Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / io / nvme / nvme.c
blob168227a83a0c6a8162e3d5279abcd2a1e976fcd8
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2018 Nexenta Systems, Inc.
14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 * Copyright 2018 Joyent, Inc.
20 * blkdev driver for NVMe compliant storage devices
22 * This driver was written to conform to version 1.2.1 of the NVMe
23 * specification. It may work with newer versions, but that is completely
24 * untested and disabled by default.
26 * The driver has only been tested on x86 systems and will not work on big-
27 * endian systems without changes to the code accessing registers and data
28 * structures used by the hardware.
31 * Interrupt Usage:
33 * The driver will use a single interrupt while configuring the device as the
34 * specification requires, but contrary to the specification it will try to use
35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 * have one interrupt vector per CPU, but it will work correctly if less are
38 * available. Interrupts can be shared by queues, the interrupt handler will
39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 * handler will retrieve completed commands from all queues sharing an interrupt
42 * vector and will post them to a taskq for completion processing.
45 * Command Processing:
47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 * available interrupt vector, with the queue length usually much smaller than
50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 * interrupt vectors will be used.
53 * Additionally the hardware provides a single special admin queue pair that can
54 * hold up to 4096 admin commands.
56 * From the hardware perspective both queues of a queue pair are independent,
57 * but they share some driver state: the command array (holding pointers to
58 * commands currently being processed by the hardware) and the active command
59 * counter. Access to a queue pair and the shared state is protected by
60 * nq_mutex.
62 * When a command is submitted to a queue pair the active command counter is
63 * incremented and a pointer to the command is stored in the command array. The
64 * array index is used as command identifier (CID) in the submission queue
65 * entry. Some commands may take a very long time to complete, and if the queue
66 * wraps around in that time a submission may find the next array slot to still
67 * be used by a long-running command. In this case the array is sequentially
68 * searched for the next free slot. The length of the command array is the same
69 * as the configured queue length. Queue overrun is prevented by the semaphore,
70 * so a command submission may block if the queue is full.
73 * Polled I/O Support:
75 * For kernel core dump support the driver can do polled I/O. As interrupts are
76 * turned off while dumping the driver will just submit a command in the regular
77 * way, and then repeatedly attempt a command retrieval until it gets the
78 * command back.
81 * Namespace Support:
83 * NVMe devices can have multiple namespaces, each being a independent data
84 * store. The driver supports multiple namespaces and creates a blkdev interface
85 * for each namespace found. Namespaces can have various attributes to support
86 * protection information. This driver does not support any of this and ignores
87 * namespaces that have these attributes.
89 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90 * (EUI64). This driver uses the EUI64 if present to generate the devid and
91 * passes it to blkdev to use it in the device node names. As this is currently
92 * untested namespaces with EUI64 are ignored by default.
94 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95 * single controller. This is an artificial limit imposed by the driver to be
96 * able to address a reasonable number of controllers and namespaces using a
97 * 32bit minor node number.
100 * Minor nodes:
102 * For each NVMe device the driver exposes one minor node for the controller and
103 * one minor node for each namespace. The only operations supported by those
104 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105 * interface for the nvmeadm(8) utility.
108 * Blkdev Interface:
110 * This driver uses blkdev to do all the heavy lifting involved with presenting
111 * a disk device to the system. As a result, the processing of I/O requests is
112 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113 * setup, and splitting of transfers into manageable chunks.
115 * I/O requests coming in from blkdev are turned into NVM commands and posted to
116 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117 * queues. There is currently no timeout handling of I/O commands.
119 * Blkdev also supports querying device/media information and generating a
120 * devid. The driver reports the best block size as determined by the namespace
121 * format back to blkdev as physical block size to support partition and block
122 * alignment. The devid is either based on the namespace EUI64, if present, or
123 * composed using the device vendor ID, model number, serial number, and the
124 * namespace ID.
127 * Error Handling:
129 * Error handling is currently limited to detecting fatal hardware errors,
130 * either by asynchronous events, or synchronously through command status or
131 * admin command timeouts. In case of severe errors the device is fenced off,
132 * all further requests will return EIO. FMA is then called to fault the device.
134 * The hardware has a limit for outstanding asynchronous event requests. Before
135 * this limit is known the driver assumes it is at least 1 and posts a single
136 * asynchronous request. Later when the limit is known more asynchronous event
137 * requests are posted to allow quicker reception of error information. When an
138 * asynchronous event is posted by the hardware the driver will parse the error
139 * status fields and log information or fault the device, depending on the
140 * severity of the asynchronous event. The asynchronous event request is then
141 * reused and posted to the admin queue again.
143 * On command completion the command status is checked for errors. In case of
144 * errors indicating a driver bug the driver panics. Almost all other error
145 * status values just cause EIO to be returned.
147 * Command timeouts are currently detected for all admin commands except
148 * asynchronous event requests. If a command times out and the hardware appears
149 * to be healthy the driver attempts to abort the command. The original command
150 * timeout is also applied to the abort command. If the abort times out too the
151 * driver assumes the device to be dead, fences it off, and calls FMA to retire
152 * it. In all other cases the aborted command should return immediately with a
153 * status indicating it was aborted, and the driver will wait indefinitely for
154 * that to happen. No timeout handling of normal I/O commands is presently done.
156 * Any command that times out due to the controller dropping dead will be put on
157 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158 * memory being reused by the system and later be written to by a "dead" NVMe
159 * controller.
162 * Locking:
164 * Each queue pair has its own nq_mutex, which must be held when accessing the
165 * associated queue registers or the shared state of the queue pair. Callers of
166 * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168 * themselves.
170 * Each command also has its own nc_mutex, which is associated with the
171 * condition variable nc_cv. It is only used on admin commands which are run
172 * synchronously. In that case it must be held across calls to
173 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174 * nvme_admin_cmd(). It must also be held whenever the completion state of the
175 * command is changed or while a admin command timeout is handled.
