*devp
) != DTRACEMNRN_DTRACE
)
16147 * If no DTRACE_PRIV_* bits are set in the credential, then the
16148 * caller lacks sufficient permission to do anything with DTrace.
16150 dtrace_cred2priv(cred_p
, &priv
, &uid
, &zoneid
);
16151 if (priv
== DTRACE_PRIV_NONE
)
16155 * Ask all providers to provide all their probes.
16157 mutex_enter(&dtrace_provider_lock
);
16158 dtrace_probe_provide(NULL
, NULL
);
16159 mutex_exit(&dtrace_provider_lock
);
16161 mutex_enter(&cpu_lock
);
16162 mutex_enter(&dtrace_lock
);
16164 dtrace_membar_producer();
16167 * If the kernel debugger is active (that is, if the kernel debugger
16168 * modified text in some way), we won't allow the open.
16170 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
16172 mutex_exit(&cpu_lock
);
16173 mutex_exit(&dtrace_lock
);
16177 if (dtrace_helptrace_enable
&& dtrace_helptrace_buffer
== NULL
) {
16179 * If DTrace helper tracing is enabled, we need to allocate the
16180 * trace buffer and initialize the values.
16182 dtrace_helptrace_buffer
=
16183 kmem_zalloc(dtrace_helptrace_bufsize
, KM_SLEEP
);
16184 dtrace_helptrace_next
= 0;
16185 dtrace_helptrace_wrapped
= 0;
16186 dtrace_helptrace_enable
= 0;
16189 state
= dtrace_state_create(devp
, cred_p
);
16190 mutex_exit(&cpu_lock
);
16192 if (state
== NULL
) {
16193 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16194 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16195 mutex_exit(&dtrace_lock
);
16199 mutex_exit(&dtrace_lock
);
16206 dtrace_close(dev_t dev
, int flag
, int otyp
, cred_t
*cred_p
)
16208 minor_t minor
= getminor(dev
);
16209 dtrace_state_t
*state
;
16210 dtrace_helptrace_t
*buf
= NULL
;
16212 if (minor
== DTRACEMNRN_HELPER
)
16215 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
16217 mutex_enter(&cpu_lock
);
16218 mutex_enter(&dtrace_lock
);
16220 if (state
->dts_anon
) {
16222 * There is anonymous state. Destroy that first.
16224 ASSERT(dtrace_anon
.dta_state
== NULL
);
16225 dtrace_state_destroy(state
->dts_anon
);
16228 if (dtrace_helptrace_disable
) {
16230 * If we have been told to disable helper tracing, set the
16231 * buffer to NULL before calling into dtrace_state_destroy();
16232 * we take advantage of its dtrace_sync() to know that no
16233 * CPU is in probe context with enabled helper tracing
16234 * after it returns.
16236 buf
= dtrace_helptrace_buffer
;
16237 dtrace_helptrace_buffer
= NULL
;
16240 dtrace_state_destroy(state
);
16241 ASSERT(dtrace_opens
> 0);
16244 * Only relinquish control of the kernel debugger interface when there
16245 * are no consumers and no anonymous enablings.
16247 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16248 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16251 kmem_free(buf
, dtrace_helptrace_bufsize
);
16252 dtrace_helptrace_disable
= 0;
16255 mutex_exit(&dtrace_lock
);
16256 mutex_exit(&cpu_lock
);
16263 dtrace_ioctl_helper(int cmd
, intptr_t arg
, int *rv
)
16266 dof_helper_t help
, *dhp
= NULL
;
16269 case DTRACEHIOC_ADDDOF
:
16270 if (copyin((void *)arg
, &help
, sizeof (help
)) != 0) {
16271 dtrace_dof_error(NULL
, "failed to copyin DOF helper");
16276 arg
= (intptr_t)help
.dofhp_dof
;
16279 case DTRACEHIOC_ADD
: {
16280 dof_hdr_t
*dof
= dtrace_dof_copyin(arg
, &rval
);
16285 mutex_enter(&dtrace_lock
);
16288 * dtrace_helper_slurp() takes responsibility for the dof --
16289 * it may free it now or it may save it and free it later.
