Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / io / cpc.c
blob7111dc526de44b4f1719cbd445a0a46811aab51e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * CPU Performance Counter system calls and device driver.
29 * This module uses a combination of thread context operators, and
30 * thread-specific data to export CPU performance counters
31 * via both a system call and a driver interface.
33 * There are three access methods exported - the 'shared' device
34 * and the 'private' and 'agent' variants of the system call.
36 * The shared device treats the performance counter registers as
37 * a processor metric, regardless of the work scheduled on them.
38 * The private system call treats the performance counter registers
39 * as a property of a single lwp. This is achieved by using the
40 * thread context operators to virtualize the contents of the
41 * performance counter registers between lwps.
43 * The agent method is like the private method, except that it must
44 * be accessed via /proc's agent lwp to allow the counter context of
45 * other threads to be examined safely.
47 * The shared usage fundamentally conflicts with the agent and private usage;
48 * almost all of the complexity of the module is needed to allow these two
49 * models to co-exist in a reasonable way.
52 #include <sys/types.h>
53 #include <sys/file.h>
54 #include <sys/errno.h>
55 #include <sys/open.h>
56 #include <sys/cred.h>
57 #include <sys/conf.h>
58 #include <sys/stat.h>
59 #include <sys/processor.h>
60 #include <sys/cpuvar.h>
61 #include <sys/disp.h>
62 #include <sys/kmem.h>
63 #include <sys/modctl.h>
64 #include <sys/ddi.h>
65 #include <sys/sunddi.h>
66 #include <sys/nvpair.h>
67 #include <sys/policy.h>
68 #include <sys/machsystm.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/cpc_pcbe.h>
71 #include <sys/kcpc.h>
73 static int kcpc_copyin_set(kcpc_set_t **set, void *ubuf, size_t len);
74 static int kcpc_verify_set(kcpc_set_t *set);
75 static uint32_t kcpc_nvlist_npairs(nvlist_t *list);
78 * Generic attributes supported regardless of processor.
81 #define ATTRLIST "picnum"
82 #define SEPARATOR ","
85 * System call to access CPU performance counters.
87 static int
88 cpc(int cmd, id_t lwpid, void *udata1, void *udata2, void *udata3)
90 kthread_t *t;
91 int error;
92 int size;
93 const char *str;
94 int code;
97 * This CPC syscall should only be loaded if it found a PCBE to use.
99 ASSERT(pcbe_ops != NULL);
101 if (curproc->p_agenttp == curthread) {
103 * Only if /proc is invoking this system call from
104 * the agent thread do we allow the caller to examine
105 * the contexts of other lwps in the process. And
106 * because we know we're the agent, we know we don't
107 * have to grab p_lock because no-one else can change
108 * the state of the process.
110 if ((t = idtot(curproc, lwpid)) == NULL || t == curthread)
111 return (set_errno(ESRCH));
112 ASSERT(t->t_tid == lwpid && ttolwp(t) != NULL);
113 } else
114 t = curthread;
116 if (t->t_cpc_set == NULL && (cmd == CPC_SAMPLE || cmd == CPC_RELE))
117 return (set_errno(EINVAL));
119 switch (cmd) {
120 case CPC_BIND:
122 * udata1 = pointer to packed nvlist buffer
123 * udata2 = size of packed nvlist buffer
124 * udata3 = User addr to return error subcode in.
127 rw_enter(&kcpc_cpuctx_lock, RW_READER);
128 if (kcpc_cpuctx || dtrace_cpc_in_use) {
129 rw_exit(&kcpc_cpuctx_lock);
130 return (set_errno(EAGAIN));
133 if (kcpc_hw_lwp_hook() != 0) {
134 rw_exit(&kcpc_cpuctx_lock);
135 return (set_errno(EACCES));
139 * An LWP may only have one set bound to it at a time; if there
140 * is a set bound to this LWP already, we unbind it here.