177 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178 * More than one nc_mutex may only be held when aborting commands. In this case,
179 * the nc_mutex of the command to be aborted must be held across the call to
180 * nvme_abort_cmd() to prevent the command from completing while the abort is in
181 * progress.
183 * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184 * and exclusive-open flag nm_oexcl.
187 * Quiesce / Fast Reboot:
189 * The driver currently does not support fast reboot. A quiesce(9E) entry point
190 * is still provided which is used to send a shutdown notification to the
191 * device.
194 * Driver Configuration:
196 * The following driver properties can be changed to control some aspects of the
197 * drivers operation:
198 * - strict-version: can be set to 0 to allow devices conforming to newer
199 * major versions to be used
200 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201 * specific command status as a fatal error leading device faulting
202 * - admin-queue-len: the maximum length of the admin queue (16-4096)
203 * - io-queue-len: the maximum length of the I/O queues (16-65536)
204 * - async-event-limit: the maximum number of asynchronous event requests to be
205 * posted by the driver
206 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207 * cache
208 * - min-phys-block-size: the minimum physical block size to report to blkdev,
209 * which is among other things the basis for ZFS vdev ashift
212 * TODO:
213 * - figure out sane default for I/O queue depth reported to blkdev
214 * - FMA handling of media errors
215 * - support for devices supporting very large I/O requests using chained PRPs
216 * - support for configuring hardware parameters like interrupt coalescing
217 * - support for media formatting and hard partitioning into namespaces
218 * - support for big-endian systems
219 * - support for fast reboot
220 * - support for firmware updates
221 * - support for NVMe Subsystem Reset (1.1)
222 * - support for Scatter/Gather lists (1.1)
223 * - support for Reservations (1.1)
224 * - support for power management
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
252 #include <sys/nvme.h>
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
262 * Assertions to make sure that we've properly captured various aspects of the
263 * packed structures and haven't broken them during updates.
265 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
266 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
267 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
268 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
269 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
270 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
271 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
273 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
274 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
275 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
276 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
277 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
279 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
280 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
281 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
284 /* NVMe spec version supported */
285 static const int nvme_version_major = 1;
287 /* tunable for admin command timeout in seconds, default is 1s */
288 int nvme_admin_cmd_timeout = 1;
290 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
291 int nvme_format_cmd_timeout = 600;
293 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
294 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
295 static int nvme_quiesce(dev_info_t *);
296 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
297 static int nvme_setup_interrupts(nvme_t *, int, int);
298 static void nvme_release_interrupts(nvme_t *);
299 static uint_t nvme_intr(caddr_t, caddr_t);
301 static void nvme_shutdown(nvme_t *, int, boolean_t);
302 static boolean_t nvme_reset(nvme_t *, boolean_t);
303 static int nvme_init(nvme_t *);
304 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
305 static void nvme_free_cmd(nvme_cmd_t *);
306 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
307 bd_xfer_t *);
308 static void nvme_admin_cmd(nvme_cmd_t *, int);
309 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
310 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
311 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
312 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
313 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
314 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
315 static void nvme_wakeup_cmd(void *);
316 static void nvme_async_event_task(void *);
318 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
319 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
320 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
321 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
322 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
323 static inline int nvme_check_cmd_status(nvme_cmd_t *);
325 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
326 static void nvme_async_event(nvme_t *);
327 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
328 uint8_t, boolean_t, uint8_t);
329 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
330 ...);
331 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
332 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
333 uint32_t *);
334 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
335 void **, size_t *);
336 static int nvme_write_cache_set(nvme_t *, boolean_t);
337 static int nvme_set_nqueues(nvme_t *, uint16_t *);
339 static void nvme_free_dma(nvme_dma_t *);
340 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
341 nvme_dma_t **);
342 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
343 nvme_dma_t **);
344 static void nvme_free_qpair(nvme_qpair_t *);
345 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
346 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
348 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
349 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
350 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
351 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
353 static boolean_t nvme_check_regs_hdl(nvme_t *);
354 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
356 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
358 static void nvme_bd_xfer_done(void *);
359 static void nvme_bd_driveinfo(void *, bd_drive_t *);
360 static int nvme_bd_mediainfo(void *, bd_media_t *);
361 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
362 static int nvme_bd_read(void *, bd_xfer_t *);
363 static int nvme_bd_write(void *, bd_xfer_t *);
364 static int nvme_bd_sync(void *, bd_xfer_t *);
365 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
367 static int nvme_prp_dma_constructor(void *, void *, int);
368 static void nvme_prp_dma_destructor(void *, void *);
370 static void nvme_prepare_devid(nvme_t *, uint32_t);
372 static int nvme_open(dev_t *, int, int, cred_t *);
373 static int nvme_close(dev_t, int, int, cred_t *);
374 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
376 #define NVME_MINOR_INST_SHIFT 9
377 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
378 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
379 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
380 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
382 static void *nvme_state;
383 static kmem_cache_t *nvme_cmd_cache;
386 * DMA attributes for queue DMA memory
388 * Queue DMA memory must be page aligned. The maximum length of a queue is
389 * 65536 entries, and an entry can be 64 bytes long.
391 static ddi_dma_attr_t nvme_queue_dma_attr = {
392 .dma_attr_version = DMA_ATTR_V0,
393 .dma_attr_addr_lo = 0,
394 .dma_attr_addr_hi = 0xffffffffffffffffULL,
395 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
396 .dma_attr_align = 0x1000,
397 .dma_attr_burstsizes = 0x7ff,
398 .dma_attr_minxfer = 0x1000,
399 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
400 .dma_attr_seg = 0xffffffffffffffffULL,
401 .dma_attr_sgllen = 1,
402 .dma_attr_granular = 1,
403 .dma_attr_flags = 0,
407 * DMA attributes for transfers using Physical Region Page (PRP) entries
409 * A PRP entry describes one page of DMA memory using the page size specified
410 * in the controller configuration's memory page size register (CC.MPS). It uses
411 * a 64bit base address aligned to this page size. There is no limitation on
412 * chaining PRPs together for arbitrarily large DMA transfers.
