Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / io / dld / dld_str.c
blobe5d8b323d415d5b0bcd219bd01e93e6bfa47b4b1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Data-Link Driver
29 #include <inet/common.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strsun.h>
33 #include <sys/vlan.h>
34 #include <sys/dld_impl.h>
35 #include <sys/cpuvar.h>
36 #include <sys/callb.h>
37 #include <sys/list.h>
38 #include <sys/mac_client.h>
39 #include <sys/mac_client_priv.h>
40 #include <sys/mac_flow.h>
42 static int str_constructor(void *, void *, int);
43 static void str_destructor(void *, void *);
44 static mblk_t *str_unitdata_ind(dld_str_t *, mblk_t *, boolean_t);
45 static void str_notify_promisc_on_phys(dld_str_t *);
46 static void str_notify_promisc_off_phys(dld_str_t *);
47 static void str_notify_phys_addr(dld_str_t *, uint_t, const uint8_t *);
48 static void str_notify_link_up(dld_str_t *);
49 static void str_notify_link_down(dld_str_t *);
50 static void str_notify_capab_reneg(dld_str_t *);
51 static void str_notify_speed(dld_str_t *, uint32_t);
53 static void ioc_native(dld_str_t *, mblk_t *);
54 static void ioc_margin(dld_str_t *, mblk_t *);
55 static void ioc_raw(dld_str_t *, mblk_t *);
56 static void ioc_fast(dld_str_t *, mblk_t *);
57 static void ioc_lowlink(dld_str_t *, mblk_t *);
58 static void ioc(dld_str_t *, mblk_t *);
59 static void dld_ioc(dld_str_t *, mblk_t *);
60 static void dld_wput_nondata(dld_str_t *, mblk_t *);
62 static void str_mdata_raw_put(dld_str_t *, mblk_t *);
63 static mblk_t *i_dld_ether_header_update_tag(mblk_t *, uint_t, uint16_t,
64 link_tagmode_t);
65 static mblk_t *i_dld_ether_header_strip_tag(mblk_t *, boolean_t);
67 static uint32_t str_count;
68 static kmem_cache_t *str_cachep;
69 static mod_hash_t *str_hashp;
71 #define STR_HASHSZ 64
72 #define STR_HASH_KEY(key) ((mod_hash_key_t)(uintptr_t)(key))
74 #define dld_taskq system_taskq
76 static kmutex_t dld_taskq_lock;
77 static kcondvar_t dld_taskq_cv;
78 static list_t dld_taskq_list; /* List of dld_str_t */
79 boolean_t dld_taskq_quit;
80 boolean_t dld_taskq_done;
82 static void dld_taskq_dispatch(void);
85 * Some notes on entry points, flow-control, queueing.
87 * This driver exports the traditional STREAMS put entry point as well as
88 * the non-STREAMS fast-path transmit routine which is provided to IP via
89 * the DL_CAPAB_POLL negotiation. The put procedure handles all control
90 * and data operations, while the fast-path routine deals only with M_DATA
91 * fast-path packets. Regardless of the entry point, all outbound packets
92 * will end up in DLD_TX(), where they will be delivered to the MAC layer.
94 * The transmit logic operates in the following way: All packets coming
95 * into DLD will be sent to the MAC layer through DLD_TX(). Flow-control
96 * happens when the MAC layer indicates the packets couldn't be
97 * transmitted due to 1) lack of resources (e.g. running out of
98 * descriptors), or 2) reaching the allowed bandwidth limit for this
99 * particular flow. The indication comes in the form of a Tx cookie that
100 * identifies the blocked ring. In such case, DLD will place a
101 * dummy message on its write-side STREAMS queue so that the queue is
102 * marked as "full". Any subsequent packets arriving at the driver will
103 * still be sent to the MAC layer where it either gets queued in the Tx
104 * SRS or discarded it if queue limit is exceeded. The write-side STREAMS
105 * queue gets enabled when MAC layer notifies DLD through MAC_NOTE_TX.
106 * When the write service procedure runs, it will remove the dummy
107 * message from the write-side STREAMS queue; in effect this will trigger
108 * backenabling. The sizes of q_hiwat and q_lowat are set to 1 and 0,
109 * respectively, due to the above reasons.
111 * All non-data operations, both DLPI and ioctls are single threaded on a per
112 * dld_str_t endpoint. This is done using a taskq so that the control operation
113 * has kernel context and can cv_wait for resources. In addition all set type
114 * operations that involve mac level state modification are serialized on a
115 * per mac end point using the perimeter mechanism provided by the mac layer.
116 * This serializes all mac clients trying to modify a single mac end point over
117 * the entire sequence of mac calls made by that client as an atomic unit. The
118 * mac framework locking is described in mac.c. A critical element is that
119 * DLD/DLS does not hold any locks across the mac perimeter.
121 * dld_finddevinfo() returns the dev_info_t * corresponding to a particular
122 * dev_t. It searches str_hashp (a table of dld_str_t's) for streams that
123 * match dev_t. If a stream is found and it is attached, its dev_info_t *
124 * is returned. If the mac handle is non-null, it can be safely accessed
125 * below. The mac handle won't be freed until the mac_unregister which
126 * won't happen until the driver detaches. The DDI framework ensures that
127 * the detach won't happen while a getinfo is in progress.
129 typedef struct i_dld_str_state_s {
130 major_t ds_major;
131 minor_t ds_minor;
132 int ds_instance;
133 dev_info_t *ds_dip;
134 } i_dld_str_state_t;
136 /* ARGSUSED */
137 static uint_t
138 i_dld_str_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
140 i_dld_str_state_t *statep = arg;
141 dld_str_t *dsp = (dld_str_t *)val;
142 mac_handle_t mh;
144 if (statep->ds_major != dsp->ds_major)
145 return (MH_WALK_CONTINUE);
147 ASSERT(statep->ds_minor != 0);
148 mh = dsp->ds_mh;
150 if (statep->ds_minor == dsp->ds_minor) {
152 * Clone: a clone minor is unique. we can terminate the
153 * walk if we find a matching stream -- even if we fail
154 * to obtain the devinfo.
156 if (mh != NULL) {
157 statep->ds_dip = mac_devinfo_get(mh);
158 statep->ds_instance = DLS_MINOR2INST(mac_minor(mh));
160 return (MH_WALK_TERMINATE);
162 return (MH_WALK_CONTINUE);
165 static dev_info_t *
166 dld_finddevinfo(dev_t dev)
168 dev_info_t *dip;
169 i_dld_str_state_t state;
171 if (getminor(dev) == 0)
172 return (NULL);
175 * See if it's a minor node of a link
177 if ((dip = dls_link_devinfo(dev)) != NULL)
178 return (dip);
180 state.ds_minor = getminor(dev);
181 state.ds_major = getmajor(dev);
182 state.ds_dip = NULL;
183 state.ds_instance = -1;
185 mod_hash_walk(str_hashp, i_dld_str_walker, &state);
186 return (state.ds_dip);
190 dld_devt_to_instance(dev_t dev)
192 minor_t minor;
193 i_dld_str_state_t state;
196 * GLDv3 numbers DLPI style 1 node as the instance number + 1.
197 * Minor number 0 is reserved for the DLPI style 2 unattached
198 * node.
201 if ((minor = getminor(dev)) == 0)
202 return (-1);
205 * Check for unopened style 1 node.
206 * Note that this doesn't *necessarily* work for legacy
207 * devices, but this code is only called within the
208 * getinfo(9e) implementation for true GLDv3 devices, so it
209 * doesn't matter.
211 if (minor > 0 && minor <= DLS_MAX_MINOR) {
212 return (DLS_MINOR2INST(minor));
215 state.ds_minor = getminor(dev);
216 state.ds_major = getmajor(dev);
217 state.ds_dip = NULL;
218 state.ds_instance = -1;
220 mod_hash_walk(str_hashp, i_dld_str_walker, &state);
221 return (state.ds_instance);
225 * devo_getinfo: getinfo(9e)
227 * NB: This may be called for a provider before the provider's
228 * instances are attached. Hence, if a particular provider needs a
229 * special mapping (the mac instance != ddi_get_instance()), then it
230 * may need to provide its own implmentation using the
231 * mac_devt_to_instance() function, and translating the returned mac
232 * instance to a devinfo instance. For dev_t's where the minor number
233 * is too large (i.e. > MAC_MAX_MINOR), the provider can call this
234 * function indirectly via the mac_getinfo() function.
236 /*ARGSUSED*/
238 dld_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resp)
240 dev_info_t *devinfo;
241 minor_t minor = getminor((dev_t)arg);
242 int rc = DDI_FAILURE;
244 switch (cmd) {
245 case DDI_INFO_DEVT2DEVINFO:
246 if ((devinfo = dld_finddevinfo((dev_t)arg)) != NULL) {
247 *(dev_info_t **)resp = devinfo;
248 rc = DDI_SUCCESS;
250 break;
251 case DDI_INFO_DEVT2INSTANCE:
252 if (minor > 0 && minor <= DLS_MAX_MINOR) {
253 *resp = (void *)(uintptr_t)DLS_MINOR2INST(minor);
254 rc = DDI_SUCCESS;
255 } else if (minor > DLS_MAX_MINOR &&
256 (devinfo = dld_finddevinfo((dev_t)arg)) != NULL) {
257 *resp = (void *)(uintptr_t)ddi_get_instance(devinfo);
258 rc = DDI_SUCCESS;
260 break;
262 return (rc);
265 void *
266 dld_str_private(queue_t *q)
268 return (((dld_str_t *)(q->q_ptr))->ds_private);
272 dld_str_open(queue_t *rq, dev_t *devp, void *private)
274 dld_str_t *dsp;
275 major_t major;
276 minor_t minor;
277 int err;
279 major = getmajor(*devp);
280 minor = getminor(*devp);
283 * Create a new dld_str_t for the stream. This will grab a new minor
284 * number that will be handed back in the cloned dev_t. Creation may
285 * fail if we can't allocate the dummy mblk used for flow-control.