142 if (t->t_cpc_set != NULL)
143 (void) kcpc_unbind(t->t_cpc_set);
144 ASSERT(t->t_cpc_set == NULL);
146 if ((error = kcpc_copyin_set(&t->t_cpc_set, udata1,
147 (size_t)udata2)) != 0) {
148 rw_exit(&kcpc_cpuctx_lock);
149 return (set_errno(error));
152 if ((error = kcpc_verify_set(t->t_cpc_set)) != 0) {
153 rw_exit(&kcpc_cpuctx_lock);
154 kcpc_free_set(t->t_cpc_set);
155 t->t_cpc_set = NULL;
156 if (copyout(&error, udata3, sizeof (error)) == -1)
157 return (set_errno(EFAULT));
158 return (set_errno(EINVAL));
161 if ((error = kcpc_bind_thread(t->t_cpc_set, t, &code)) != 0) {
162 rw_exit(&kcpc_cpuctx_lock);
163 kcpc_free_set(t->t_cpc_set);
164 t->t_cpc_set = NULL;
166 * EINVAL and EACCES are the only errors with more
167 * specific subcodes.
169 if ((error == EINVAL || error == EACCES) &&
170 copyout(&code, udata3, sizeof (code)) == -1)
171 return (set_errno(EFAULT));
172 return (set_errno(error));
175 rw_exit(&kcpc_cpuctx_lock);
176 return (0);
177 case CPC_SAMPLE:
179 * udata1 = pointer to user's buffer
180 * udata2 = pointer to user's hrtime
181 * udata3 = pointer to user's tick
184 * We only allow thread-bound sets to be sampled via the
185 * syscall, so if this set has a CPU-bound context, return an
186 * error.
188 if (t->t_cpc_set->ks_ctx->kc_cpuid != -1)
189 return (set_errno(EINVAL));
190 if ((error = kcpc_sample(t->t_cpc_set, udata1, udata2,
191 udata3)) != 0)
192 return (set_errno(error));
194 return (0);
195 case CPC_PRESET:
196 case CPC_RESTART:
198 * These are valid only if this lwp has a bound set.
200 if (t->t_cpc_set == NULL)
201 return (set_errno(EINVAL));
202 if (cmd == CPC_PRESET) {
204 * The preset is shipped up to us from userland in two
205 * parts. This lets us handle 64-bit values from 32-bit
206 * and 64-bit applications in the same manner.
208 * udata1 = index of request to preset
209 * udata2 = new 64-bit preset (most sig. 32 bits)
210 * udata3 = new 64-bit preset (least sig. 32 bits)
212 if ((error = kcpc_preset(t->t_cpc_set, (intptr_t)udata1,
213 ((uint64_t)(uintptr_t)udata2 << 32ULL) |
214 (uint64_t)(uintptr_t)udata3)) != 0)
215 return (set_errno(error));
216 } else {
218 * udata[1-3] = unused
220 if ((error = kcpc_restart(t->t_cpc_set)) != 0)
221 return (set_errno(error));
223 return (0);
224 case CPC_ENABLE:
225 case CPC_DISABLE:
226 udata1 = 0;
227 /*FALLTHROUGH*/
228 case CPC_USR_EVENTS:
229 case CPC_SYS_EVENTS:
230 if (t != curthread || t->t_cpc_set == NULL)
231 return (set_errno(EINVAL));
233 * Provided for backwards compatibility with CPCv1.
235 * Stop the counters and record the current counts. Use the
236 * counts as the preset to rebind a new set with the requests
237 * reconfigured as requested.
239 * udata1: 1 == enable; 0 == disable
240 * udata{2,3}: unused
242 rw_enter(&kcpc_cpuctx_lock, RW_READER);
243 if ((error = kcpc_enable(t,
244 cmd, (int)(uintptr_t)udata1)) != 0) {
245 rw_exit(&kcpc_cpuctx_lock);
246 return (set_errno(error));
248 rw_exit(&kcpc_cpuctx_lock);
249 return (0);
250 case CPC_NPIC:
251 return (cpc_ncounters);
252 case CPC_CAPS:
253 return (pcbe_ops->pcbe_caps);
254 case CPC_EVLIST_SIZE:
255 case CPC_LIST_EVENTS:
257 * udata1 = pointer to user's int or buffer
258 * udata2 = picnum
259 * udata3 = unused
261 if ((uintptr_t)udata2 >= cpc_ncounters)
262 return (set_errno(EINVAL));
264 size = strlen(
265 pcbe_ops->pcbe_list_events((uintptr_t)udata2)) + 1;
267 if (cmd == CPC_EVLIST_SIZE) {
268 if (suword32(udata1, size) == -1)
269 return (set_errno(EFAULT));
270 } else {
271 if (copyout(
272 pcbe_ops->pcbe_list_events((uintptr_t)udata2),
273 udata1, size) == -1)
274 return (set_errno(EFAULT));
276 return (0);
277 case CPC_ATTRLIST_SIZE:
278 case CPC_LIST_ATTRS:
280 * udata1 = pointer to user's int or buffer
281 * udata2 = unused
282 * udata3 = unused
284 * attrlist size is length of PCBE-supported attributes, plus
285 * room for "picnum\0" plus an optional ',' separator char.