414 static ddi_dma_attr_t nvme_prp_dma_attr = {
415 .dma_attr_version = DMA_ATTR_V0,
416 .dma_attr_addr_lo = 0,
417 .dma_attr_addr_hi = 0xffffffffffffffffULL,
418 .dma_attr_count_max = 0xfff,
419 .dma_attr_align = 0x1000,
420 .dma_attr_burstsizes = 0x7ff,
421 .dma_attr_minxfer = 0x1000,
422 .dma_attr_maxxfer = 0x1000,
423 .dma_attr_seg = 0xfff,
424 .dma_attr_sgllen = -1,
425 .dma_attr_granular = 1,
426 .dma_attr_flags = 0,
430 * DMA attributes for transfers using scatter/gather lists
432 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
433 * 32bit length field. SGL Segment and SGL Last Segment entries require the
434 * length to be a multiple of 16 bytes.
436 static ddi_dma_attr_t nvme_sgl_dma_attr = {
437 .dma_attr_version = DMA_ATTR_V0,
438 .dma_attr_addr_lo = 0,
439 .dma_attr_addr_hi = 0xffffffffffffffffULL,
440 .dma_attr_count_max = 0xffffffffUL,
441 .dma_attr_align = 1,
442 .dma_attr_burstsizes = 0x7ff,
443 .dma_attr_minxfer = 0x10,
444 .dma_attr_maxxfer = 0xfffffffffULL,
445 .dma_attr_seg = 0xffffffffffffffffULL,
446 .dma_attr_sgllen = -1,
447 .dma_attr_granular = 0x10,
448 .dma_attr_flags = 0
451 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
452 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
453 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
454 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
457 static struct cb_ops nvme_cb_ops = {
458 .cb_open = nvme_open,
459 .cb_close = nvme_close,
460 .cb_strategy = nodev,
461 .cb_print = nodev,
462 .cb_dump = nodev,
463 .cb_read = nodev,
464 .cb_write = nodev,
465 .cb_ioctl = nvme_ioctl,
466 .cb_devmap = nodev,
467 .cb_mmap = nodev,
468 .cb_segmap = nodev,
469 .cb_chpoll = nochpoll,
470 .cb_prop_op = ddi_prop_op,
471 .cb_str = 0,
472 .cb_flag = D_NEW | D_MP,
473 .cb_rev = CB_REV,
474 .cb_aread = nodev,
475 .cb_awrite = nodev
478 static struct dev_ops nvme_dev_ops = {
479 .devo_rev = DEVO_REV,
480 .devo_refcnt = 0,
481 .devo_getinfo = ddi_no_info,
482 .devo_identify = nulldev,
483 .devo_probe = nulldev,
484 .devo_attach = nvme_attach,
485 .devo_detach = nvme_detach,
486 .devo_reset = nodev,
487 .devo_cb_ops = &nvme_cb_ops,
488 .devo_bus_ops = NULL,
489 .devo_power = NULL,
490 .devo_quiesce = nvme_quiesce,
493 static struct modldrv nvme_modldrv = {
494 .drv_modops = &mod_driverops,
495 .drv_linkinfo = "NVMe v1.1b",
496 .drv_dev_ops = &nvme_dev_ops
499 static struct modlinkage nvme_modlinkage = {
500 .ml_rev = MODREV_1,
501 .ml_linkage = { &nvme_modldrv, NULL }
504 static bd_ops_t nvme_bd_ops = {
505 .o_version = BD_OPS_VERSION_0,
506 .o_drive_info = nvme_bd_driveinfo,
507 .o_media_info = nvme_bd_mediainfo,
508 .o_devid_init = nvme_bd_devid,
509 .o_sync_cache = nvme_bd_sync,
510 .o_read = nvme_bd_read,
511 .o_write = nvme_bd_write,
515 * This list will hold commands that have timed out and couldn't be aborted.
516 * As we don't know what the hardware may still do with the DMA memory we can't
517 * free them, so we'll keep them forever on this list where we can easily look
518 * at them with mdb.
520 static struct list nvme_lost_cmds;
521 static kmutex_t nvme_lc_mutex;
524 _init(void)
526 int error;
528 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
529 if (error != DDI_SUCCESS)
530 return (error);
532 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
533 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
535 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
536 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
537 offsetof(nvme_cmd_t, nc_list));
539 bd_mod_init(&nvme_dev_ops);
541 error = mod_install(&nvme_modlinkage);
542 if (error != DDI_SUCCESS) {
543 ddi_soft_state_fini(&nvme_state);
544 mutex_destroy(&nvme_lc_mutex);
545 list_destroy(&nvme_lost_cmds);
546 bd_mod_fini(&nvme_dev_ops);
549 return (error);
553 _fini(void)
555 int error;
557 if (!list_is_empty(&nvme_lost_cmds))
558 return (DDI_FAILURE);
560 error = mod_remove(&nvme_modlinkage);
561 if (error == DDI_SUCCESS) {
562 ddi_soft_state_fini(&nvme_state);
563 kmem_cache_destroy(nvme_cmd_cache);
564 mutex_destroy(&nvme_lc_mutex);
565 list_destroy(&nvme_lost_cmds);
566 bd_mod_fini(&nvme_dev_ops);
569 return (error);
573 _info(struct modinfo *modinfop)
575 return (mod_info(&nvme_modlinkage, modinfop));
578 static inline void
579 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
581 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
583 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
584 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
587 static inline void
588 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
590 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
592 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
593 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
596 static inline uint64_t
597 nvme_get64(nvme_t *nvme, uintptr_t reg)
599 uint64_t val;
601 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
603 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
604 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
606 return (val);
609 static inline uint32_t
610 nvme_get32(nvme_t *nvme, uintptr_t reg)
612 uint32_t val;
614 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
616 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
617 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
619 return (val);
622 static boolean_t
623 nvme_check_regs_hdl(nvme_t *nvme)
625 ddi_fm_error_t error;
627 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
629 if (error.fme_status != DDI_FM_OK)
630 return (B_TRUE);
632 return (B_FALSE);
635 static boolean_t
636 nvme_check_dma_hdl(nvme_dma_t *dma)
638 ddi_fm_error_t error;
640 if (dma == NULL)
641 return (B_FALSE);
643 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
645 if (error.fme_status != DDI_FM_OK)
646 return (B_TRUE);
648 return (B_FALSE);
651 static void
652 nvme_free_dma_common(nvme_dma_t *dma)
654 if (dma->nd_dmah != NULL)
655 (void) ddi_dma_unbind_handle(dma->nd_dmah);
656 if (dma->nd_acch != NULL)
657 ddi_dma_mem_free(&dma->nd_acch);
658 if (dma->nd_dmah != NULL)
659 ddi_dma_free_handle(&dma->nd_dmah);
662 static void
663 nvme_free_dma(nvme_dma_t *dma)
665 nvme_free_dma_common(dma);
666 kmem_free(dma, sizeof (*dma));
669 /* ARGSUSED */
670 static void
671 nvme_prp_dma_destructor(void *buf, void *private)
673 nvme_dma_t *dma = (nvme_dma_t *)buf;
675 nvme_free_dma_common(dma);
678 static int
679 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
680 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
682 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
683 &dma->nd_dmah) != DDI_SUCCESS) {
685 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
686 * the only other possible error is DDI_DMA_BADATTR which
687 * indicates a driver bug which should cause a panic.