287 dsp = dld_str_create(rq, DLD_DLPI, major,
288 ((minor == 0) ? DL_STYLE2 : DL_STYLE1));
289 if (dsp == NULL)
290 return (ENOSR);
292 ASSERT(dsp->ds_dlstate == DL_UNATTACHED);
293 dsp->ds_private = private;
294 if (minor != 0) {
296 * Style 1 open
298 if ((err = dld_str_attach(dsp, (t_uscalar_t)minor - 1)) != 0)
299 goto failed;
301 ASSERT(dsp->ds_dlstate == DL_UNBOUND);
302 } else {
303 (void) qassociate(rq, -1);
307 * Enable the queue srv(9e) routine.
309 qprocson(rq);
312 * Construct a cloned dev_t to hand back.
314 *devp = makedevice(getmajor(*devp), dsp->ds_minor);
315 return (0);
317 failed:
318 dld_str_destroy(dsp);
319 return (err);
323 dld_str_close(queue_t *rq)
325 dld_str_t *dsp = rq->q_ptr;
328 * All modules on top have been popped off. So there can't be any
329 * threads from the top.
331 ASSERT(dsp->ds_datathr_cnt == 0);
334 * Wait until pending DLPI requests are processed.
336 mutex_enter(&dsp->ds_lock);
337 while (dsp->ds_dlpi_pending)
338 cv_wait(&dsp->ds_dlpi_pending_cv, &dsp->ds_lock);
339 mutex_exit(&dsp->ds_lock);
343 * This stream was open to a provider node. Check to see
344 * if it has been cleanly shut down.
346 if (dsp->ds_dlstate != DL_UNATTACHED) {
348 * The stream is either open to a style 1 provider or
349 * this is not clean shutdown. Detach from the PPA.
350 * (This is still ok even in the style 1 case).
352 dld_str_detach(dsp);
355 dld_str_destroy(dsp);
356 return (0);
360 * qi_qopen: open(9e)
362 /*ARGSUSED*/
364 dld_open(queue_t *rq, dev_t *devp, int flag, int sflag, cred_t *credp)
366 if (sflag == MODOPEN)
367 return (ENOTSUP);
370 * This is a cloning driver and therefore each queue should only
371 * ever get opened once.
373 if (rq->q_ptr != NULL)
374 return (EBUSY);
376 return (dld_str_open(rq, devp, NULL));
380 * qi_qclose: close(9e)
382 /* ARGSUSED */
384 dld_close(queue_t *rq, int flags __unused, cred_t *credp __unused)
387 * Disable the queue srv(9e) routine.
389 qprocsoff(rq);
391 return (dld_str_close(rq));
395 * qi_qputp: put(9e)
397 void
398 dld_wput(queue_t *wq, mblk_t *mp)
400 dld_str_t *dsp = (dld_str_t *)wq->q_ptr;
401 dld_str_mode_t mode;
403 switch (DB_TYPE(mp)) {
404 case M_DATA:
405 mutex_enter(&dsp->ds_lock);
406 mode = dsp->ds_mode;
407 if ((dsp->ds_dlstate != DL_IDLE) ||
408 (mode != DLD_FASTPATH && mode != DLD_RAW)) {
409 mutex_exit(&dsp->ds_lock);
410 freemsg(mp);
411 break;
414 DLD_DATATHR_INC(dsp);
415 mutex_exit(&dsp->ds_lock);
416 if (mode == DLD_FASTPATH) {
417 if (dsp->ds_mip->mi_media == DL_ETHER &&
418 (MBLKL(mp) < sizeof (struct ether_header))) {
419 freemsg(mp);
420 } else {
421 (void) str_mdata_fastpath_put(dsp, mp, 0, 0);
423 } else {
424 str_mdata_raw_put(dsp, mp);
426 DLD_DATATHR_DCR(dsp);
427 break;
428 case M_PROTO:
429 case M_PCPROTO: {
430 t_uscalar_t prim;
432 if (MBLKL(mp) < sizeof (t_uscalar_t))
433 break;
435 prim = ((union DL_primitives *)mp->b_rptr)->dl_primitive;
437 if (prim == DL_UNITDATA_REQ) {
438 proto_unitdata_req(dsp, mp);
439 } else {
440 dld_wput_nondata(dsp, mp);
442 break;
445 case M_IOCTL:
446 dld_wput_nondata(dsp, mp);
447 break;
449 case M_FLUSH:
450 if (*mp->b_rptr & FLUSHW) {
451 DLD_CLRQFULL(dsp);
452 *mp->b_rptr &= ~FLUSHW;
455 if (*mp->b_rptr & FLUSHR) {
456 qreply(wq, mp);
457 } else {
458 freemsg(mp);
460 break;
462 default:
463 freemsg(mp);
464 break;
469 * qi_srvp: srv(9e)
471 void
472 dld_wsrv(queue_t *wq)
474 dld_str_t *dsp = wq->q_ptr;
476 DLD_CLRQFULL(dsp);
479 void
480 dld_init_ops(struct dev_ops *ops, const char *name)
482 struct streamtab *stream;
483 struct qinit *rq, *wq;
484 struct module_info *modinfo;
486 modinfo = kmem_zalloc(sizeof (struct module_info), KM_SLEEP);
487 modinfo->mi_idname = kmem_zalloc(FMNAMESZ, KM_SLEEP);
488 (void) snprintf(modinfo->mi_idname, FMNAMESZ, "%s", name);
489 modinfo->mi_minpsz = 0;
490 modinfo->mi_maxpsz = 64*1024;
491 modinfo->mi_hiwat = 1;
492 modinfo->mi_lowat = 0;
494 rq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP);
495 rq->qi_qopen = dld_open;
496 rq->qi_qclose = dld_close;
497 rq->qi_minfo = modinfo;
499 wq = kmem_zalloc(sizeof (struct qinit), KM_SLEEP);
500 wq->qi_putp = (pfi_t)dld_wput;
501 wq->qi_srvp = (pfi_t)dld_wsrv;
502 wq->qi_minfo = modinfo;
504 stream = kmem_zalloc(sizeof (struct streamtab), KM_SLEEP);
505 stream->st_rdinit = rq;
506 stream->st_wrinit = wq;
507 ops->devo_cb_ops->cb_str = stream;
509 if (ops->devo_getinfo == NULL)
510 ops->devo_getinfo = &dld_getinfo;
513 void
514 dld_fini_ops(struct dev_ops *ops)
516 struct streamtab *stream;
517 struct qinit *rq, *wq;
518 struct module_info *modinfo;
520 stream = ops->devo_cb_ops->cb_str;
521 rq = stream->st_rdinit;
522 wq = stream->st_wrinit;
523 modinfo = rq->qi_minfo;
524 ASSERT(wq->qi_minfo == modinfo);
526 kmem_free(stream, sizeof (struct streamtab));
527 kmem_free(wq, sizeof (struct qinit));
528 kmem_free(rq, sizeof (struct qinit));
529 kmem_free(modinfo->mi_idname, FMNAMESZ);
530 kmem_free(modinfo, sizeof (struct module_info));
534 * Initialize this module's data structures.
536 void
537 dld_str_init(void)
540 * Create dld_str_t object cache.
542 str_cachep = kmem_cache_create("dld_str_cache", sizeof (dld_str_t),
543 0, str_constructor, str_destructor, NULL, NULL, NULL, 0);
544 ASSERT(str_cachep != NULL);
547 * Create a hash table for maintaining dld_str_t's.
548 * The ds_minor field (the clone minor number) of a dld_str_t
549 * is used as a key for this hash table because this number is
550 * globally unique (allocated from "dls_minor_arena").
552 str_hashp = mod_hash_create_idhash("dld_str_hash", STR_HASHSZ,
553 mod_hash_null_valdtor);
555 mutex_init(&dld_taskq_lock, NULL, MUTEX_DRIVER, NULL);
556 cv_init(&dld_taskq_cv, NULL, CV_DRIVER, NULL);
558 dld_taskq_quit = B_FALSE;
559 dld_taskq_done = B_FALSE;
560 list_create(&dld_taskq_list, sizeof (dld_str_t),
561 offsetof(dld_str_t, ds_tqlist));
562 (void) thread_create(NULL, 0, dld_taskq_dispatch, NULL, 0,
563 &p0, TS_RUN, minclsyspri);
567 * Tear down this module's data structures.
570 dld_str_fini(void)
573 * Make sure that there are no objects in use.
575 if (str_count != 0)
576 return (EBUSY);
579 * Ask the dld_taskq thread to quit and wait for it to be done
581 mutex_enter(&dld_taskq_lock);
582 dld_taskq_quit = B_TRUE;
583 cv_signal(&dld_taskq_cv);
584 while (!dld_taskq_done)
585 cv_wait(&dld_taskq_cv, &dld_taskq_lock);
586 mutex_exit(&dld_taskq_lock);
587 list_destroy(&dld_taskq_list);
589 * Destroy object cache.