287 str = pcbe_ops->pcbe_list_attrs();
288 size = strlen(str) + sizeof (SEPARATOR ATTRLIST) + 1;
289 if (str[0] != '\0')
291 * A ',' separator character is necessary.
293 size += 1;
295 if (cmd == CPC_ATTRLIST_SIZE) {
296 if (suword32(udata1, size) == -1)
297 return (set_errno(EFAULT));
298 } else {
300 * Copyout the PCBE attributes, and then append the
301 * generic attribute list (with separator if necessary).
303 if (copyout(str, udata1, strlen(str)) == -1)
304 return (set_errno(EFAULT));
305 if (str[0] != '\0') {
306 if (copyout(SEPARATOR ATTRLIST,
307 ((char *)udata1) + strlen(str),
308 strlen(SEPARATOR ATTRLIST) + 1)
309 == -1)
310 return (set_errno(EFAULT));
311 } else
312 if (copyout(ATTRLIST,
313 (char *)udata1 + strlen(str),
314 strlen(ATTRLIST) + 1) == -1)
315 return (set_errno(EFAULT));
317 return (0);
318 case CPC_IMPL_NAME:
319 case CPC_CPUREF:
321 * udata1 = pointer to user's buffer
322 * udata2 = unused
323 * udata3 = unused
325 if (cmd == CPC_IMPL_NAME) {
326 str = pcbe_ops->pcbe_impl_name();
327 ASSERT(strlen(str) < CPC_MAX_IMPL_NAME);
328 } else {
329 str = pcbe_ops->pcbe_cpuref();
330 ASSERT(strlen(str) < CPC_MAX_CPUREF);
333 if (copyout(str, udata1, strlen(str) + 1) != 0)
334 return (set_errno(EFAULT));
335 return (0);
336 case CPC_INVALIDATE:
337 kcpc_invalidate(t);
338 return (0);
339 case CPC_RELE:
340 if ((error = kcpc_unbind(t->t_cpc_set)) != 0)
341 return (set_errno(error));
342 return (0);
343 default:
344 return (set_errno(EINVAL));
349 * The 'shared' device allows direct access to the
350 * performance counter control register of the current CPU.
351 * The major difference between the contexts created here and those
352 * above is that the context handlers are -not- installed, thus
353 * no context switching behaviour occurs.
355 * Because they manipulate per-cpu state, these ioctls can
356 * only be invoked from a bound lwp, by a caller with the cpc_cpu privilege
357 * who can open the relevant entry in /devices (the act of holding it open
358 * causes other uses of the counters to be suspended).
360 * Note that for correct results, the caller -must- ensure that
361 * all existing per-lwp contexts are either inactive or marked invalid;
362 * that's what the open routine does.
364 /*ARGSUSED*/
365 static int
366 kcpc_ioctl(dev_t dev, int cmd, intptr_t data, int flags, cred_t *cr, int *rvp)
368 kthread_t *t = curthread;
369 processorid_t cpuid;
370 void *udata1 = NULL;
371 void *udata2 = NULL;
372 void *udata3 = NULL;
373 int error;
374 int code;
376 STRUCT_DECL(__cpc_args, args);
378 STRUCT_INIT(args, flags);
380 if (curthread->t_bind_cpu != getminor(dev))
381 return (EAGAIN); /* someone unbound it? */
383 cpuid = getminor(dev);
385 if (cmd == CPCIO_BIND || cmd == CPCIO_SAMPLE) {
386 if (copyin((void *)data, STRUCT_BUF(args),
387 STRUCT_SIZE(args)) == -1)
388 return (EFAULT);
390 udata1 = STRUCT_FGETP(args, udata1);
391 udata2 = STRUCT_FGETP(args, udata2);
392 udata3 = STRUCT_FGETP(args, udata3);
395 switch (cmd) {
396 case CPCIO_BIND:
398 * udata1 = pointer to packed nvlist buffer
399 * udata2 = size of packed nvlist buffer
400 * udata3 = User addr to return error subcode in.