689 dev_err(nvme->n_dip, CE_PANIC,
690 "!failed to get DMA handle, check DMA attributes");
691 return (DDI_FAILURE);
695 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
696 * or the flags are conflicting, which isn't the case here.
698 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
699 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
700 &dma->nd_len, &dma->nd_acch);
702 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
703 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
704 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
705 dev_err(nvme->n_dip, CE_WARN,
706 "!failed to bind DMA memory");
707 atomic_inc_32(&nvme->n_dma_bind_err);
708 nvme_free_dma_common(dma);
709 return (DDI_FAILURE);
712 return (DDI_SUCCESS);
715 static int
716 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
717 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
719 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
721 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
722 DDI_SUCCESS) {
723 *ret = NULL;
724 kmem_free(dma, sizeof (nvme_dma_t));
725 return (DDI_FAILURE);
728 bzero(dma->nd_memp, dma->nd_len);
730 *ret = dma;
731 return (DDI_SUCCESS);
734 /* ARGSUSED */
735 static int
736 nvme_prp_dma_constructor(void *buf, void *private, int flags)
738 nvme_dma_t *dma = (nvme_dma_t *)buf;
739 nvme_t *nvme = (nvme_t *)private;
741 dma->nd_dmah = NULL;
742 dma->nd_acch = NULL;
744 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
745 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
746 return (-1);
749 ASSERT(dma->nd_ncookie == 1);
751 dma->nd_cached = B_TRUE;
753 return (0);
756 static int
757 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
758 uint_t flags, nvme_dma_t **dma)
760 uint32_t len = nentry * qe_len;
761 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
763 len = roundup(len, nvme->n_pagesize);
765 q_dma_attr.dma_attr_minxfer = len;
767 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
768 != DDI_SUCCESS) {
769 dev_err(nvme->n_dip, CE_WARN,
770 "!failed to get DMA memory for queue");
771 goto fail;
774 if ((*dma)->nd_ncookie != 1) {
775 dev_err(nvme->n_dip, CE_WARN,
776 "!got too many cookies for queue DMA");
777 goto fail;
780 return (DDI_SUCCESS);
782 fail:
783 if (*dma) {
784 nvme_free_dma(*dma);
785 *dma = NULL;
788 return (DDI_FAILURE);
791 static void
792 nvme_free_qpair(nvme_qpair_t *qp)
794 int i;
796 mutex_destroy(&qp->nq_mutex);
797 sema_destroy(&qp->nq_sema);
799 if (qp->nq_sqdma != NULL)
800 nvme_free_dma(qp->nq_sqdma);
801 if (qp->nq_cqdma != NULL)
802 nvme_free_dma(qp->nq_cqdma);
804 if (qp->nq_active_cmds > 0)
805 for (i = 0; i != qp->nq_nentry; i++)
806 if (qp->nq_cmd[i] != NULL)
807 nvme_free_cmd(qp->nq_cmd[i]);
809 if (qp->nq_cmd != NULL)
810 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
812 kmem_free(qp, sizeof (nvme_qpair_t));
815 static int
816 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
817 int idx)
819 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
821 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
822 DDI_INTR_PRI(nvme->n_intr_pri));
823 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
825 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
826 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
827 goto fail;
829 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
830 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
831 goto fail;
833 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
834 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
835 qp->nq_nentry = nentry;
837 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
838 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
840 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
841 qp->nq_next_cmd = 0;
843 *nqp = qp;
844 return (DDI_SUCCESS);
846 fail:
847 nvme_free_qpair(qp);
848 *nqp = NULL;
850 return (DDI_FAILURE);
853 static nvme_cmd_t *
854 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
856 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
858 if (cmd == NULL)
859 return (cmd);
861 bzero(cmd, sizeof (nvme_cmd_t));
863 cmd->nc_nvme = nvme;
865 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
866 DDI_INTR_PRI(nvme->n_intr_pri));
867 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
869 return (cmd);
872 static void
873 nvme_free_cmd(nvme_cmd_t *cmd)
875 /* Don't free commands on the lost commands list. */
876 if (list_link_active(&cmd->nc_list))
877 return;
879 if (cmd->nc_dma) {
880 if (cmd->nc_dma->nd_cached)
881 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
882 cmd->nc_dma);
883 else
884 nvme_free_dma(cmd->nc_dma);
885 cmd->nc_dma = NULL;
888 cv_destroy(&cmd->nc_cv);
889 mutex_destroy(&cmd->nc_mutex);
891 kmem_cache_free(nvme_cmd_cache, cmd);
894 static void
895 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
897 sema_p(&qp->nq_sema);
898 nvme_submit_cmd_common(qp, cmd);
901 static int
902 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
904 if (sema_tryp(&qp->nq_sema) == 0)
905 return (EAGAIN);
907 nvme_submit_cmd_common(qp, cmd);
908 return (0);
911 static void
912 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
914 nvme_reg_sqtdbl_t tail = { 0 };
916 mutex_enter(&qp->nq_mutex);
917 cmd->nc_completed = B_FALSE;
920 * Try to insert the cmd into the active cmd array at the nq_next_cmd
921 * slot. If the slot is already occupied advance to the next slot and
922 * try again. This can happen for long running commands like async event
923 * requests.