591 kmem_cache_destroy(str_cachep);
592 mod_hash_destroy_idhash(str_hashp);
593 return (0);
597 * Create a new dld_str_t object.
599 dld_str_t *
600 dld_str_create(queue_t *rq, uint_t type, major_t major, t_uscalar_t style)
602 dld_str_t *dsp;
603 int err;
606 * Allocate an object from the cache.
608 atomic_inc_32(&str_count);
609 dsp = kmem_cache_alloc(str_cachep, KM_SLEEP);
612 * Allocate the dummy mblk for flow-control.
614 dsp->ds_tx_flow_mp = allocb(1, BPRI_HI);
615 if (dsp->ds_tx_flow_mp == NULL) {
616 kmem_cache_free(str_cachep, dsp);
617 atomic_dec_32(&str_count);
618 return (NULL);
620 dsp->ds_type = type;
621 dsp->ds_major = major;
622 dsp->ds_style = style;
625 * Initialize the queue pointers.
627 ASSERT(RD(rq) == rq);
628 dsp->ds_rq = rq;
629 dsp->ds_wq = WR(rq);
630 rq->q_ptr = WR(rq)->q_ptr = (void *)dsp;
633 * We want explicit control over our write-side STREAMS queue
634 * where the dummy mblk gets added/removed for flow-control.
636 noenable(WR(rq));
638 err = mod_hash_insert(str_hashp, STR_HASH_KEY(dsp->ds_minor),
639 (mod_hash_val_t)dsp);
640 ASSERT(err == 0);
641 return (dsp);
645 * Destroy a dld_str_t object.
647 void
648 dld_str_destroy(dld_str_t *dsp)
650 queue_t *rq;
651 queue_t *wq;
652 mod_hash_val_t val;
655 * Clear the queue pointers.
657 rq = dsp->ds_rq;
658 wq = dsp->ds_wq;
659 ASSERT(wq == WR(rq));
660 rq->q_ptr = wq->q_ptr = NULL;
661 dsp->ds_rq = dsp->ds_wq = NULL;
663 ASSERT(dsp->ds_dlstate == DL_UNATTACHED);
664 ASSERT(dsp->ds_sap == 0);
665 ASSERT(dsp->ds_mh == NULL);
666 ASSERT(dsp->ds_mch == NULL);
667 ASSERT(dsp->ds_promisc == 0);
668 ASSERT(dsp->ds_mph == NULL);
669 ASSERT(dsp->ds_mip == NULL);
670 ASSERT(dsp->ds_mnh == NULL);
672 ASSERT(dsp->ds_polling == B_FALSE);
673 ASSERT(dsp->ds_direct == B_FALSE);
674 ASSERT(dsp->ds_lso == B_FALSE);
675 ASSERT(dsp->ds_lso_max == 0);
676 ASSERT(dsp->ds_passivestate != DLD_ACTIVE);
679 * Reinitialize all the flags.
681 dsp->ds_notifications = 0;
682 dsp->ds_passivestate = DLD_UNINITIALIZED;
683 dsp->ds_mode = DLD_UNITDATA;
684 dsp->ds_native = B_FALSE;
685 dsp->ds_nonip = B_FALSE;
687 ASSERT(dsp->ds_datathr_cnt == 0);
688 ASSERT(dsp->ds_pending_head == NULL);
689 ASSERT(dsp->ds_pending_tail == NULL);
690 ASSERT(!dsp->ds_dlpi_pending);
692 ASSERT(dsp->ds_dlp == NULL);
693 ASSERT(dsp->ds_dmap == NULL);
694 ASSERT(dsp->ds_rx == NULL);
695 ASSERT(dsp->ds_rx_arg == NULL);
696 ASSERT(dsp->ds_next == NULL);
697 ASSERT(dsp->ds_head == NULL);
700 * Free the dummy mblk if exists.
702 if (dsp->ds_tx_flow_mp != NULL) {
703 freeb(dsp->ds_tx_flow_mp);
704 dsp->ds_tx_flow_mp = NULL;
707 (void) mod_hash_remove(str_hashp, STR_HASH_KEY(dsp->ds_minor), &val);
708 ASSERT(dsp == (dld_str_t *)val);
711 * Free the object back to the cache.
713 kmem_cache_free(str_cachep, dsp);
714 atomic_dec_32(&str_count);
718 * kmem_cache contructor function: see kmem_cache_create(9f).
720 /*ARGSUSED*/
721 static int
722 str_constructor(void *buf, void *cdrarg, int kmflags)
724 dld_str_t *dsp = buf;
726 bzero(buf, sizeof (dld_str_t));
729 * Allocate a new minor number.
731 if ((dsp->ds_minor = mac_minor_hold(kmflags == KM_SLEEP)) == 0)
732 return (-1);
735 * Initialize the DLPI state machine.
737 dsp->ds_dlstate = DL_UNATTACHED;
739 mutex_init(&dsp->ds_lock, NULL, MUTEX_DRIVER, NULL);
740 cv_init(&dsp->ds_datathr_cv, NULL, CV_DRIVER, NULL);
741 cv_init(&dsp->ds_dlpi_pending_cv, NULL, CV_DRIVER, NULL);
743 return (0);
747 * kmem_cache destructor function.
749 /*ARGSUSED*/
750 static void
751 str_destructor(void *buf, void *cdrarg)
753 dld_str_t *dsp = buf;
756 * Release the minor number.
758 mac_minor_rele(dsp->ds_minor);
760 ASSERT(dsp->ds_tx_flow_mp == NULL);
762 mutex_destroy(&dsp->ds_lock);
763 cv_destroy(&dsp->ds_datathr_cv);
764 cv_destroy(&dsp->ds_dlpi_pending_cv);
768 * Update the priority bits and VID (may need to insert tag if mp points
769 * to an untagged packet.
770 * If vid is VLAN_ID_NONE, use the VID encoded in the packet.
772 static mblk_t *
773 i_dld_ether_header_update_tag(mblk_t *mp, uint_t pri, uint16_t vid,
774 link_tagmode_t tagmode)
776 mblk_t *hmp;
777 struct ether_vlan_header *evhp;
778 struct ether_header *ehp;
779 uint16_t old_tci = 0;
780 size_t len;
782 ASSERT(pri != 0 || vid != VLAN_ID_NONE);
784 evhp = (struct ether_vlan_header *)mp->b_rptr;
785 if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) {
787 * Tagged packet, update the priority bits.
789 len = sizeof (struct ether_vlan_header);
791 if ((DB_REF(mp) > 1) || (MBLKL(mp) < len)) {
793 * In case some drivers only check the db_ref
794 * count of the first mblk, we pullup the
795 * message into a single mblk.
797 hmp = msgpullup(mp, -1);
798 if ((hmp == NULL) || (MBLKL(hmp) < len)) {
799 freemsg(hmp);
800 return (NULL);
801 } else {
802 freemsg(mp);
803 mp = hmp;
807 evhp = (struct ether_vlan_header *)mp->b_rptr;
808 old_tci = ntohs(evhp->ether_tci);
809 } else {
811 * Untagged packet. Two factors will cause us to insert a
812 * VLAN header:
813 * - This is a VLAN link (vid is specified)
814 * - The link supports user priority tagging and the priority
815 * is non-zero.
817 if (vid == VLAN_ID_NONE && tagmode == LINK_TAGMODE_VLANONLY)
818 return (mp);
820 hmp = allocb(sizeof (struct ether_vlan_header), BPRI_MED);
821 if (hmp == NULL)
822 return (NULL);
824 evhp = (struct ether_vlan_header *)hmp->b_rptr;
825 ehp = (struct ether_header *)mp->b_rptr;
828 * Copy the MAC addresses and typelen
830 bcopy(ehp, evhp, (ETHERADDRL * 2));
831 evhp->ether_type = ehp->ether_type;
832 evhp->ether_tpid = htons(ETHERTYPE_VLAN);
834 hmp->b_wptr += sizeof (struct ether_vlan_header);
835 mp->b_rptr += sizeof (struct ether_header);
838 * Free the original message if it's now empty. Link the
839 * rest of the messages to the header message.
841 if (MBLKL(mp) == 0) {
842 hmp->b_cont = mp->b_cont;
843 freeb(mp);
844 } else {
845 hmp->b_cont = mp;
847 mp = hmp;
850 if (pri == 0)
851 pri = VLAN_PRI(old_tci);
852 if (vid == VLAN_ID_NONE)
853 vid = VLAN_ID(old_tci);
854 evhp->ether_tci = htons(VLAN_TCI(pri, VLAN_CFI(old_tci), vid));
855 return (mp);
859 * M_DATA put (IP fast-path mode)
861 mac_tx_cookie_t
862 str_mdata_fastpath_put(dld_str_t *dsp, mblk_t *mp, uintptr_t f_hint,
863 uint16_t flag)
865 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER);
866 mblk_t *newmp;
867 uint_t pri;
868 mac_tx_cookie_t cookie;
870 if (is_ethernet) {
872 * Update the priority bits to the assigned priority.