402 if (t->t_cpc_set != NULL) {
403 (void) kcpc_unbind(t->t_cpc_set);
404 ASSERT(t->t_cpc_set == NULL);
407 if ((error = kcpc_copyin_set(&t->t_cpc_set, udata1,
408 (size_t)udata2)) != 0) {
409 return (error);
412 if ((error = kcpc_verify_set(t->t_cpc_set)) != 0) {
413 kcpc_free_set(t->t_cpc_set);
414 t->t_cpc_set = NULL;
415 if (copyout(&error, udata3, sizeof (error)) == -1)
416 return (EFAULT);
417 return (EINVAL);
420 if ((error = kcpc_bind_cpu(t->t_cpc_set, cpuid, &code)) != 0) {
421 kcpc_free_set(t->t_cpc_set);
422 t->t_cpc_set = NULL;
424 * Subcodes are only returned for EINVAL and EACCESS.
426 if ((error == EINVAL || error == EACCES) &&
427 copyout(&code, udata3, sizeof (code)) == -1)
428 return (EFAULT);
429 return (error);
432 return (0);
433 case CPCIO_SAMPLE:
435 * udata1 = pointer to user's buffer
436 * udata2 = pointer to user's hrtime
437 * udata3 = pointer to user's tick
440 * Only CPU-bound sets may be sampled via the ioctl(). If this
441 * set has no CPU-bound context, return an error.
443 if (t->t_cpc_set == NULL)
444 return (EINVAL);
445 if ((error = kcpc_sample(t->t_cpc_set, udata1, udata2,
446 udata3)) != 0)
447 return (error);
448 return (0);
449 case CPCIO_RELE:
450 if (t->t_cpc_set == NULL)
451 return (EINVAL);
452 return (kcpc_unbind(t->t_cpc_set));
453 default:
454 return (EINVAL);
459 * The device supports multiple opens, but only one open
460 * is allowed per processor. This is to enable multiple
461 * instances of tools looking at different processors.
463 #define KCPC_MINOR_SHARED ((minor_t)0x3fffful)
465 static ulong_t *kcpc_cpumap; /* bitmap of cpus */
467 /*ARGSUSED1*/
468 static int
469 kcpc_open(dev_t *dev, int flags, int otyp, cred_t *cr)
471 processorid_t cpuid;
472 int error;
474 ASSERT(pcbe_ops != NULL);
476 if ((error = secpolicy_cpc_cpu(cr)) != 0)
477 return (error);
478 if (getminor(*dev) != KCPC_MINOR_SHARED)
479 return (ENXIO);
480 if ((cpuid = curthread->t_bind_cpu) == PBIND_NONE)
481 return (EINVAL);
482 if (cpuid > max_cpuid)
483 return (EINVAL);
485 rw_enter(&kcpc_cpuctx_lock, RW_WRITER);
486 if (++kcpc_cpuctx == 1) {
487 ASSERT(kcpc_cpumap == NULL);
490 * Bail out if DTrace is already using the counters.
492 if (dtrace_cpc_in_use) {
493 kcpc_cpuctx--;
494 rw_exit(&kcpc_cpuctx_lock);
495 return (EAGAIN);
497 kcpc_cpumap = kmem_zalloc(BT_SIZEOFMAP(max_cpuid + 1),
498 KM_SLEEP);
500 * When this device is open for processor-based contexts,
501 * no further lwp-based contexts can be created.
503 * Since this is the first open, ensure that all existing
504 * contexts are invalidated.