16291 if ((rval
= dtrace_helper_slurp(dof
, dhp
)) != -1) {
16298 mutex_exit(&dtrace_lock
);
16302 case DTRACEHIOC_REMOVE
: {
16303 mutex_enter(&dtrace_lock
);
16304 rval
= dtrace_helper_destroygen(arg
);
16305 mutex_exit(&dtrace_lock
);
16319 dtrace_ioctl(dev_t dev
, int cmd
, intptr_t arg
, int md
, cred_t
*cr
, int *rv
)
16321 minor_t minor
= getminor(dev
);
16322 dtrace_state_t
*state
;
16325 if (minor
== DTRACEMNRN_HELPER
)
16326 return (dtrace_ioctl_helper(cmd
, arg
, rv
));
16328 state
= ddi_get_soft_state(dtrace_softstate
, minor
);
16330 if (state
->dts_anon
) {
16331 ASSERT(dtrace_anon
.dta_state
== NULL
);
16332 state
= state
->dts_anon
;
16336 case DTRACEIOC_PROVIDER
: {
16337 dtrace_providerdesc_t pvd
;
16338 dtrace_provider_t
*pvp
;
16340 if (copyin((void *)arg
, &pvd
, sizeof (pvd
)) != 0)
16343 pvd
.dtvd_name
[DTRACE_PROVNAMELEN
- 1] = '\0';
16344 mutex_enter(&dtrace_provider_lock
);
16346 for (pvp
= dtrace_provider
; pvp
!= NULL
; pvp
= pvp
->dtpv_next
) {
16347 if (strcmp(pvp
->dtpv_name
, pvd
.dtvd_name
) == 0)
16351 mutex_exit(&dtrace_provider_lock
);
16356 bcopy(&pvp
->dtpv_priv
, &pvd
.dtvd_priv
, sizeof (dtrace_ppriv_t
));
16357 bcopy(&pvp
->dtpv_attr
, &pvd
.dtvd_attr
, sizeof (dtrace_pattr_t
));
16358 if (copyout(&pvd
, (void *)arg
, sizeof (pvd
)) != 0)
16364 case DTRACEIOC_EPROBE
: {
16365 dtrace_eprobedesc_t epdesc
;
16367 dtrace_action_t
*act
;
16373 if (copyin((void *)arg
, &epdesc
, sizeof (epdesc
)) != 0)
16376 mutex_enter(&dtrace_lock
);
16378 if ((ecb
= dtrace_epid2ecb(state
, epdesc
.dtepd_epid
)) == NULL
) {
16379 mutex_exit(&dtrace_lock
);
16383 if (ecb
->dte_probe
== NULL
) {
16384 mutex_exit(&dtrace_lock
);
16388 epdesc
.dtepd_probeid
= ecb
->dte_probe
->dtpr_id
;
16389 epdesc
.dtepd_uarg
= ecb
->dte_uarg
;
16390 epdesc
.dtepd_size
= ecb
->dte_size
;
16392 nrecs
= epdesc
.dtepd_nrecs
;
16393 epdesc
.dtepd_nrecs
= 0;
16394 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16395 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16398 epdesc
.dtepd_nrecs
++;
16402 * Now that we have the size, we need to allocate a temporary
16403 * buffer in which to store the complete description. We need
16404 * the temporary buffer to be able to drop dtrace_lock()
16405 * across the copyout(), below.