925 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
926 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
927 qp->nq_cmd[qp->nq_next_cmd] = cmd;
929 qp->nq_active_cmds++;
931 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
932 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
933 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
934 sizeof (nvme_sqe_t) * qp->nq_sqtail,
935 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
936 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
938 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
939 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
941 mutex_exit(&qp->nq_mutex);
944 static nvme_cmd_t *
945 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
947 nvme_cmd_t *cmd;
949 ASSERT(mutex_owned(&qp->nq_mutex));
950 ASSERT3S(cid, <, qp->nq_nentry);
952 cmd = qp->nq_cmd[cid];
953 qp->nq_cmd[cid] = NULL;
954 ASSERT3U(qp->nq_active_cmds, >, 0);
955 qp->nq_active_cmds--;
956 sema_v(&qp->nq_sema);
958 ASSERT3P(cmd, !=, NULL);
959 ASSERT3P(cmd->nc_nvme, ==, nvme);
960 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
962 return (cmd);
965 static nvme_cmd_t *
966 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
968 nvme_reg_cqhdbl_t head = { 0 };
970 nvme_cqe_t *cqe;
971 nvme_cmd_t *cmd;
973 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
974 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
976 mutex_enter(&qp->nq_mutex);
977 cqe = &qp->nq_cq[qp->nq_cqhead];
979 /* Check phase tag of CQE. Hardware inverts it for new entries. */
980 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
981 mutex_exit(&qp->nq_mutex);
982 return (NULL);
985 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
987 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
989 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
990 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
992 qp->nq_sqhead = cqe->cqe_sqhd;
994 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
996 /* Toggle phase on wrap-around. */
997 if (qp->nq_cqhead == 0)
998 qp->nq_phase = qp->nq_phase ? 0 : 1;
1000 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
1001 mutex_exit(&qp->nq_mutex);
1003 return (cmd);
1006 static int
1007 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1009 nvme_cqe_t *cqe = &cmd->nc_cqe;
1011 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1012 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1013 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1014 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1015 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1017 if (cmd->nc_xfer != NULL)
1018 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1020 if (cmd->nc_nvme->n_strict_version) {
1021 cmd->nc_nvme->n_dead = B_TRUE;
1022 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1025 return (EIO);
1028 static int
1029 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1031 nvme_cqe_t *cqe = &cmd->nc_cqe;
1033 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1034 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1035 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1036 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1037 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1038 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1039 cmd->nc_nvme->n_dead = B_TRUE;
1040 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1043 return (EIO);
1046 static int
1047 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1049 nvme_cqe_t *cqe = &cmd->nc_cqe;
1051 switch (cqe->cqe_sf.sf_sc) {
1052 case NVME_CQE_SC_INT_NVM_WRITE:
1053 /* write fail */
1054 /* TODO: post ereport */
1055 if (cmd->nc_xfer != NULL)
1056 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1057 return (EIO);
1059 case NVME_CQE_SC_INT_NVM_READ:
1060 /* read fail */
1061 /* TODO: post ereport */
1062 if (cmd->nc_xfer != NULL)
1063 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1064 return (EIO);
1066 default:
1067 return (nvme_check_unknown_cmd_status(cmd));
1071 static int
1072 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1074 nvme_cqe_t *cqe = &cmd->nc_cqe;
1076 switch (cqe->cqe_sf.sf_sc) {
1077 case NVME_CQE_SC_GEN_SUCCESS:
1078 return (0);
1081 * Errors indicating a bug in the driver should cause a panic.
1083 case NVME_CQE_SC_GEN_INV_OPC:
1084 /* Invalid Command Opcode */
1085 if (!cmd->nc_dontpanic)
1086 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1087 "programming error: invalid opcode in cmd %p",
1088 (void *)cmd);
1089 return (EINVAL);
1091 case NVME_CQE_SC_GEN_INV_FLD:
1092 /* Invalid Field in Command */
1093 if (!cmd->nc_dontpanic)
1094 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1095 "programming error: invalid field in cmd %p",
1096 (void *)cmd);
1097 return (EIO);
1099 case NVME_CQE_SC_GEN_ID_CNFL:
1100 /* Command ID Conflict */
1101 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1102 "cmd ID conflict in cmd %p", (void *)cmd);
1103 return (0);
1105 case NVME_CQE_SC_GEN_INV_NS:
1106 /* Invalid Namespace or Format */
1107 if (!cmd->nc_dontpanic)
1108 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1109 "programming error: invalid NS/format in cmd %p",
1110 (void *)cmd);
1111 return (EINVAL);
1113 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1114 /* LBA Out Of Range */
1115 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1116 "LBA out of range in cmd %p", (void *)cmd);
1117 return (0);
1120 * Non-fatal errors, handle gracefully.
1122 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1123 /* Data Transfer Error (DMA) */
1124 /* TODO: post ereport */
1125 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1126 if (cmd->nc_xfer != NULL)
1127 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1128 return (EIO);
1130 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1132 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1133 * detailed error information is returned as async event,
1134 * so we pretty much ignore the error here and handle it
1135 * in the async event handler.
1137 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1138 if (cmd->nc_xfer != NULL)
1139 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1140 return (EIO);
1142 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1144 * Command Abort Requested. This normally happens only when a
1145 * command times out.