874 pri = (VLAN_MBLKPRI(mp) == 0) ? dsp->ds_pri : VLAN_MBLKPRI(mp);
876 if (pri != 0) {
877 newmp = i_dld_ether_header_update_tag(mp, pri,
878 VLAN_ID_NONE, dsp->ds_dlp->dl_tagmode);
879 if (newmp == NULL)
880 goto discard;
881 mp = newmp;
885 if ((cookie = DLD_TX(dsp, mp, f_hint, flag)) != (uintptr_t)NULL) {
886 DLD_SETQFULL(dsp);
888 return (cookie);
890 discard:
891 /* TODO: bump kstat? */
892 freemsg(mp);
893 return ((uintptr_t)NULL);
897 * M_DATA put (DLIOCRAW mode)
899 static void
900 str_mdata_raw_put(dld_str_t *dsp, mblk_t *mp)
902 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER);
903 mblk_t *bp, *newmp;
904 size_t size;
905 mac_header_info_t mhi;
906 uint_t pri, vid, dvid;
907 uint_t max_sdu;
910 * Certain MAC type plugins provide an illusion for raw DLPI
911 * consumers. They pretend that the MAC layer is something that
912 * it's not for the benefit of observability tools. For example,
913 * mac_wifi pretends that it's Ethernet for such consumers.
914 * Here, unless native mode is enabled, we call into the MAC layer so
915 * that this illusion can be maintained. The plugin will optionally
916 * transform the MAC header here into something that can be passed
917 * down. The header goes from raw mode to "cooked" mode.
919 if (!dsp->ds_native) {
920 if ((newmp = mac_header_cook(dsp->ds_mh, mp)) == NULL)
921 goto discard;
922 mp = newmp;
925 size = MBLKL(mp);
928 * Check the packet is not too big and that any remaining
929 * fragment list is composed entirely of M_DATA messages. (We
930 * know the first fragment was M_DATA otherwise we could not
931 * have got here).
933 for (bp = mp->b_cont; bp != NULL; bp = bp->b_cont) {
934 if (DB_TYPE(bp) != M_DATA)
935 goto discard;
936 size += MBLKL(bp);
939 if (mac_vlan_header_info(dsp->ds_mh, mp, &mhi) != 0)
940 goto discard;
942 mac_sdu_get(dsp->ds_mh, NULL, &max_sdu);
944 * If LSO is enabled, check the size against lso_max. Otherwise,
945 * compare the packet size with max_sdu.
947 max_sdu = dsp->ds_lso ? dsp->ds_lso_max : max_sdu;
948 if (size > max_sdu + mhi.mhi_hdrsize)
949 goto discard;
951 if (is_ethernet) {
952 dvid = mac_client_vid(dsp->ds_mch);
955 * Discard the packet if this is a VLAN stream but the VID in
956 * the packet is not correct.
958 vid = VLAN_ID(mhi.mhi_tci);
959 if ((dvid != VLAN_ID_NONE) && (vid != VLAN_ID_NONE))
960 goto discard;
963 * Discard the packet if this packet is a tagged packet
964 * but both pri and VID are 0.
966 pri = VLAN_PRI(mhi.mhi_tci);
967 if (mhi.mhi_istagged && !mhi.mhi_ispvid && pri == 0 &&
968 vid == VLAN_ID_NONE)
969 goto discard;
972 * Update the priority bits to the per-stream priority if
973 * priority is not set in the packet. Update the VID for
974 * packets on a VLAN stream.
976 pri = (pri == 0) ? dsp->ds_pri : 0;
977 if ((pri != 0) || (dvid != VLAN_ID_NONE)) {
978 if ((newmp = i_dld_ether_header_update_tag(mp, pri,
979 dvid, dsp->ds_dlp->dl_tagmode)) == NULL) {
980 goto discard;
982 mp = newmp;
986 if (DLD_TX(dsp, mp, 0, 0) != (uintptr_t)NULL) {
987 /* Turn on flow-control for dld */
988 DLD_SETQFULL(dsp);
990 return;
992 discard:
993 /* TODO: bump kstat? */
994 freemsg(mp);
998 * Process DL_ATTACH_REQ (style 2) or open(2) (style 1).
1001 dld_str_attach(dld_str_t *dsp, t_uscalar_t ppa)
1003 dev_t dev;
1004 int err;
1005 const char *drvname;
1006 mac_perim_handle_t mph = NULL;
1007 boolean_t qassociated = B_FALSE;
1008 dls_link_t *dlp = NULL;
1009 dls_dl_handle_t ddp = NULL;
1011 if ((drvname = ddi_major_to_name(dsp->ds_major)) == NULL)
1012 return (EINVAL);
1014 if (dsp->ds_style == DL_STYLE2 && ppa > DLS_MAX_PPA)
1015 return (ENOTSUP);
1018 * /dev node access. This will still be supported for backward
1019 * compatibility reason.
1021 if ((dsp->ds_style == DL_STYLE2) && (strcmp(drvname, "aggr") != 0) &&
1022 (strcmp(drvname, "vnic") != 0)) {
1023 if (qassociate(dsp->ds_wq, DLS_PPA2INST(ppa)) != 0)
1024 return (EINVAL);
1025 qassociated = B_TRUE;
1028 dev = makedevice(dsp->ds_major, (minor_t)ppa + 1);
1029 if ((err = dls_devnet_hold_by_dev(dev, &ddp)) != 0)
1030 goto failed;
1032 if ((err = mac_perim_enter_by_macname(dls_devnet_mac(ddp), &mph)) != 0)
1033 goto failed;
1036 * Open a channel.
1038 if ((err = dls_link_hold(dls_devnet_mac(ddp), &dlp)) != 0)
1039 goto failed;
1041 if ((err = dls_open(dlp, ddp, dsp)) != 0)
1042 goto failed;
1045 * Set the default packet priority.
1047 dsp->ds_pri = 0;
1050 * Add a notify function so that the we get updates from the MAC.
1052 dsp->ds_mnh = mac_notify_add(dsp->ds_mh, str_notify, dsp);
1053 dsp->ds_dlstate = DL_UNBOUND;
1054 mac_perim_exit(mph);
1055 return (0);
1057 failed:
1058 if (dlp != NULL)
1059 dls_link_rele(dlp);
1060 if (mph != NULL)
1061 mac_perim_exit(mph);
1062 if (ddp != NULL)
1063 dls_devnet_rele(ddp);
1064 if (qassociated)
1065 (void) qassociate(dsp->ds_wq, -1);
1067 return (err);
1071 * Process DL_DETACH_REQ (style 2) or close(2) (style 1). Can also be called
1072 * from close(2) for style 2.
1074 void
1075 dld_str_detach(dld_str_t *dsp)
1077 mac_perim_handle_t mph;
1078 int err;
1080 ASSERT(dsp->ds_datathr_cnt == 0);
1082 mac_perim_enter_by_mh(dsp->ds_mh, &mph);
1084 * Remove the notify function.
1086 * Note that we cannot wait for the notification callback to be removed
1087 * since it could cause the deadlock with str_notify() since they both
1088 * need the mac perimeter. Continue if we cannot remove the
1089 * notification callback right now and wait after we leave the
1090 * perimeter.
1092 err = mac_notify_remove(dsp->ds_mnh, B_FALSE);
1093 dsp->ds_mnh = NULL;
1096 * Disable the capabilities
1098 dld_capabilities_disable(dsp);
1101 * Clear LSO flags.
1103 dsp->ds_lso = B_FALSE;
1104 dsp->ds_lso_max = 0;
1106 dls_close(dsp);
1107 mac_perim_exit(mph);
1110 * Now we leave the mac perimeter. If mac_notify_remove() failed
1111 * because the notification callback was in progress, wait for
1112 * it to finish before we proceed.
1114 if (err != 0)
1115 mac_notify_remove_wait(dsp->ds_mh);
1118 * An unreferenced tagged (non-persistent) vlan gets destroyed
1119 * automatically in the call to dls_devnet_rele.
1121 dls_devnet_rele(dsp->ds_ddh);
1123 dsp->ds_sap = 0;
1124 dsp->ds_mh = NULL;
1125 dsp->ds_mch = NULL;
1126 dsp->ds_mip = NULL;
1128 if (dsp->ds_style == DL_STYLE2)
1129 (void) qassociate(dsp->ds_wq, -1);
1132 * Re-initialize the DLPI state machine.
1134 dsp->ds_dlstate = DL_UNATTACHED;
1138 * This function is only called for VLAN streams. In raw mode, we strip VLAN
1139 * tags before sending packets up to the DLS clients, with the exception of
1140 * special priority tagged packets, in that case, we set the VID to 0.
1141 * mp must be a VLAN tagged packet.
1143 static mblk_t *
1144 i_dld_ether_header_strip_tag(mblk_t *mp, boolean_t keep_pri)
1146 mblk_t *newmp;
1147 struct ether_vlan_header *evhp;
1148 uint16_t tci, new_tci;
1150 ASSERT(MBLKL(mp) >= sizeof (struct ether_vlan_header));
1151 if (DB_REF(mp) > 1) {
1152 newmp = copymsg(mp);
1153 if (newmp == NULL)
1154 return (NULL);
1155 freemsg(mp);
1156 mp = newmp;
1158 evhp = (struct ether_vlan_header *)mp->b_rptr;
1160 tci = ntohs(evhp->ether_tci);
1161 if (VLAN_PRI(tci) == 0 || !keep_pri) {
1163 * Priority is 0, strip the tag.