16407 size
= sizeof (dtrace_eprobedesc_t
) +
16408 (epdesc
.dtepd_nrecs
* sizeof (dtrace_recdesc_t
));
16410 buf
= kmem_alloc(size
, KM_SLEEP
);
16411 dest
= (uintptr_t)buf
;
16413 bcopy(&epdesc
, (void *)dest
, sizeof (epdesc
));
16414 dest
+= offsetof(dtrace_eprobedesc_t
, dtepd_rec
[0]);
16416 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16417 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16423 bcopy(&act
->dta_rec
, (void *)dest
,
16424 sizeof (dtrace_recdesc_t
));
16425 dest
+= sizeof (dtrace_recdesc_t
);
16428 mutex_exit(&dtrace_lock
);
16430 if (copyout(buf
, (void *)arg
, dest
- (uintptr_t)buf
) != 0) {
16431 kmem_free(buf
, size
);
16435 kmem_free(buf
, size
);
16439 case DTRACEIOC_AGGDESC
: {
16440 dtrace_aggdesc_t aggdesc
;
16441 dtrace_action_t
*act
;
16442 dtrace_aggregation_t
*agg
;
16445 dtrace_recdesc_t
*lrec
;
16450 if (copyin((void *)arg
, &aggdesc
, sizeof (aggdesc
)) != 0)
16453 mutex_enter(&dtrace_lock
);
16455 if ((agg
= dtrace_aggid2agg(state
, aggdesc
.dtagd_id
)) == NULL
) {
16456 mutex_exit(&dtrace_lock
);
16460 aggdesc
.dtagd_epid
= agg
->dtag_ecb
->dte_epid
;
16462 nrecs
= aggdesc
.dtagd_nrecs
;
16463 aggdesc
.dtagd_nrecs
= 0;
16465 offs
= agg
->dtag_base
;
16466 lrec
= &agg
->dtag_action
.dta_rec
;
16467 aggdesc
.dtagd_size
= lrec
->dtrd_offset
+ lrec
->dtrd_size
- offs
;
16469 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16470 ASSERT(act
->dta_intuple
||
16471 DTRACEACT_ISAGG(act
->dta_kind
));
16474 * If this action has a record size of zero, it
16475 * denotes an argument to the aggregating action.
16476 * Because the presence of this record doesn't (or
16477 * shouldn't) affect the way the data is interpreted,
16478 * we don't copy it out to save user-level the
16479 * confusion of dealing with a zero-length record.
16481 if (act
->dta_rec
.dtrd_size
== 0) {
16482 ASSERT(agg
->dtag_hasarg
);
16486 aggdesc
.dtagd_nrecs
++;
16488 if (act
== &agg
->dtag_action
)
16493 * Now that we have the size, we need to allocate a temporary
16494 * buffer in which to store the complete description. We need
16495 * the temporary buffer to be able to drop dtrace_lock()
16496 * across the copyout(), below.
16498 size
= sizeof (dtrace_aggdesc_t
) +
16499 (aggdesc
.dtagd_nrecs
* sizeof (dtrace_recdesc_t
));
16501 buf
= kmem_alloc(size
, KM_SLEEP
);
16502 dest
= (uintptr_t)buf
;
16504 bcopy(&aggdesc
, (void *)dest
, sizeof (aggdesc
));
16505 dest
+= offsetof(dtrace_aggdesc_t
, dtagd_rec
[0]);
16507 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16508 dtrace_recdesc_t rec
= act
->dta_rec
;
16511 * See the comment in the above loop for why we pass
16512 * over zero-length records.
16514 if (rec
.dtrd_size
== 0) {
16515 ASSERT(agg
->dtag_hasarg
);
16522 rec
.dtrd_offset
-= offs
;
16523 bcopy(&rec
, (void *)dest
, sizeof (rec
));
16524 dest
+= sizeof (dtrace_recdesc_t
);
16526 if (act
== &agg
->dtag_action
)
16530 mutex_exit(&dtrace_lock
);
16532 if (copyout(buf
, (void *)arg
, dest
- (uintptr_t)buf
) != 0) {
16533 kmem_free(buf
, size
);
16537 kmem_free(buf
, size
);
16541 case DTRACEIOC_ENABLE
: {
16543 dtrace_enabling_t
*enab
= NULL
;
16544 dtrace_vstate_t
*vstate
;
16550 * If a NULL argument has been passed, we take this as our
16551 * cue to reevaluate our enablings.