1147 /* TODO: post ereport or change blkdev to handle this? */
1148 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1149 return (ECANCELED);
1151 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1152 /* Command Aborted due to Power Loss Notification */
1153 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1154 cmd->nc_nvme->n_dead = B_TRUE;
1155 return (EIO);
1157 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1158 /* Command Aborted due to SQ Deletion */
1159 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1160 return (EIO);
1162 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1163 /* Capacity Exceeded */
1164 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1165 if (cmd->nc_xfer != NULL)
1166 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1167 return (EIO);
1169 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1170 /* Namespace Not Ready */
1171 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1172 if (cmd->nc_xfer != NULL)
1173 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1174 return (EIO);
1176 default:
1177 return (nvme_check_unknown_cmd_status(cmd));
1181 static int
1182 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1184 nvme_cqe_t *cqe = &cmd->nc_cqe;
1186 switch (cqe->cqe_sf.sf_sc) {
1187 case NVME_CQE_SC_SPC_INV_CQ:
1188 /* Completion Queue Invalid */
1189 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1190 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1191 return (EINVAL);
1193 case NVME_CQE_SC_SPC_INV_QID:
1194 /* Invalid Queue Identifier */
1195 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1196 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1197 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1198 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1199 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1200 return (EINVAL);
1202 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1203 /* Max Queue Size Exceeded */
1204 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1205 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1206 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1207 return (EINVAL);
1209 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1210 /* Abort Command Limit Exceeded */
1211 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1212 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1213 "abort command limit exceeded in cmd %p", (void *)cmd);
1214 return (0);
1216 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1217 /* Async Event Request Limit Exceeded */
1218 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1219 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1220 "async event request limit exceeded in cmd %p",
1221 (void *)cmd);
1222 return (0);
1224 case NVME_CQE_SC_SPC_INV_INT_VECT:
1225 /* Invalid Interrupt Vector */
1226 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1227 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1228 return (EINVAL);
1230 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1231 /* Invalid Log Page */
1232 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1233 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1234 return (EINVAL);
1236 case NVME_CQE_SC_SPC_INV_FORMAT:
1237 /* Invalid Format */
1238 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1239 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1240 if (cmd->nc_xfer != NULL)
1241 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1242 return (EINVAL);
1244 case NVME_CQE_SC_SPC_INV_Q_DEL:
1245 /* Invalid Queue Deletion */
1246 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1247 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1248 return (EINVAL);
1250 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1251 /* Conflicting Attributes */
1252 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1253 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1254 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1255 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1256 if (cmd->nc_xfer != NULL)
1257 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1258 return (EINVAL);
1260 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1261 /* Invalid Protection Information */
1262 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1263 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1264 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1265 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1266 if (cmd->nc_xfer != NULL)
1267 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1268 return (EINVAL);
1270 case NVME_CQE_SC_SPC_NVM_READONLY:
1271 /* Write to Read Only Range */
1272 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1273 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1274 if (cmd->nc_xfer != NULL)
1275 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1276 return (EROFS);
1278 default:
1279 return (nvme_check_unknown_cmd_status(cmd));
1283 static inline int
1284 nvme_check_cmd_status(nvme_cmd_t *cmd)
1286 nvme_cqe_t *cqe = &cmd->nc_cqe;
1289 * Take a shortcut if the controller is dead, or if
1290 * command status indicates no error.
1292 if (cmd->nc_nvme->n_dead)
1293 return (EIO);
1295 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1296 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1297 return (0);
1299 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1300 return (nvme_check_generic_cmd_status(cmd));
1301 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1302 return (nvme_check_specific_cmd_status(cmd));
1303 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1304 return (nvme_check_integrity_cmd_status(cmd));
1305 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1306 return (nvme_check_vendor_cmd_status(cmd));
1308 return (nvme_check_unknown_cmd_status(cmd));
1311 static int
1312 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1314 nvme_t *nvme = abort_cmd->nc_nvme;
1315 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1316 nvme_abort_cmd_t ac = { 0 };
1317 int ret = 0;
1319 sema_p(&nvme->n_abort_sema);
1321 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1322 ac.b.ac_sqid = abort_cmd->nc_sqid;
1324 cmd->nc_sqid = 0;
1325 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1326 cmd->nc_callback = nvme_wakeup_cmd;
1327 cmd->nc_sqe.sqe_cdw10 = ac.r;
1330 * Send the ABORT to the hardware. The ABORT command will return _after_
1331 * the aborted command has completed (aborted or otherwise), but since
1332 * we still hold the aborted command's mutex its callback hasn't been
1333 * processed yet.
1335 nvme_admin_cmd(cmd, sec);
1336 sema_v(&nvme->n_abort_sema);
1338 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1339 dev_err(nvme->n_dip, CE_WARN,
1340 "!ABORT failed with sct = %x, sc = %x",
1341 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1342 atomic_inc_32(&nvme->n_abort_failed);
1343 } else {
1344 dev_err(nvme->n_dip, CE_WARN,
1345 "!ABORT of command %d/%d %ssuccessful",
1346 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1347 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1348 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1349 atomic_inc_32(&nvme->n_cmd_aborted);
1352 nvme_free_cmd(cmd);
1353 return (ret);
1357 * nvme_wait_cmd -- wait for command completion or timeout
1359 * In case of a serious error or a timeout of the abort command the hardware
1360 * will be declared dead and FMA will be notified.
1362 static void
1363 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1365 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1366 nvme_t *nvme = cmd->nc_nvme;
1367 nvme_reg_csts_t csts;
1368 nvme_qpair_t *qp;
1370 ASSERT(mutex_owned(&cmd->nc_mutex));
1372 while (!cmd->nc_completed) {
1373 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1374 break;
1377 if (cmd->nc_completed)
1378 return;
1381 * The command timed out.
1383 * Check controller for fatal status, any errors associated with the
1384 * register or DMA handle, or for a double timeout (abort command timed
1385 * out). If necessary log a warning and call FMA.
1387 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1388 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1389 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1390 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1391 atomic_inc_32(&nvme->n_cmd_timeout);
1393 if (csts.b.csts_cfs ||
1394 nvme_check_regs_hdl(nvme) ||
1395 nvme_check_dma_hdl(cmd->nc_dma) ||
1396 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1397 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1398 nvme->n_dead = B_TRUE;
1399 } else if (nvme_abort_cmd(cmd, sec) == 0) {
1401 * If the abort succeeded the command should complete
1402 * immediately with an appropriate status.