506 kcpc_invalidate_all();
507 } else if (BT_TEST(kcpc_cpumap, cpuid)) {
508 kcpc_cpuctx--;
509 rw_exit(&kcpc_cpuctx_lock);
510 return (EAGAIN);
511 } else if (kcpc_hw_cpu_hook(cpuid, kcpc_cpumap) != 0) {
512 kcpc_cpuctx--;
513 rw_exit(&kcpc_cpuctx_lock);
514 return (EACCES);
516 BT_SET(kcpc_cpumap, cpuid);
517 rw_exit(&kcpc_cpuctx_lock);
519 *dev = makedevice(getmajor(*dev), (minor_t)cpuid);
521 return (0);
524 /*ARGSUSED1*/
525 static int
526 kcpc_close(dev_t dev, int flags, int otyp, cred_t *cr)
528 rw_enter(&kcpc_cpuctx_lock, RW_WRITER);
529 BT_CLEAR(kcpc_cpumap, getminor(dev));
530 if (--kcpc_cpuctx == 0) {
531 kmem_free(kcpc_cpumap, BT_SIZEOFMAP(max_cpuid + 1));
532 kcpc_cpumap = NULL;
534 ASSERT(kcpc_cpuctx >= 0);
535 rw_exit(&kcpc_cpuctx_lock);
537 return (0);
541 * Sane boundaries on the size of packed lists. In bytes.
543 #define CPC_MIN_PACKSIZE 4
544 #define CPC_MAX_PACKSIZE 10000
547 * Sane boundary on the number of requests a set can contain.
549 #define CPC_MAX_NREQS 100
552 * Sane boundary on the number of attributes a request can contain.
554 #define CPC_MAX_ATTRS 50
557 * Copy in a packed nvlist from the user and create a request set out of it.
558 * If successful, return 0 and store a pointer to the set we've created. Returns
559 * error code on error.
562 kcpc_copyin_set(kcpc_set_t **inset, void *ubuf, size_t len)
564 kcpc_set_t *set;
565 int i;
566 int j;
567 char *packbuf;
569 nvlist_t *nvl;
570 nvpair_t *nvp = NULL;
572 nvlist_t *attrs;
573 nvpair_t *nvp_attr;
574 kcpc_attr_t *attrp;
576 nvlist_t **reqlist;
577 uint_t nreqs;
578 uint64_t uint64;
579 uint32_t uint32;
580 uint32_t setflags = (uint32_t)-1;
581 char *string;
582 char *name;
584 if (len < CPC_MIN_PACKSIZE || len > CPC_MAX_PACKSIZE)
585 return (EINVAL);
587 packbuf = kmem_alloc(len, KM_SLEEP);
589 if (copyin(ubuf, packbuf, len) == -1) {
590 kmem_free(packbuf, len);
591 return (EFAULT);
594 if (nvlist_unpack(packbuf, len, &nvl, KM_SLEEP) != 0) {
595 kmem_free(packbuf, len);
596 return (EINVAL);
600 * The nvlist has been unpacked so there is no need for the packed
601 * representation from this point on.
603 kmem_free(packbuf, len);
605 i = 0;
606 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
607 switch (nvpair_type(nvp)) {
608 case DATA_TYPE_UINT32:
609 if (strcmp(nvpair_name(nvp), "flags") != 0 ||
610 nvpair_value_uint32(nvp, &setflags) != 0) {
611 nvlist_free(nvl);
612 return (EINVAL);
614 break;
615 case DATA_TYPE_NVLIST_ARRAY:
616 if (strcmp(nvpair_name(nvp), "reqs") != 0 ||
617 nvpair_value_nvlist_array(nvp, &reqlist,
618 &nreqs) != 0) {
619 nvlist_free(nvl);
620 return (EINVAL);
622 break;
623 default:
624 nvlist_free(nvl);
625 return (EINVAL);
627 i++;
631 * There should be two members in the top-level nvlist:
632 * an array of nvlists consisting of the requests, and flags.
633 * Anything else is an invalid set.
635 if (i != 2) {
636 nvlist_free(nvl);
637 return (EINVAL);
640 if (nreqs > CPC_MAX_NREQS) {
641 nvlist_free(nvl);
642 return (EINVAL);
646 * The requests are now stored in the nvlist array at reqlist.
647 * Note that the use of kmem_zalloc() to alloc the kcpc_set_t means
648 * we don't need to call the init routines for ks_lock and ks_condv.
650 set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
651 set->ks_req = (kcpc_request_t *)kmem_zalloc(sizeof (kcpc_request_t) *
652 nreqs, KM_SLEEP);
653 set->ks_nreqs = nreqs;
655 * If the nvlist didn't contain a flags member, setflags was initialized
656 * with an illegal value and this set will fail sanity checks later on.
658 set->ks_flags = setflags;
660 * Initialize bind/unbind set synchronization.