16553 if (arg
== (intptr_t)NULL
) {
16554 dtrace_enabling_matchall();
16559 if ((dof
= dtrace_dof_copyin(arg
, &rval
)) == NULL
)
16562 mutex_enter(&cpu_lock
);
16563 mutex_enter(&dtrace_lock
);
16564 vstate
= &state
->dts_vstate
;
16566 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
16567 mutex_exit(&dtrace_lock
);
16568 mutex_exit(&cpu_lock
);
16569 dtrace_dof_destroy(dof
);
16573 if (dtrace_dof_slurp(dof
, vstate
, cr
, &enab
, 0, B_TRUE
) != 0) {
16574 mutex_exit(&dtrace_lock
);
16575 mutex_exit(&cpu_lock
);
16576 dtrace_dof_destroy(dof
);
16580 if ((rval
= dtrace_dof_options(dof
, state
)) != 0) {
16581 dtrace_enabling_destroy(enab
);
16582 mutex_exit(&dtrace_lock
);
16583 mutex_exit(&cpu_lock
);
16584 dtrace_dof_destroy(dof
);
16588 if ((err
= dtrace_enabling_match(enab
, rv
)) == 0) {
16589 err
= dtrace_enabling_retain(enab
);
16591 dtrace_enabling_destroy(enab
);
16594 mutex_exit(&cpu_lock
);
16595 mutex_exit(&dtrace_lock
);
16596 dtrace_dof_destroy(dof
);
16601 case DTRACEIOC_REPLICATE
: {
16602 dtrace_repldesc_t desc
;
16603 dtrace_probedesc_t
*match
= &desc
.dtrpd_match
;
16604 dtrace_probedesc_t
*create
= &desc
.dtrpd_create
;
16607 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16610 match
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16611 match
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16612 match
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16613 match
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16615 create
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16616 create
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16617 create
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16618 create
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16620 mutex_enter(&dtrace_lock
);
16621 err
= dtrace_enabling_replicate(state
, match
, create
);
16622 mutex_exit(&dtrace_lock
);
16627 case DTRACEIOC_PROBEMATCH
:
16628 case DTRACEIOC_PROBES
: {
16629 dtrace_probe_t
*probe
= NULL
;
16630 dtrace_probedesc_t desc
;
16631 dtrace_probekey_t pkey
;
16638 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16641 desc
.dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
16642 desc
.dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
16643 desc
.dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
16644 desc
.dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
16647 * Before we attempt to match this probe, we want to give
16648 * all providers the opportunity to provide it.
16650 if (desc
.dtpd_id
== DTRACE_IDNONE
) {
16651 mutex_enter(&dtrace_provider_lock
);
16652 dtrace_probe_provide(&desc
, NULL
);
16653 mutex_exit(&dtrace_provider_lock
);
16657 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16658 dtrace_probekey(&desc
, &pkey
);
16659 pkey
.dtpk_id
= DTRACE_IDNONE
;
16662 dtrace_cred2priv(cr
, &priv
, &uid
, &zoneid
);
16664 mutex_enter(&dtrace_lock
);
16666 if (cmd
== DTRACEIOC_PROBEMATCH
) {
16667 for (i
= desc
.dtpd_id
; i
<= dtrace_nprobes
; i
++) {
16668 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16669 (m
= dtrace_match_probe(probe
, &pkey
,
16670 priv
, uid
, zoneid
)) != 0)
16675 mutex_exit(&dtrace_lock
);
16680 for (i
= desc
.dtpd_id
; i
<= dtrace_nprobes
; i
++) {
16681 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
16682 dtrace_match_priv(probe
, priv
, uid
, zoneid
))
16687 if (probe
== NULL
) {
16688 mutex_exit(&dtrace_lock
);
16692 dtrace_probe_description(probe
, &desc
);
16693 mutex_exit(&dtrace_lock
);
16695 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16701 case DTRACEIOC_PROBEARG
: {
16702 dtrace_argdesc_t desc
;
16703 dtrace_probe_t
*probe
;
16704 dtrace_provider_t
*prov
;
16706 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16709 if (desc
.dtargd_id
== DTRACE_IDNONE
)
16712 if (desc
.dtargd_ndx
== DTRACE_ARGNONE
)
16715 mutex_enter(&dtrace_provider_lock
);
16716 mutex_enter(&mod_lock
);
16717 mutex_enter(&dtrace_lock
);
16719 if (desc
.dtargd_id
> dtrace_nprobes
) {
16720 mutex_exit(&dtrace_lock
);
16721 mutex_exit(&mod_lock
);
16722 mutex_exit(&dtrace_provider_lock
);
16726 if ((probe
= dtrace_probes
[desc
.dtargd_id
- 1]) == NULL
) {
16727 mutex_exit(&dtrace_lock
);
16728 mutex_exit(&mod_lock
);
16729 mutex_exit(&dtrace_provider_lock
);
16733 mutex_exit(&dtrace_lock
);
16735 prov
= probe
->dtpr_provider
;
16737 if (prov
->dtpv_pops
.dtps_getargdesc
== NULL
) {
16739 * There isn't any typed information for this probe.