1404 while (!cmd->nc_completed)
1405 cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1407 return;
1410 qp = nvme->n_ioq[cmd->nc_sqid];
1412 mutex_enter(&qp->nq_mutex);
1413 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1414 mutex_exit(&qp->nq_mutex);
1417 * As we don't know what the presumed dead hardware might still do with
1418 * the DMA memory, we'll put the command on the lost commands list if it
1419 * has any DMA memory.
1421 if (cmd->nc_dma != NULL) {
1422 mutex_enter(&nvme_lc_mutex);
1423 list_insert_head(&nvme_lost_cmds, cmd);
1424 mutex_exit(&nvme_lc_mutex);
1428 static void
1429 nvme_wakeup_cmd(void *arg)
1431 nvme_cmd_t *cmd = arg;
1433 mutex_enter(&cmd->nc_mutex);
1434 cmd->nc_completed = B_TRUE;
1435 cv_signal(&cmd->nc_cv);
1436 mutex_exit(&cmd->nc_mutex);
1439 static void
1440 nvme_async_event_task(void *arg)
1442 nvme_cmd_t *cmd = arg;
1443 nvme_t *nvme = cmd->nc_nvme;
1444 nvme_error_log_entry_t *error_log = NULL;
1445 nvme_health_log_t *health_log = NULL;
1446 size_t logsize = 0;
1447 nvme_async_event_t event;
1450 * Check for errors associated with the async request itself. The only
1451 * command-specific error is "async event limit exceeded", which
1452 * indicates a programming error in the driver and causes a panic in
1453 * nvme_check_cmd_status().
1455 * Other possible errors are various scenarios where the async request
1456 * was aborted, or internal errors in the device. Internal errors are
1457 * reported to FMA, the command aborts need no special handling here.
1459 * And finally, at least qemu nvme does not support async events,
1460 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1461 * will avoid posting async events.
1464 if (nvme_check_cmd_status(cmd) != 0) {
1465 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1466 "!async event request returned failure, sct = %x, "
1467 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1468 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1469 cmd->nc_cqe.cqe_sf.sf_m);
1471 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1472 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1473 cmd->nc_nvme->n_dead = B_TRUE;
1474 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1475 DDI_SERVICE_LOST);
1478 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1479 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1480 cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1481 nvme->n_async_event_supported = B_FALSE;
1484 nvme_free_cmd(cmd);
1485 return;
1489 event.r = cmd->nc_cqe.cqe_dw0;
1491 /* Clear CQE and re-submit the async request. */
1492 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1493 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1495 switch (event.b.ae_type) {
1496 case NVME_ASYNC_TYPE_ERROR:
1497 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1498 (void) nvme_get_logpage(nvme, B_FALSE,
1499 (void **)&error_log, &logsize, event.b.ae_logpage);
1500 } else {
1501 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1502 "async event reply: %d", event.b.ae_logpage);
1503 atomic_inc_32(&nvme->n_wrong_logpage);
1506 switch (event.b.ae_info) {
1507 case NVME_ASYNC_ERROR_INV_SQ:
1508 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1509 "invalid submission queue");
1510 return;
1512 case NVME_ASYNC_ERROR_INV_DBL:
1513 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1514 "invalid doorbell write value");
1515 return;
1517 case NVME_ASYNC_ERROR_DIAGFAIL:
1518 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1519 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1520 nvme->n_dead = B_TRUE;
1521 atomic_inc_32(&nvme->n_diagfail_event);
1522 break;
1524 case NVME_ASYNC_ERROR_PERSISTENT:
1525 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1526 "device error");
1527 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1528 nvme->n_dead = B_TRUE;
1529 atomic_inc_32(&nvme->n_persistent_event);
1530 break;
1532 case NVME_ASYNC_ERROR_TRANSIENT:
1533 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1534 "device error");
1535 /* TODO: send ereport */
1536 atomic_inc_32(&nvme->n_transient_event);
1537 break;
1539 case NVME_ASYNC_ERROR_FW_LOAD:
1540 dev_err(nvme->n_dip, CE_WARN,
1541 "!firmware image load error");
1542 atomic_inc_32(&nvme->n_fw_load_event);
1543 break;
1545 break;
1547 case NVME_ASYNC_TYPE_HEALTH:
1548 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1549 (void) nvme_get_logpage(nvme, B_FALSE,
1550 (void **)&health_log, &logsize, event.b.ae_logpage,
1551 -1);
1552 } else {
1553 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1554 "async event reply: %d", event.b.ae_logpage);
1555 atomic_inc_32(&nvme->n_wrong_logpage);
1558 switch (event.b.ae_info) {
1559 case NVME_ASYNC_HEALTH_RELIABILITY:
1560 dev_err(nvme->n_dip, CE_WARN,
1561 "!device reliability compromised");
1562 /* TODO: send ereport */
1563 atomic_inc_32(&nvme->n_reliability_event);
1564 break;
1566 case NVME_ASYNC_HEALTH_TEMPERATURE:
1567 dev_err(nvme->n_dip, CE_WARN,
1568 "!temperature above threshold");
1569 /* TODO: send ereport */
1570 atomic_inc_32(&nvme->n_temperature_event);
1571 break;
1573 case NVME_ASYNC_HEALTH_SPARE:
1574 dev_err(nvme->n_dip, CE_WARN,
1575 "!spare space below threshold");
1576 /* TODO: send ereport */
1577 atomic_inc_32(&nvme->n_spare_event);
1578 break;
1580 break;
1582 case NVME_ASYNC_TYPE_VENDOR:
1583 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1584 "received, info = %x, logpage = %x", event.b.ae_info,
1585 event.b.ae_logpage);
1586 atomic_inc_32(&nvme->n_vendor_event);
1587 break;
1589 default:
1590 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1591 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1592 event.b.ae_info, event.b.ae_logpage);
1593 atomic_inc_32(&nvme->n_unknown_event);
1594 break;
1597 if (error_log)
1598 kmem_free(error_log, logsize);
1600 if (health_log)
1601 kmem_free(health_log, logsize);
1604 static void
1605 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1607 mutex_enter(&cmd->nc_mutex);
1608 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1609 nvme_wait_cmd(cmd, sec);
1610 mutex_exit(&cmd->nc_mutex);
1613 static void
1614 nvme_async_event(nvme_t *nvme)
1616 nvme_cmd_t *cmd;
1618 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1619 cmd->nc_sqid = 0;
1620 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1621 cmd->nc_callback = nvme_async_event_task;
1622 cmd->nc_dontpanic = B_TRUE;
1624 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1627 static int
1628 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1629 boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1631 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1632 nvme_format_nvm_t format_nvm = { 0 };
1633 int ret;
1635 format_nvm.b.fm_lbaf = lbaf & 0xf;
1636 format_nvm.b.fm_ms = ms ? 1 : 0;
1637 format_nvm.b.fm_pi = pi & 0x7;
1638 format_nvm.b.fm_pil = pil ? 1 : 0;
1639 format_nvm.b.fm_ses = ses & 0x7;
1641 cmd->nc_sqid = 0;
1642 cmd->nc_callback = nvme_wakeup_cmd;
1643 cmd->nc_sqe.sqe_nsid = nsid;
1644 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1645 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1648 * Some devices like Samsung SM951 don't allow formatting of all
1649 * namespaces in one command. Handle that gracefully.