1165 ovbcopy(mp->b_rptr, mp->b_rptr + VLAN_TAGSZ, 2 * ETHERADDRL);
1166 mp->b_rptr += VLAN_TAGSZ;
1167 } else {
1169 * Priority is not 0, update the VID to 0.
1171 new_tci = VLAN_TCI(VLAN_PRI(tci), VLAN_CFI(tci), VLAN_ID_NONE);
1172 evhp->ether_tci = htons(new_tci);
1174 return (mp);
1178 * Raw mode receive function.
1180 /*ARGSUSED*/
1181 void
1182 dld_str_rx_raw(void *arg, mac_resource_handle_t mrh, mblk_t *mp,
1183 mac_header_info_t *mhip)
1185 dld_str_t *dsp = (dld_str_t *)arg;
1186 boolean_t is_ethernet = (dsp->ds_mip->mi_media == DL_ETHER);
1187 mblk_t *next, *newmp;
1189 ASSERT(mp != NULL);
1190 do {
1192 * Get the pointer to the next packet in the chain and then
1193 * clear b_next before the packet gets passed on.
1195 next = mp->b_next;
1196 mp->b_next = NULL;
1199 * Wind back b_rptr to point at the MAC header.
1201 ASSERT(mp->b_rptr >= DB_BASE(mp) + mhip->mhi_hdrsize);
1202 mp->b_rptr -= mhip->mhi_hdrsize;
1205 * Certain MAC type plugins provide an illusion for raw
1206 * DLPI consumers. They pretend that the MAC layer is
1207 * something that it's not for the benefit of observability
1208 * tools. For example, mac_wifi pretends that it's Ethernet
1209 * for such consumers. Here, unless native mode is enabled,
1210 * we call into the MAC layer so that this illusion can be
1211 * maintained. The plugin will optionally transform the MAC
1212 * header here into something that can be passed up to raw
1213 * consumers. The header goes from "cooked" mode to raw mode.
1215 if (!dsp->ds_native) {
1216 newmp = mac_header_uncook(dsp->ds_mh, mp);
1217 if (newmp == NULL) {
1218 freemsg(mp);
1219 goto next;
1221 mp = newmp;
1225 * Strip the VLAN tag for VLAN streams.
1227 if (is_ethernet &&
1228 mac_client_vid(dsp->ds_mch) != VLAN_ID_NONE) {
1230 * The priority should be kept only for VLAN
1231 * data-links.
1233 newmp = i_dld_ether_header_strip_tag(mp,
1234 mac_client_is_vlan_vnic(dsp->ds_mch));
1235 if (newmp == NULL) {
1236 freemsg(mp);
1237 goto next;
1239 mp = newmp;
1243 * Pass the packet on.
1245 if (canputnext(dsp->ds_rq))
1246 putnext(dsp->ds_rq, mp);
1247 else
1248 freemsg(mp);
1250 next:
1252 * Move on to the next packet in the chain.
1254 mp = next;
1255 } while (mp != NULL);
1259 * Fast-path receive function.
1261 /*ARGSUSED*/
1262 void
1263 dld_str_rx_fastpath(void *arg, mac_resource_handle_t mrh, mblk_t *mp,
1264 mac_header_info_t *mhip)
1266 dld_str_t *dsp = (dld_str_t *)arg;
1267 mblk_t *next;
1268 size_t offset = 0;
1271 * MAC header stripping rules:
1272 * - Tagged packets:
1273 * a. VLAN streams. Strip the whole VLAN header including the tag.
1274 * b. Physical streams
1275 * - VLAN packets (non-zero VID). The stream must be either a
1276 * DL_PROMISC_SAP listener or a ETHERTYPE_VLAN listener.
1277 * Strip the Ethernet header but keep the VLAN header.
1278 * - Special tagged packets (zero VID)
1279 * * The stream is either a DL_PROMISC_SAP listener or a
1280 * ETHERTYPE_VLAN listener, strip the Ethernet header but
1281 * keep the VLAN header.
1282 * * Otherwise, strip the whole VLAN header.
1283 * - Untagged packets. Strip the whole MAC header.
1285 if (mhip->mhi_istagged &&
1286 (mac_client_vid(dsp->ds_mch) == VLAN_ID_NONE) &&
1287 ((dsp->ds_sap == ETHERTYPE_VLAN) ||
1288 (dsp->ds_promisc & DLS_PROMISC_SAP))) {
1289 offset = VLAN_TAGSZ;
1292 ASSERT(mp != NULL);
1293 do {
1295 * Get the pointer to the next packet in the chain and then
1296 * clear b_next before the packet gets passed on.
1298 next = mp->b_next;
1299 mp->b_next = NULL;
1302 * Wind back b_rptr to point at the VLAN header.
1304 ASSERT(mp->b_rptr >= DB_BASE(mp) + offset);
1305 mp->b_rptr -= offset;
1308 * Pass the packet on.
1310 if (canputnext(dsp->ds_rq))
1311 putnext(dsp->ds_rq, mp);
1312 else
1313 freemsg(mp);
1315 * Move on to the next packet in the chain.
1317 mp = next;
1318 } while (mp != NULL);
1322 * Default receive function (send DL_UNITDATA_IND messages).
1324 /*ARGSUSED*/
1325 void
1326 dld_str_rx_unitdata(void *arg, mac_resource_handle_t mrh, mblk_t *mp,
1327 mac_header_info_t *mhip)
1329 dld_str_t *dsp = (dld_str_t *)arg;
1330 mblk_t *ud_mp;
1331 mblk_t *next;
1332 size_t offset = 0;
1333 boolean_t strip_vlan = B_TRUE;
1336 * See MAC header stripping rules in the dld_str_rx_fastpath() function.
1338 if (mhip->mhi_istagged &&
1339 (mac_client_vid(dsp->ds_mch) == VLAN_ID_NONE) &&
1340 ((dsp->ds_sap == ETHERTYPE_VLAN) ||
1341 (dsp->ds_promisc & DLS_PROMISC_SAP))) {
1342 offset = VLAN_TAGSZ;
1343 strip_vlan = B_FALSE;
1346 ASSERT(mp != NULL);
1347 do {
1349 * Get the pointer to the next packet in the chain and then
1350 * clear b_next before the packet gets passed on.
1352 next = mp->b_next;
1353 mp->b_next = NULL;
1356 * Wind back b_rptr to point at the MAC header.
1358 ASSERT(mp->b_rptr >= DB_BASE(mp) + mhip->mhi_hdrsize);
1359 mp->b_rptr -= mhip->mhi_hdrsize;
1362 * Create the DL_UNITDATA_IND M_PROTO.
1364 if ((ud_mp = str_unitdata_ind(dsp, mp, strip_vlan)) == NULL) {
1365 freemsgchain(mp);
1366 return;
1370 * Advance b_rptr to point at the payload (or the VLAN header).
1372 mp->b_rptr += (mhip->mhi_hdrsize - offset);
1375 * Prepend the DL_UNITDATA_IND.
1377 ud_mp->b_cont = mp;
1380 * Send the message.
1382 if (canputnext(dsp->ds_rq))
1383 putnext(dsp->ds_rq, ud_mp);
1384 else
1385 freemsg(ud_mp);
1388 * Move on to the next packet in the chain.
1390 mp = next;
1391 } while (mp != NULL);
1395 * DL_NOTIFY_IND: DL_NOTE_SDU_SIZE
1397 static void
1398 str_notify_sdu_size(dld_str_t *dsp, uint_t max_sdu, uint_t multicast_sdu)
1400 mblk_t *mp;
1401 dl_notify_ind_t *dlip;
1403 if (!(dsp->ds_notifications & (DL_NOTE_SDU_SIZE|DL_NOTE_SDU_SIZE2)))
1404 return;
1406 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1407 M_PROTO, 0)) == NULL)
1408 return;
1410 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1411 dlip = (dl_notify_ind_t *)mp->b_rptr;
1412 dlip->dl_primitive = DL_NOTIFY_IND;
1413 if (dsp->ds_notifications & DL_NOTE_SDU_SIZE2) {
1414 dlip->dl_notification = DL_NOTE_SDU_SIZE2;
1415 dlip->dl_data1 = max_sdu;
1416 dlip->dl_data2 = multicast_sdu;
1417 } else {
1418 dlip->dl_notification = DL_NOTE_SDU_SIZE;
1419 dlip->dl_data = max_sdu;
1422 qreply(dsp->ds_wq, mp);
1426 * Generate DL_NOTIFY_IND messages to notify the DLPI consumer of the
1427 * current state of the interface.
1429 void
1430 dld_str_notify_ind(dld_str_t *dsp)
1432 mac_notify_type_t type;
1434 for (type = 0; type < MAC_NNOTE; type++)
1435 str_notify(dsp, type);
1438 typedef struct dl_unitdata_ind_wrapper {
1439 dl_unitdata_ind_t dl_unitdata;
1440 uint8_t dl_dest_addr[MAXMACADDRLEN + sizeof (uint16_t)];
1441 uint8_t dl_src_addr[MAXMACADDRLEN + sizeof (uint16_t)];
1442 } dl_unitdata_ind_wrapper_t;
1445 * Create a DL_UNITDATA_IND M_PROTO message.