16740 * Set the argument number to DTRACE_ARGNONE.
16742 desc
.dtargd_ndx
= DTRACE_ARGNONE
;
16744 desc
.dtargd_native
[0] = '\0';
16745 desc
.dtargd_xlate
[0] = '\0';
16746 desc
.dtargd_mapping
= desc
.dtargd_ndx
;
16748 prov
->dtpv_pops
.dtps_getargdesc(prov
->dtpv_arg
,
16749 probe
->dtpr_id
, probe
->dtpr_arg
, &desc
);
16752 mutex_exit(&mod_lock
);
16753 mutex_exit(&dtrace_provider_lock
);
16755 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16761 case DTRACEIOC_GO
: {
16762 processorid_t cpuid
;
16763 rval
= dtrace_state_go(state
, &cpuid
);
16768 if (copyout(&cpuid
, (void *)arg
, sizeof (cpuid
)) != 0)
16774 case DTRACEIOC_STOP
: {
16775 processorid_t cpuid
;
16777 mutex_enter(&dtrace_lock
);
16778 rval
= dtrace_state_stop(state
, &cpuid
);
16779 mutex_exit(&dtrace_lock
);
16784 if (copyout(&cpuid
, (void *)arg
, sizeof (cpuid
)) != 0)
16790 case DTRACEIOC_DOFGET
: {
16791 dof_hdr_t hdr
, *dof
;
16794 if (copyin((void *)arg
, &hdr
, sizeof (hdr
)) != 0)
16797 mutex_enter(&dtrace_lock
);
16798 dof
= dtrace_dof_create(state
);
16799 mutex_exit(&dtrace_lock
);
16801 len
= MIN(hdr
.dofh_loadsz
, dof
->dofh_loadsz
);
16802 rval
= copyout(dof
, (void *)arg
, len
);
16803 dtrace_dof_destroy(dof
);
16805 return (rval
== 0 ? 0 : EFAULT
);
16808 case DTRACEIOC_AGGSNAP
:
16809 case DTRACEIOC_BUFSNAP
: {
16810 dtrace_bufdesc_t desc
;
16812 dtrace_buffer_t
*buf
;
16814 if (copyin((void *)arg
, &desc
, sizeof (desc
)) != 0)
16817 if (desc
.dtbd_cpu
< 0 || desc
.dtbd_cpu
>= NCPU
)
16820 mutex_enter(&dtrace_lock
);
16822 if (cmd
== DTRACEIOC_BUFSNAP
) {
16823 buf
= &state
->dts_buffer
[desc
.dtbd_cpu
];
16825 buf
= &state
->dts_aggbuffer
[desc
.dtbd_cpu
];
16828 if (buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
)) {
16829 size_t sz
= buf
->dtb_offset
;
16831 if (state
->dts_activity
!= DTRACE_ACTIVITY_STOPPED
) {
16832 mutex_exit(&dtrace_lock
);
16837 * If this buffer has already been consumed, we're
16838 * going to indicate that there's nothing left here
16841 if (buf
->dtb_flags
& DTRACEBUF_CONSUMED
) {
16842 mutex_exit(&dtrace_lock
);
16844 desc
.dtbd_size
= 0;
16845 desc
.dtbd_drops
= 0;
16846 desc
.dtbd_errors
= 0;
16847 desc
.dtbd_oldest
= 0;
16848 sz
= sizeof (desc
);
16850 if (copyout(&desc
, (void *)arg
, sz
) != 0)
16857 * If this is a ring buffer that has wrapped, we want
16858 * to copy the whole thing out.