662 set->ks_state &= ~KCPC_SET_BOUND;
665 * Build the set up one request at a time, always keeping it self-
666 * consistent so we can give it to kcpc_free_set() if we need to back
667 * out and return and error.
669 for (i = 0; i < nreqs; i++) {
670 nvp = NULL;
671 set->ks_req[i].kr_picnum = -1;
672 while ((nvp = nvlist_next_nvpair(reqlist[i], nvp)) != NULL) {
673 name = nvpair_name(nvp);
674 switch (nvpair_type(nvp)) {
675 case DATA_TYPE_UINT32:
676 if (nvpair_value_uint32(nvp, &uint32) == EINVAL)
677 goto inval;
678 if (strcmp(name, "cr_flags") == 0)
679 set->ks_req[i].kr_flags = uint32;
680 if (strcmp(name, "cr_index") == 0)
681 set->ks_req[i].kr_index = uint32;
682 break;
683 case DATA_TYPE_UINT64:
684 if (nvpair_value_uint64(nvp, &uint64) == EINVAL)
685 goto inval;
686 if (strcmp(name, "cr_preset") == 0)
687 set->ks_req[i].kr_preset = uint64;
688 break;
689 case DATA_TYPE_STRING:
690 if (nvpair_value_string(nvp, &string) == EINVAL)
691 goto inval;
692 if (strcmp(name, "cr_event") == 0)
693 (void) strncpy(set->ks_req[i].kr_event,
694 string, CPC_MAX_EVENT_LEN);
695 break;
696 case DATA_TYPE_NVLIST:
697 if (strcmp(name, "cr_attr") != 0)
698 goto inval;
699 if (nvpair_value_nvlist(nvp, &attrs) == EINVAL)
700 goto inval;
701 nvp_attr = NULL;
703 * If the picnum has been specified as an
704 * attribute, consume that attribute here and
705 * remove it from the list of attributes.
707 if (nvlist_lookup_uint64(attrs, "picnum",
708 &uint64) == 0) {
709 if (nvlist_remove(attrs, "picnum",
710 DATA_TYPE_UINT64) != 0)
711 panic("nvlist %p faulty",
712 (void *)attrs);
713 set->ks_req[i].kr_picnum = uint64;
716 if ((set->ks_req[i].kr_nattrs =
717 kcpc_nvlist_npairs(attrs)) == 0)
718 break;
720 if (set->ks_req[i].kr_nattrs > CPC_MAX_ATTRS)
721 goto inval;
723 set->ks_req[i].kr_attr =
724 kmem_alloc(set->ks_req[i].kr_nattrs *
725 sizeof (kcpc_attr_t), KM_SLEEP);
726 j = 0;
728 while ((nvp_attr = nvlist_next_nvpair(attrs,
729 nvp_attr)) != NULL) {
730 attrp = &set->ks_req[i].kr_attr[j];
732 if (nvpair_type(nvp_attr) !=
733 DATA_TYPE_UINT64)
734 goto inval;
736 (void) strncpy(attrp->ka_name,
737 nvpair_name(nvp_attr),
738 CPC_MAX_ATTR_LEN);
740 if (nvpair_value_uint64(nvp_attr,
741 &(attrp->ka_val)) == EINVAL)
742 goto inval;
743 j++;
745 ASSERT(j == set->ks_req[i].kr_nattrs);
746 default:
747 break;
752 nvlist_free(nvl);
753 *inset = set;
754 return (0);
756 inval:
757 nvlist_free(nvl);
758 kcpc_free_set(set);
759 return (EINVAL);
763 * Count the number of nvpairs in the supplied nvlist.
765 static uint32_t
766 kcpc_nvlist_npairs(nvlist_t *list)
768 nvpair_t *nvp = NULL;
769 uint32_t n = 0;
771 while ((nvp = nvlist_next_nvpair(list, nvp)) != NULL)
772 n++;
774 return (n);
778 * Performs sanity checks on the given set.
779 * Returns 0 if the set checks out OK.
780 * Returns a detailed error subcode, or -1 if there is no applicable subcode.