1447 static mblk_t *
1448 str_unitdata_ind(dld_str_t *dsp, mblk_t *mp, boolean_t strip_vlan)
1450 mblk_t *nmp;
1451 dl_unitdata_ind_wrapper_t *dlwp;
1452 dl_unitdata_ind_t *dlp;
1453 mac_header_info_t mhi;
1454 uint_t addr_length;
1455 uint8_t *daddr;
1456 uint8_t *saddr;
1459 * Get the packet header information.
1461 if (mac_vlan_header_info(dsp->ds_mh, mp, &mhi) != 0)
1462 return (NULL);
1465 * Allocate a message large enough to contain the wrapper structure
1466 * defined above.
1468 if ((nmp = mexchange(dsp->ds_wq, NULL,
1469 sizeof (dl_unitdata_ind_wrapper_t), M_PROTO,
1470 DL_UNITDATA_IND)) == NULL)
1471 return (NULL);
1473 dlwp = (dl_unitdata_ind_wrapper_t *)nmp->b_rptr;
1475 dlp = &(dlwp->dl_unitdata);
1476 ASSERT(dlp == (dl_unitdata_ind_t *)nmp->b_rptr);
1477 ASSERT(dlp->dl_primitive == DL_UNITDATA_IND);
1480 * Copy in the destination address.
1482 addr_length = dsp->ds_mip->mi_addr_length;
1483 daddr = dlwp->dl_dest_addr;
1484 dlp->dl_dest_addr_offset = (uintptr_t)daddr - (uintptr_t)dlp;
1485 bcopy(mhi.mhi_daddr, daddr, addr_length);
1488 * Set the destination DLSAP to the SAP value encoded in the packet.
1490 if (mhi.mhi_istagged && !strip_vlan)
1491 *(uint16_t *)(daddr + addr_length) = ETHERTYPE_VLAN;
1492 else
1493 *(uint16_t *)(daddr + addr_length) = mhi.mhi_bindsap;
1494 dlp->dl_dest_addr_length = addr_length + sizeof (uint16_t);
1497 * If the destination address was multicast or broadcast then the
1498 * dl_group_address field should be non-zero.
1500 dlp->dl_group_address = (mhi.mhi_dsttype == MAC_ADDRTYPE_MULTICAST) ||
1501 (mhi.mhi_dsttype == MAC_ADDRTYPE_BROADCAST);
1504 * Copy in the source address if one exists. Some MAC types (DL_IB
1505 * for example) may not have access to source information.
1507 if (mhi.mhi_saddr == NULL) {
1508 dlp->dl_src_addr_offset = dlp->dl_src_addr_length = 0;
1509 } else {
1510 saddr = dlwp->dl_src_addr;
1511 dlp->dl_src_addr_offset = (uintptr_t)saddr - (uintptr_t)dlp;
1512 bcopy(mhi.mhi_saddr, saddr, addr_length);
1515 * Set the source DLSAP to the packet ethertype.
1517 *(uint16_t *)(saddr + addr_length) = mhi.mhi_origsap;
1518 dlp->dl_src_addr_length = addr_length + sizeof (uint16_t);
1521 return (nmp);
1525 * DL_NOTIFY_IND: DL_NOTE_PROMISC_ON_PHYS
1527 static void
1528 str_notify_promisc_on_phys(dld_str_t *dsp)
1530 mblk_t *mp;
1531 dl_notify_ind_t *dlip;
1533 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_ON_PHYS))
1534 return;
1536 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1537 M_PROTO, 0)) == NULL)
1538 return;
1540 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1541 dlip = (dl_notify_ind_t *)mp->b_rptr;
1542 dlip->dl_primitive = DL_NOTIFY_IND;
1543 dlip->dl_notification = DL_NOTE_PROMISC_ON_PHYS;
1545 qreply(dsp->ds_wq, mp);
1549 * DL_NOTIFY_IND: DL_NOTE_PROMISC_OFF_PHYS
1551 static void
1552 str_notify_promisc_off_phys(dld_str_t *dsp)
1554 mblk_t *mp;
1555 dl_notify_ind_t *dlip;
1557 if (!(dsp->ds_notifications & DL_NOTE_PROMISC_OFF_PHYS))
1558 return;
1560 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1561 M_PROTO, 0)) == NULL)
1562 return;
1564 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1565 dlip = (dl_notify_ind_t *)mp->b_rptr;
1566 dlip->dl_primitive = DL_NOTIFY_IND;
1567 dlip->dl_notification = DL_NOTE_PROMISC_OFF_PHYS;
1569 qreply(dsp->ds_wq, mp);
1573 * DL_NOTIFY_IND: DL_NOTE_PHYS_ADDR
1575 static void
1576 str_notify_phys_addr(dld_str_t *dsp, uint_t addr_type, const uint8_t *addr)
1578 mblk_t *mp;
1579 dl_notify_ind_t *dlip;
1580 uint_t addr_length;
1581 uint16_t ethertype;
1583 if (!(dsp->ds_notifications & DL_NOTE_PHYS_ADDR))
1584 return;
1586 addr_length = dsp->ds_mip->mi_addr_length;
1587 if ((mp = mexchange(dsp->ds_wq, NULL,
1588 sizeof (dl_notify_ind_t) + addr_length + sizeof (uint16_t),
1589 M_PROTO, 0)) == NULL)
1590 return;
1592 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1593 dlip = (dl_notify_ind_t *)mp->b_rptr;
1594 dlip->dl_primitive = DL_NOTIFY_IND;
1595 dlip->dl_notification = DL_NOTE_PHYS_ADDR;
1596 dlip->dl_data = addr_type;
1597 dlip->dl_addr_offset = sizeof (dl_notify_ind_t);
1598 dlip->dl_addr_length = addr_length + sizeof (uint16_t);
1600 bcopy(addr, &dlip[1], addr_length);
1602 ethertype = (dsp->ds_sap < ETHERTYPE_802_MIN) ? 0 : dsp->ds_sap;
1603 *(uint16_t *)((uchar_t *)(dlip + 1) + addr_length) = ethertype;
1605 qreply(dsp->ds_wq, mp);
1609 * DL_NOTIFY_IND: DL_NOTE_LINK_UP
1611 static void
1612 str_notify_link_up(dld_str_t *dsp)
1614 mblk_t *mp;
1615 dl_notify_ind_t *dlip;
1617 if (!(dsp->ds_notifications & DL_NOTE_LINK_UP))
1618 return;
1620 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1621 M_PROTO, 0)) == NULL)
1622 return;
1624 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1625 dlip = (dl_notify_ind_t *)mp->b_rptr;
1626 dlip->dl_primitive = DL_NOTIFY_IND;
1627 dlip->dl_notification = DL_NOTE_LINK_UP;
1629 qreply(dsp->ds_wq, mp);
1633 * DL_NOTIFY_IND: DL_NOTE_LINK_DOWN
1635 static void
1636 str_notify_link_down(dld_str_t *dsp)
1638 mblk_t *mp;
1639 dl_notify_ind_t *dlip;
1641 if (!(dsp->ds_notifications & DL_NOTE_LINK_DOWN))
1642 return;
1644 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1645 M_PROTO, 0)) == NULL)
1646 return;
1648 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1649 dlip = (dl_notify_ind_t *)mp->b_rptr;
1650 dlip->dl_primitive = DL_NOTIFY_IND;
1651 dlip->dl_notification = DL_NOTE_LINK_DOWN;
1653 qreply(dsp->ds_wq, mp);
1657 * DL_NOTIFY_IND: DL_NOTE_SPEED
1659 static void
1660 str_notify_speed(dld_str_t *dsp, uint32_t speed)
1662 mblk_t *mp;
1663 dl_notify_ind_t *dlip;
1665 if (!(dsp->ds_notifications & DL_NOTE_SPEED))
1666 return;
1668 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1669 M_PROTO, 0)) == NULL)
1670 return;
1672 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1673 dlip = (dl_notify_ind_t *)mp->b_rptr;
1674 dlip->dl_primitive = DL_NOTIFY_IND;
1675 dlip->dl_notification = DL_NOTE_SPEED;
1676 dlip->dl_data = speed;
1678 qreply(dsp->ds_wq, mp);
1682 * DL_NOTIFY_IND: DL_NOTE_CAPAB_RENEG
1684 static void
1685 str_notify_capab_reneg(dld_str_t *dsp)
1687 mblk_t *mp;
1688 dl_notify_ind_t *dlip;
1690 if (!(dsp->ds_notifications & DL_NOTE_CAPAB_RENEG))
1691 return;
1693 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1694 M_PROTO, 0)) == NULL)
1695 return;
1697 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1698 dlip = (dl_notify_ind_t *)mp->b_rptr;
1699 dlip->dl_primitive = DL_NOTIFY_IND;
1700 dlip->dl_notification = DL_NOTE_CAPAB_RENEG;
1702 qreply(dsp->ds_wq, mp);
1706 * DL_NOTIFY_IND: DL_NOTE_FASTPATH_FLUSH
1708 static void
1709 str_notify_fastpath_flush(dld_str_t *dsp)
1711 mblk_t *mp;
1712 dl_notify_ind_t *dlip;
1714 if (!(dsp->ds_notifications & DL_NOTE_FASTPATH_FLUSH))
1715 return;
1717 if ((mp = mexchange(dsp->ds_wq, NULL, sizeof (dl_notify_ind_t),
1718 M_PROTO, 0)) == NULL)
1719 return;
1721 bzero(mp->b_rptr, sizeof (dl_notify_ind_t));
1722 dlip = (dl_notify_ind_t *)mp->b_rptr;
1723 dlip->dl_primitive = DL_NOTIFY_IND;
1724 dlip->dl_notification = DL_NOTE_FASTPATH_FLUSH;
1726 qreply(dsp->ds_wq, mp);
1729 static void
1730 str_notify_allowed_ips(dld_str_t *dsp)
1732 mblk_t *mp;
1733 dl_notify_ind_t *dlip;
1734 size_t mp_size;
1735 mac_protect_t *mrp;
1737 if (!(dsp->ds_notifications & DL_NOTE_ALLOWED_IPS))
1738 return;
1740 mp_size = sizeof (mac_protect_t) + sizeof (dl_notify_ind_t);
1741 if ((mp = mexchange(dsp->ds_wq, NULL, mp_size, M_PROTO, 0)) == NULL)
1742 return;
1744 mrp = mac_protect_get(dsp->ds_mh);
1745 bzero(mp->b_rptr, mp_size);
1746 dlip = (dl_notify_ind_t *)mp->b_rptr;
1747 dlip->dl_primitive = DL_NOTIFY_IND;
1748 dlip->dl_notification = DL_NOTE_ALLOWED_IPS;
1749 dlip->dl_data = 0;
1750 dlip->dl_addr_offset = sizeof (dl_notify_ind_t);
1751 dlip->dl_addr_length = sizeof (mac_protect_t);
1752 bcopy(mrp, mp->b_rptr + sizeof (dl_notify_ind_t),
1753 sizeof (mac_protect_t));
1755 qreply(dsp->ds_wq, mp);
1759 * MAC notification callback.