16860 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
16861 dtrace_buffer_polish(buf
);
16862 sz
= buf
->dtb_size
;
16865 if (copyout(buf
->dtb_tomax
, desc
.dtbd_data
, sz
) != 0) {
16866 mutex_exit(&dtrace_lock
);
16870 desc
.dtbd_size
= sz
;
16871 desc
.dtbd_drops
= buf
->dtb_drops
;
16872 desc
.dtbd_errors
= buf
->dtb_errors
;
16873 desc
.dtbd_oldest
= buf
->dtb_xamot_offset
;
16874 desc
.dtbd_timestamp
= dtrace_gethrtime();
16876 mutex_exit(&dtrace_lock
);
16878 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16881 buf
->dtb_flags
|= DTRACEBUF_CONSUMED
;
16886 if (buf
->dtb_tomax
== NULL
) {
16887 ASSERT(buf
->dtb_xamot
== NULL
);
16888 mutex_exit(&dtrace_lock
);
16892 cached
= buf
->dtb_tomax
;
16893 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
16895 dtrace_xcall(desc
.dtbd_cpu
,
16896 (dtrace_xcall_t
)dtrace_buffer_switch
, buf
);
16898 state
->dts_errors
+= buf
->dtb_xamot_errors
;
16901 * If the buffers did not actually switch, then the cross call
16902 * did not take place -- presumably because the given CPU is
16903 * not in the ready set. If this is the case, we'll return
16906 if (buf
->dtb_tomax
== cached
) {
16907 ASSERT(buf
->dtb_xamot
!= cached
);
16908 mutex_exit(&dtrace_lock
);
16912 ASSERT(cached
== buf
->dtb_xamot
);
16915 * We have our snapshot; now copy it out.
16917 if (copyout(buf
->dtb_xamot
, desc
.dtbd_data
,
16918 buf
->dtb_xamot_offset
) != 0) {
16919 mutex_exit(&dtrace_lock
);
16923 desc
.dtbd_size
= buf
->dtb_xamot_offset
;
16924 desc
.dtbd_drops
= buf
->dtb_xamot_drops
;
16925 desc
.dtbd_errors
= buf
->dtb_xamot_errors
;
16926 desc
.dtbd_oldest
= 0;
16927 desc
.dtbd_timestamp
= buf
->dtb_switched
;
16929 mutex_exit(&dtrace_lock
);
16932 * Finally, copy out the buffer description.
16934 if (copyout(&desc
, (void *)arg
, sizeof (desc
)) != 0)
16940 case DTRACEIOC_CONF
: {
16941 dtrace_conf_t conf
;
16943 bzero(&conf
, sizeof (conf
));
16944 conf
.dtc_difversion
= DIF_VERSION
;
16945 conf
.dtc_difintregs
= DIF_DIR_NREGS
;
16946 conf
.dtc_diftupregs
= DIF_DTR_NREGS
;
16947 conf
.dtc_ctfmodel
= CTF_MODEL_NATIVE
;
16949 if (copyout(&conf
, (void *)arg
, sizeof (conf
)) != 0)
16955 case DTRACEIOC_STATUS
: {
16956 dtrace_status_t stat
;
16957 dtrace_dstate_t
*dstate
;
16962 * See the comment in dtrace_state_deadman() for the reason
16963 * for setting dts_laststatus to INT64_MAX before setting
16964 * it to the correct value.
16966 state
->dts_laststatus
= INT64_MAX
;
16967 dtrace_membar_producer();
16968 state
->dts_laststatus
= dtrace_gethrtime();
16970 bzero(&stat
, sizeof (stat
));
16972 mutex_enter(&dtrace_lock
);
16974 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
) {
16975 mutex_exit(&dtrace_lock
);
16979 if (state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
)
16980 stat
.dtst_exiting
= 1;
16982 nerrs
= state
->dts_errors
;
16983 dstate
= &state
->dts_vstate
.dtvs_dynvars
;
16985 for (i
= 0; i
< NCPU
; i
++) {
16986 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[i
];
16988 stat
.dtst_dyndrops
+= dcpu
->dtdsc_drops