782 static int
783 kcpc_verify_set(kcpc_set_t *set)
785 kcpc_request_t *rp;
786 int i;
787 uint64_t bitmap = 0;
788 int n;
790 if (set->ks_nreqs > cpc_ncounters)
791 return (-1);
793 if (CPC_SET_VALID_FLAGS(set->ks_flags) == 0)
794 return (-1);
796 for (i = 0; i < set->ks_nreqs; i++) {
797 rp = &set->ks_req[i];
800 * The following comparison must cast cpc_ncounters to an int,
801 * because kr_picnum will be -1 if the request didn't explicitly
802 * choose a PIC.
804 if (rp->kr_picnum >= (int)cpc_ncounters)
805 return (CPC_INVALID_PICNUM);
808 * Of the pics whose physical picnum has been specified, make
809 * sure each PIC appears only once in set.
811 if ((n = set->ks_req[i].kr_picnum) != -1) {
812 if ((bitmap & (1 << n)) != 0)
813 return (-1);
814 bitmap |= (1 << n);
818 * Make sure the requested index falls within the range of all
819 * requests.
821 if (rp->kr_index < 0 || rp->kr_index >= set->ks_nreqs)
822 return (-1);
825 * Make sure there are no unknown flags.
827 if (KCPC_REQ_VALID_FLAGS(rp->kr_flags) == 0)
828 return (CPC_REQ_INVALID_FLAGS);
831 return (0);
834 static struct cb_ops cb_ops = {
835 kcpc_open,
836 kcpc_close,
837 nodev, /* strategy */
838 nodev, /* print */
839 nodev, /* dump */
840 nodev, /* read */
841 nodev, /* write */
842 kcpc_ioctl,
843 nodev, /* devmap */
844 nodev, /* mmap */
845 nodev, /* segmap */
846 nochpoll, /* poll */
847 ddi_prop_op,
848 NULL,
849 D_NEW | D_MP
852 /*ARGSUSED*/
853 static int
854 kcpc_probe(dev_info_t *devi)
856 return (DDI_PROBE_SUCCESS);
859 static dev_info_t *kcpc_devi;
861 static int
862 kcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
864 if (cmd != DDI_ATTACH)
865 return (DDI_FAILURE);
866 kcpc_devi = devi;
867 return (ddi_create_minor_node(devi, "shared", S_IFCHR,
868 KCPC_MINOR_SHARED, DDI_PSEUDO, 0));
871 /*ARGSUSED*/
872 static int
873 kcpc_getinfo(dev_info_t *devi, ddi_info_cmd_t cmd, void *arg, void **result)
875 switch (cmd) {
876 case DDI_INFO_DEVT2DEVINFO:
877 switch (getminor((dev_t)arg)) {
878 case KCPC_MINOR_SHARED:
879 *result = kcpc_devi;
880 return (DDI_SUCCESS);
881 default:
882 break;
884 break;
885 case DDI_INFO_DEVT2INSTANCE:
886 *result = 0;
887 return (DDI_SUCCESS);
888 default:
889 break;
892 return (DDI_FAILURE);
895 static struct dev_ops dev_ops = {
896 DEVO_REV,
898 kcpc_getinfo,
899 nulldev, /* identify */
900 kcpc_probe,
901 kcpc_attach,
902 nodev, /* detach */
903 nodev, /* reset */
904 &cb_ops,
905 NULL,
906 NULL,
907 ddi_quiesce_not_needed, /* quiesce */
910 static struct modldrv modldrv = {
911 &mod_driverops,
912 "cpc sampling driver",
913 &dev_ops
916 static struct sysent cpc_sysent = {
918 SE_NOUNLOAD | SE_ARGC | SE_32RVAL1,
922 static struct modlsys modlsys = {
923 &mod_syscallops,
924 "cpc sampling system call",
925 &cpc_sysent
928 #ifdef _SYSCALL32_IMPL
929 static struct modlsys modlsys32 = {
930 &mod_syscallops32,
931 "32-bit cpc sampling system call",
932 &cpc_sysent
934 #endif
936 static struct modlinkage modl = {
937 MODREV_1,
938 &modldrv,
939 &modlsys,
940 #ifdef _SYSCALL32_IMPL
941 &modlsys32,
942 #endif
946 _init(void)
948 if (kcpc_init() != 0)
949 return (ENOTSUP);
951 return (mod_install(&modl));
955 _fini(void)
957 return (mod_remove(&modl));
961 _info(struct modinfo *mi)
963 return (mod_info(&modl, mi));