1761 void
1762 str_notify(void *arg, mac_notify_type_t type)
1764 dld_str_t *dsp = (dld_str_t *)arg;
1765 queue_t *q = dsp->ds_wq;
1766 mac_handle_t mh = dsp->ds_mh;
1767 mac_client_handle_t mch = dsp->ds_mch;
1768 uint8_t addr[MAXMACADDRLEN];
1770 switch (type) {
1771 case MAC_NOTE_TX:
1772 qenable(q);
1773 break;
1775 case MAC_NOTE_DEVPROMISC:
1777 * Send the appropriate DL_NOTIFY_IND.
1779 if (mac_promisc_get(mh))
1780 str_notify_promisc_on_phys(dsp);
1781 else
1782 str_notify_promisc_off_phys(dsp);
1783 break;
1785 case MAC_NOTE_UNICST:
1787 * This notification is sent whenever the MAC unicast
1788 * address changes.
1790 mac_unicast_primary_get(mh, addr);
1793 * Send the appropriate DL_NOTIFY_IND.
1795 str_notify_phys_addr(dsp, DL_CURR_PHYS_ADDR, addr);
1796 break;
1798 case MAC_NOTE_DEST:
1800 * Only send up DL_NOTE_DEST_ADDR if the link has a
1801 * destination address.
1803 if (mac_dst_get(dsp->ds_mh, addr))
1804 str_notify_phys_addr(dsp, DL_CURR_DEST_ADDR, addr);
1805 break;
1807 case MAC_NOTE_LOWLINK:
1808 case MAC_NOTE_LINK:
1810 * LOWLINK refers to the actual link status. For links that
1811 * are not part of a bridge instance LOWLINK and LINK state
1812 * are the same. But for a link part of a bridge instance
1813 * LINK state refers to the aggregate link status: "up" when
1814 * at least one link part of the bridge is up and is "down"
1815 * when all links part of the bridge are down.
1817 * Clients can request to be notified of the LOWLINK state
1818 * using the DLIOCLOWLINK ioctl. Clients such as the bridge
1819 * daemon request lowlink state changes and upper layer clients
1820 * receive notifications of the aggregate link state changes
1821 * which is the default when requesting LINK UP/DOWN state
1822 * notifications.
1826 * Check that the notification type matches the one that we
1827 * want. If we want lower-level link notifications, and this
1828 * is upper, or if we want upper and this is lower, then
1829 * ignore.
1831 if ((type == MAC_NOTE_LOWLINK) != dsp->ds_lowlink)
1832 break;
1834 * This notification is sent every time the MAC driver
1835 * updates the link state.
1837 switch (mac_client_stat_get(mch, dsp->ds_lowlink ?
1838 MAC_STAT_LOWLINK_STATE : MAC_STAT_LINK_STATE)) {
1839 case LINK_STATE_UP: {
1840 uint64_t speed;
1842 * The link is up so send the appropriate
1843 * DL_NOTIFY_IND.
1845 str_notify_link_up(dsp);
1847 speed = mac_stat_get(mh, MAC_STAT_IFSPEED);
1848 str_notify_speed(dsp, (uint32_t)(speed / 1000ull));
1849 break;
1851 case LINK_STATE_DOWN:
1853 * The link is down so send the appropriate
1854 * DL_NOTIFY_IND.
1856 str_notify_link_down(dsp);
1857 break;
1859 default:
1860 break;
1862 break;
1864 case MAC_NOTE_CAPAB_CHG:
1866 * This notification is sent whenever the MAC resources
1867 * change or capabilities change. We need to renegotiate
1868 * the capabilities. Send the appropriate DL_NOTIFY_IND.
1870 str_notify_capab_reneg(dsp);
1871 break;
1873 case MAC_NOTE_SDU_SIZE: {
1874 uint_t max_sdu;
1875 uint_t multicast_sdu;
1876 mac_sdu_get2(dsp->ds_mh, NULL, &max_sdu, &multicast_sdu);
1877 str_notify_sdu_size(dsp, max_sdu, multicast_sdu);
1878 break;
1881 case MAC_NOTE_FASTPATH_FLUSH:
1882 str_notify_fastpath_flush(dsp);
1883 break;
1885 /* Unused notifications */
1886 case MAC_NOTE_MARGIN:
1887 break;
1889 case MAC_NOTE_ALLOWED_IPS:
1890 str_notify_allowed_ips(dsp);
1891 break;
1893 default:
1894 ASSERT(B_FALSE);
1895 break;
1900 * This function is called via a taskq mechansim to process all control
1901 * messages on a per 'dsp' end point.
1903 static void
1904 dld_wput_nondata_task(void *arg)
1906 dld_str_t *dsp = arg;
1907 mblk_t *mp;
1909 mutex_enter(&dsp->ds_lock);
1910 while (dsp->ds_pending_head != NULL) {
1911 mp = dsp->ds_pending_head;
1912 dsp->ds_pending_head = mp->b_next;
1913 mp->b_next = NULL;
1914 if (dsp->ds_pending_head == NULL)
1915 dsp->ds_pending_tail = NULL;
1916 mutex_exit(&dsp->ds_lock);
1918 switch (DB_TYPE(mp)) {
1919 case M_PROTO:
1920 case M_PCPROTO:
1921 dld_proto(dsp, mp);
1922 break;
1923 case M_IOCTL:
1924 dld_ioc(dsp, mp);
1925 break;
1926 default:
1927 ASSERT(0);
1930 mutex_enter(&dsp->ds_lock);
1932 ASSERT(dsp->ds_pending_tail == NULL);
1933 dsp->ds_dlpi_pending = 0;
1934 cv_broadcast(&dsp->ds_dlpi_pending_cv);
1935 mutex_exit(&dsp->ds_lock);
1939 * Kernel thread to handle taskq dispatch failures in dld_wput_data. This
1940 * thread is started at boot time.
1942 static void
1943 dld_taskq_dispatch(void)
1945 callb_cpr_t cprinfo;
1946 dld_str_t *dsp;
1948 CALLB_CPR_INIT(&cprinfo, &dld_taskq_lock, callb_generic_cpr,
1949 "dld_taskq_dispatch");
1950 mutex_enter(&dld_taskq_lock);
1952 while (!dld_taskq_quit) {
1953 dsp = list_head(&dld_taskq_list);
1954 while (dsp != NULL) {
1955 list_remove(&dld_taskq_list, dsp);
1956 mutex_exit(&dld_taskq_lock);
1957 VERIFY(taskq_dispatch(dld_taskq, dld_wput_nondata_task,
1958 dsp, TQ_SLEEP) != 0);
1959 mutex_enter(&dld_taskq_lock);
1960 dsp = list_head(&dld_taskq_list);
1963 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1964 cv_wait(&dld_taskq_cv, &dld_taskq_lock);
1965 CALLB_CPR_SAFE_END(&cprinfo, &dld_taskq_lock);
1968 dld_taskq_done = B_TRUE;
1969 cv_signal(&dld_taskq_cv);
1970 CALLB_CPR_EXIT(&cprinfo);
1971 thread_exit();
1975 * All control operations are serialized on the 'dsp' and are also funneled
1976 * through a taskq mechanism to ensure that subsequent processing has kernel
1977 * context and can safely use cv_wait.
1979 * Mechanisms to handle taskq dispatch failures
1981 * The only way to be sure that taskq dispatch does not fail is to either
1982 * specify TQ_SLEEP or to use a static taskq and prepopulate it with
1983 * some number of entries and make sure that the number of outstanding requests
1984 * are less than that number. We can't use TQ_SLEEP since we don't know the
1985 * context. Nor can we bound the total number of 'dsp' end points. So we are
1986 * unable to use either of the above schemes, and are forced to deal with
1987 * taskq dispatch failures. Note that even dynamic taskq could fail in
1988 * dispatch if TQ_NOSLEEP is specified, since this flag is translated
1989 * eventually to KM_NOSLEEP and kmem allocations could fail in the taskq
1990 * framework.