;
16989 stat
.dtst_dyndrops_dirty
+= dcpu
->dtdsc_dirty_drops
;
16990 stat
.dtst_dyndrops_rinsing
+= dcpu
->dtdsc_rinsing_drops
;
16992 if (state
->dts_buffer
[i
].dtb_flags
& DTRACEBUF_FULL
)
16993 stat
.dtst_filled
++;
16995 nerrs
+= state
->dts_buffer
[i
].dtb_errors
;
16997 for (j
= 0; j
< state
->dts_nspeculations
; j
++) {
16998 dtrace_speculation_t
*spec
;
16999 dtrace_buffer_t
*buf
;
17001 spec
= &state
->dts_speculations
[j
];
17002 buf
= &spec
->dtsp_buffer
[i
];
17003 stat
.dtst_specdrops
+= buf
->dtb_xamot_drops
;
17007 stat
.dtst_specdrops_busy
= state
->dts_speculations_busy
;
17008 stat
.dtst_specdrops_unavail
= state
->dts_speculations_unavail
;
17009 stat
.dtst_stkstroverflows
= state
->dts_stkstroverflows
;
17010 stat
.dtst_dblerrors
= state
->dts_dblerrors
;
17012 (state
->dts_activity
== DTRACE_ACTIVITY_KILLED
);
17013 stat
.dtst_errors
= nerrs
;
17015 mutex_exit(&dtrace_lock
);
17017 if (copyout(&stat
, (void *)arg
, sizeof (stat
)) != 0)
17023 case DTRACEIOC_FORMAT
: {
17024 dtrace_fmtdesc_t fmt
;
17028 if (copyin((void *)arg
, &fmt
, sizeof (fmt
)) != 0)
17031 mutex_enter(&dtrace_lock
);
17033 if (fmt
.dtfd_format
== 0 ||
17034 fmt
.dtfd_format
> state
->dts_nformats
) {
17035 mutex_exit(&dtrace_lock
);
17040 * Format strings are allocated contiguously and they are
17041 * never freed; if a format index is less than the number
17042 * of formats, we can assert that the format map is non-NULL
17043 * and that the format for the specified index is non-NULL.
17045 ASSERT(state
->dts_formats
!= NULL
);
17046 str
= state
->dts_formats
[fmt
.dtfd_format
- 1];
17047 ASSERT(str
!= NULL
);
17049 len
= strlen(str
) + 1;
17051 if (len
> fmt
.dtfd_length
) {
17052 fmt
.dtfd_length
= len
;
17054 if (copyout(&fmt
, (void *)arg
, sizeof (fmt
)) != 0) {
17055 mutex_exit(&dtrace_lock
);
17059 if (copyout(str
, fmt
.dtfd_string
, len
) != 0) {
17060 mutex_exit(&dtrace_lock
);
17065 mutex_exit(&dtrace_lock
);
17078 dtrace_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
17080 dtrace_state_t
*state
;
17087 return (DDI_SUCCESS
);
17090 return (DDI_FAILURE
);
17093 mutex_enter(&cpu_lock
);
17094 mutex_enter(&dtrace_provider_lock
);
17095 mutex_enter(&dtrace_lock
);
17097 ASSERT(dtrace_opens
== 0);
17099 if (dtrace_helpers
> 0) {
17100 mutex_exit(&dtrace_provider_lock
);
17101 mutex_exit(&dtrace_lock
);
17102 mutex_exit(&cpu_lock
);
17103 return (DDI_FAILURE
);
17106 if (dtrace_unregister((dtrace_provider_id_t
)dtrace_provider
) != 0) {
17107 mutex_exit(&dtrace_provider_lock
);
17108 mutex_exit(&dtrace_lock
);
17109 mutex_exit(&cpu_lock
);
17110 return (DDI_FAILURE
);
17113 dtrace_provider
= NULL
;
17115 if ((state
= dtrace_anon_grab()) != NULL
) {
17117 * If there were ECBs on this state, the provider should
17118 * have not been allowed to detach; assert that there is
17121 ASSERT(state
->dts_necbs
== 0);
17122 dtrace_state_destroy(state
);
17125 * If we're being detached with anonymous state, we need to
17126 * indicate to the kernel debugger that DTrace is now inactive.
17128 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
17131 bzero(&dtrace_anon
, sizeof (dtrace_anon_t
));
17132 unregister_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
17133 dtrace_cpu_init
= NULL
;
17134 dtrace_helpers_cleanup
= NULL
;
17135 dtrace_helpers_fork
= NULL
;
17136 dtrace_cpustart_init
= NULL
;
17137 dtrace_cpustart_fini
= NULL
;
17138 dtrace_debugger_init
= NULL
;
17139 dtrace_debugger_fini
= NULL
;
17140 dtrace_modload
= NULL
;
17141 dtrace_modunload
= NULL
;
17143 ASSERT(dtrace_getf
== 0);
17144 ASSERT(dtrace_closef
== NULL
);
17146 mutex_exit(&cpu_lock
);
17148 kmem_free(dtrace_probes
, dtrace_nprobes
* sizeof (dtrace_probe_t
*));
17149 dtrace_probes
= NULL
;
17150 dtrace_nprobes
= 0;
17152 dtrace_hash_destroy(dtrace_bymod
);
17153 dtrace_hash_destroy(dtrace_byfunc
);
17154 dtrace_hash_destroy(dtrace_byname
);
17155 dtrace_bymod
= NULL
;
17156 dtrace_byfunc
= NULL
;
17157 dtrace_byname
= NULL
;
17159 kmem_cache_destroy(dtrace_state_cache
);
17160 vmem_destroy(dtrace_minor
);
17161 vmem_destroy(dtrace_arena
);
17163 if (dtrace_toxrange
!= NULL
) {
17164 kmem_free(dtrace_toxrange
,
17165 dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
));
17166 dtrace_toxrange
= NULL
;
17167 dtrace_toxranges
= 0;
17168 dtrace_toxranges_max
= 0;
17171 ddi_remove_minor_node(dtrace_devi
, NULL
);
17172 dtrace_devi
= NULL
;
17174 ddi_soft_state_fini(&dtrace_softstate
);
17176 ASSERT(dtrace_vtime_references
== 0);
17177 ASSERT(dtrace_opens
== 0);
17178 ASSERT(dtrace_retained
== NULL
);
17180 mutex_exit(&dtrace_lock
);
17181 mutex_exit(&dtrace_provider_lock
);
17184 * We don't destroy the task queue until after we have dropped our
17185 * locks (taskq_destroy() may block on running tasks). To prevent
17186 * attempting to do work after we have effectively detached but before
17187 * the task queue has been destroyed, all tasks dispatched via the
17188 * task queue must check that DTrace is still attached before
17189 * performing any operation.
17191 taskq_destroy(dtrace_taskq
);
17192 dtrace_taskq
= NULL
;
17194 return (DDI_SUCCESS
);
17199 dtrace_info(dev_info_t
*dip
, ddi_info_cmd_t infocmd
, void *arg
, void **result
)
17204 case DDI_INFO_DEVT2DEVINFO
:
17205 *result
= (void *)dtrace_devi
;
17206 error
= DDI_SUCCESS
;
17208 case DDI_INFO_DEVT2INSTANCE
:
17210 error
= DDI_SUCCESS
;
17213 error
= DDI_FAILURE
;
17218 static struct cb_ops dtrace_cb_ops
= {
17219 dtrace_open
, /* open */
17220 dtrace_close
, /* close */
17221 nulldev
, /* strategy */
17222 nulldev
, /* print */
17226 dtrace_ioctl
, /* ioctl */
17227 nodev
, /* devmap */
17229 nodev
, /* segmap */
17230 nochpoll
, /* poll */
17231 ddi_prop_op
, /* cb_prop_op */
17233 D_NEW
| D_MP
/* Driver compatibility flag */
17236 static struct dev_ops dtrace_ops
= {
17237 DEVO_REV
, /* devo_rev */
17239 dtrace_info
, /* get_dev_info */
17240 nulldev
, /* identify */
17241 nulldev
, /* probe */
17242 dtrace_attach
, /* attach */
17243 dtrace_detach
, /* detach */
17245 &dtrace_cb_ops
, /* driver operations */
17246 NULL
, /* bus operations */
17247 nodev
, /* dev power */
17248 ddi_quiesce_not_needed
, /* quiesce */
17251 static struct modldrv modldrv
= {
17252 &mod_driverops
, /* module type (this is a pseudo driver) */
17253 "Dynamic Tracing", /* name of module */
17254 &dtrace_ops
, /* driver ops */
17257 static struct modlinkage modlinkage
= {
17266 return (mod_install(&modlinkage
));
17270 _info(struct modinfo
*modinfop
)
17272 return (mod_info(&modlinkage
, modinfop
));
17278 return (mod_remove(&modlinkage
));