1992 * We maintain a queue of 'dsp's that encountered taskq dispatch failure.
1993 * We also have a single global thread to retry the taskq dispatch. This
1994 * thread loops in 'dld_taskq_dispatch' and retries the taskq dispatch, but
1995 * uses TQ_SLEEP to ensure eventual success of the dispatch operation.
1997 static void
1998 dld_wput_nondata(dld_str_t *dsp, mblk_t *mp)
2000 ASSERT(mp->b_next == NULL);
2001 mutex_enter(&dsp->ds_lock);
2002 if (dsp->ds_pending_head != NULL) {
2003 ASSERT(dsp->ds_dlpi_pending);
2004 dsp->ds_pending_tail->b_next = mp;
2005 dsp->ds_pending_tail = mp;
2006 mutex_exit(&dsp->ds_lock);
2007 return;
2009 ASSERT(dsp->ds_pending_tail == NULL);
2010 dsp->ds_pending_head = dsp->ds_pending_tail = mp;
2012 * At this point if ds_dlpi_pending is set, it implies that the taskq
2013 * thread is still active and is processing the last message, though
2014 * the pending queue has been emptied.
2016 if (dsp->ds_dlpi_pending) {
2017 mutex_exit(&dsp->ds_lock);
2018 return;
2021 dsp->ds_dlpi_pending = 1;
2022 mutex_exit(&dsp->ds_lock);
2024 if (taskq_dispatch(dld_taskq, dld_wput_nondata_task, dsp,
2025 TQ_NOSLEEP) != 0)
2026 return;
2028 mutex_enter(&dld_taskq_lock);
2029 list_insert_tail(&dld_taskq_list, dsp);
2030 cv_signal(&dld_taskq_cv);
2031 mutex_exit(&dld_taskq_lock);
2035 * Process an M_IOCTL message.
2037 static void
2038 dld_ioc(dld_str_t *dsp, mblk_t *mp)
2040 uint_t cmd;
2042 cmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
2043 ASSERT(dsp->ds_type == DLD_DLPI);
2045 switch (cmd) {
2046 case DLIOCNATIVE:
2047 ioc_native(dsp, mp);
2048 break;
2049 case DLIOCMARGININFO:
2050 ioc_margin(dsp, mp);
2051 break;
2052 case DLIOCRAW:
2053 ioc_raw(dsp, mp);
2054 break;
2055 case DLIOCHDRINFO:
2056 ioc_fast(dsp, mp);
2057 break;
2058 case DLIOCLOWLINK:
2059 ioc_lowlink(dsp, mp);
2060 break;
2061 default:
2062 ioc(dsp, mp);
2067 * DLIOCNATIVE
2069 static void
2070 ioc_native(dld_str_t *dsp, mblk_t *mp)
2072 queue_t *q = dsp->ds_wq;
2073 const mac_info_t *mip = dsp->ds_mip;
2076 * Native mode can be enabled if it's disabled and if the
2077 * native media type is different.
2079 if (!dsp->ds_native && mip->mi_media != mip->mi_nativemedia)
2080 dsp->ds_native = B_TRUE;
2082 if (dsp->ds_native)
2083 miocack(q, mp, 0, mip->mi_nativemedia);
2084 else
2085 miocnak(q, mp, 0, ENOTSUP);
2089 * DLIOCMARGININFO
2091 static void
2092 ioc_margin(dld_str_t *dsp, mblk_t *mp)
2094 queue_t *q = dsp->ds_wq;
2095 uint32_t margin;
2096 int err;
2098 if (dsp->ds_dlstate == DL_UNATTACHED) {
2099 err = EINVAL;
2100 goto failed;
2102 if ((err = miocpullup(mp, sizeof (uint32_t))) != 0)
2103 goto failed;
2105 mac_margin_get(dsp->ds_mh, &margin);
2106 *((uint32_t *)mp->b_cont->b_rptr) = margin;
2107 miocack(q, mp, sizeof (uint32_t), 0);
2108 return;
2110 failed:
2111 miocnak(q, mp, 0, err);
2115 * DLIOCRAW
2117 static void
2118 ioc_raw(dld_str_t *dsp, mblk_t *mp)
2120 queue_t *q = dsp->ds_wq;
2121 mac_perim_handle_t mph;
2123 if (dsp->ds_mh == NULL) {
2124 dsp->ds_mode = DLD_RAW;
2125 miocack(q, mp, 0, 0);
2126 return;
2129 mac_perim_enter_by_mh(dsp->ds_mh, &mph);
2130 if (dsp->ds_polling || dsp->ds_direct) {
2131 mac_perim_exit(mph);
2132 miocnak(q, mp, 0, EPROTO);
2133 return;
2136 if (dsp->ds_mode != DLD_RAW && dsp->ds_dlstate == DL_IDLE) {
2138 * Set the receive callback.
2140 dls_rx_set(dsp, dld_str_rx_raw, dsp);
2144 * Note that raw mode is enabled.
2146 dsp->ds_mode = DLD_RAW;
2147 mac_perim_exit(mph);
2149 miocack(q, mp, 0, 0);
2153 * DLIOCHDRINFO
2155 static void
2156 ioc_fast(dld_str_t *dsp, mblk_t *mp)
2158 dl_unitdata_req_t *dlp;
2159 off_t off;
2160 size_t len;
2161 const uint8_t *addr;
2162 uint16_t sap;
2163 mblk_t *nmp;
2164 mblk_t *hmp;
2165 uint_t addr_length;
2166 queue_t *q = dsp->ds_wq;
2167 int err;
2168 mac_perim_handle_t mph;
2170 if (dld_opt & DLD_OPT_NO_FASTPATH) {
2171 err = ENOTSUP;
2172 goto failed;
2176 * DLIOCHDRINFO should only come from IP. The one initiated from
2177 * user-land should not be allowed.
2179 if (((struct iocblk *)mp->b_rptr)->ioc_cr != kcred) {
2180 err = EINVAL;
2181 goto failed;
2184 nmp = mp->b_cont;
2185 if (nmp == NULL || MBLKL(nmp) < sizeof (dl_unitdata_req_t) ||
2186 (dlp = (dl_unitdata_req_t *)nmp->b_rptr,
2187 dlp->dl_primitive != DL_UNITDATA_REQ)) {
2188 err = EINVAL;
2189 goto failed;
2192 off = dlp->dl_dest_addr_offset;
2193 len = dlp->dl_dest_addr_length;
2195 if (!MBLKIN(nmp, off, len)) {
2196 err = EINVAL;
2197 goto failed;
2200 if (dsp->ds_dlstate != DL_IDLE) {
2201 err = ENOTSUP;
2202 goto failed;
2205 addr_length = dsp->ds_mip->mi_addr_length;
2206 if (len != addr_length + sizeof (uint16_t)) {
2207 err = EINVAL;
2208 goto failed;
2211 addr = nmp->b_rptr + off;
2212 sap = *(uint16_t *)(nmp->b_rptr + off + addr_length);
2214 if ((hmp = dls_header(dsp, addr, sap, 0, NULL)) == NULL) {
2215 err = ENOMEM;
2216 goto failed;
2220 * This ioctl might happen concurrently with a direct call to dld_capab
2221 * that tries to enable direct and/or poll capabilities. Since the
2222 * stack does not serialize them, we do so here to avoid mixing
2223 * the callbacks.
2225 mac_perim_enter_by_mh(dsp->ds_mh, &mph);
2226 if (dsp->ds_mode != DLD_FASTPATH) {
2228 * Set the receive callback (unless polling is enabled).
2230 if (!dsp->ds_polling && !dsp->ds_direct)
2231 dls_rx_set(dsp, dld_str_rx_fastpath, dsp);
2234 * Note that fast-path mode is enabled.
2236 dsp->ds_mode = DLD_FASTPATH;
2238 mac_perim_exit(mph);
2240 freemsg(nmp->b_cont);
2241 nmp->b_cont = hmp;
2243 miocack(q, mp, MBLKL(nmp) + MBLKL(hmp), 0);
2244 return;
2245 failed:
2246 miocnak(q, mp, 0, err);
2250 * DLIOCLOWLINK: request actual link state changes. When the
2251 * link is part of a bridge instance the client receives actual
2252 * link state changes and not the aggregate link status. Used by
2253 * the bridging daemon (bridged) for proper RSTP operation.
2255 static void
2256 ioc_lowlink(dld_str_t *dsp, mblk_t *mp)
2258 queue_t *q = dsp->ds_wq;
2259 int err;
2261 if ((err = miocpullup(mp, sizeof (int))) != 0) {
2262 miocnak(q, mp, 0, err);
2263 } else {
2264 /* LINTED: alignment */
2265 dsp->ds_lowlink = *(boolean_t *)mp->b_cont->b_rptr;
2266 miocack(q, mp, 0, 0);
2271 * Catch-all handler.
2273 static void
2274 ioc(dld_str_t *dsp, mblk_t *mp)
2276 queue_t *q = dsp->ds_wq;
2278 if (dsp->ds_dlstate == DL_UNATTACHED) {
2279 miocnak(q, mp, 0, EINVAL);
2280 return;
2282 mac_ioctl(dsp->ds_mh, q, mp);