1651 if (nsid == (uint32_t)-1)
1652 cmd->nc_dontpanic = B_TRUE;
1654 * If this format request was initiated by the user, then don't allow a
1655 * programmer error to panic the system.
1657 if (user)
1658 cmd->nc_dontpanic = B_TRUE;
1660 nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1662 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1663 dev_err(nvme->n_dip, CE_WARN,
1664 "!FORMAT failed with sct = %x, sc = %x",
1665 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1668 nvme_free_cmd(cmd);
1669 return (ret);
1672 static int
1673 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1674 uint8_t logpage, ...)
1676 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1677 nvme_getlogpage_t getlogpage = { 0 };
1678 va_list ap;
1679 int ret;
1681 va_start(ap, logpage);
1683 cmd->nc_sqid = 0;
1684 cmd->nc_callback = nvme_wakeup_cmd;
1685 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1687 if (user)
1688 cmd->nc_dontpanic = B_TRUE;
1690 getlogpage.b.lp_lid = logpage;
1692 switch (logpage) {
1693 case NVME_LOGPAGE_ERROR:
1694 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1696 * The GET LOG PAGE command can use at most 2 pages to return
1697 * data, PRP lists are not supported.
1699 *bufsize = MIN(2 * nvme->n_pagesize,
1700 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1701 break;
1703 case NVME_LOGPAGE_HEALTH:
1704 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1705 *bufsize = sizeof (nvme_health_log_t);
1706 break;
1708 case NVME_LOGPAGE_FWSLOT:
1709 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1710 *bufsize = sizeof (nvme_fwslot_log_t);
1711 break;
1713 default:
1714 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1715 logpage);
1716 atomic_inc_32(&nvme->n_unknown_logpage);
1717 ret = EINVAL;
1718 goto fail;
1721 va_end(ap);
1723 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1725 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1727 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1728 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1729 dev_err(nvme->n_dip, CE_WARN,
1730 "!nvme_zalloc_dma failed for GET LOG PAGE");
1731 ret = ENOMEM;
1732 goto fail;
1735 if (cmd->nc_dma->nd_ncookie > 2) {
1736 dev_err(nvme->n_dip, CE_WARN,
1737 "!too many DMA cookies for GET LOG PAGE");
1738 atomic_inc_32(&nvme->n_too_many_cookies);
1739 ret = ENOMEM;
1740 goto fail;
1743 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1744 if (cmd->nc_dma->nd_ncookie > 1) {
1745 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1746 &cmd->nc_dma->nd_cookie);
1747 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1748 cmd->nc_dma->nd_cookie.dmac_laddress;
1751 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1753 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1754 dev_err(nvme->n_dip, CE_WARN,
1755 "!GET LOG PAGE failed with sct = %x, sc = %x",
1756 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1757 goto fail;
1760 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1761 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1763 fail:
1764 nvme_free_cmd(cmd);
1766 return (ret);
1769 static int
1770 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
1772 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1773 int ret;
1775 if (buf == NULL)
1776 return (EINVAL);
1778 cmd->nc_sqid = 0;
1779 cmd->nc_callback = nvme_wakeup_cmd;
1780 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1781 cmd->nc_sqe.sqe_nsid = nsid;
1782 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1784 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1785 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1786 dev_err(nvme->n_dip, CE_WARN,
1787 "!nvme_zalloc_dma failed for IDENTIFY");
1788 ret = ENOMEM;
1789 goto fail;
1792 if (cmd->nc_dma->nd_ncookie > 2) {
1793 dev_err(nvme->n_dip, CE_WARN,
1794 "!too many DMA cookies for IDENTIFY");
1795 atomic_inc_32(&nvme->n_too_many_cookies);
1796 ret = ENOMEM;
1797 goto fail;
1800 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1801 if (cmd->nc_dma->nd_ncookie > 1) {
1802 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1803 &cmd->nc_dma->nd_cookie);
1804 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1805 cmd->nc_dma->nd_cookie.dmac_laddress;
1808 if (user)
1809 cmd->nc_dontpanic = B_TRUE;
1811 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1813 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1814 dev_err(nvme->n_dip, CE_WARN,
1815 "!IDENTIFY failed with sct = %x, sc = %x",
1816 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1817 goto fail;
1820 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1821 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1823 fail:
1824 nvme_free_cmd(cmd);
1826 return (ret);
1829 static int
1830 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
1831 uint32_t val, uint32_t *res)
1833 _NOTE(ARGUNUSED(nsid));
1834 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1835 int ret = EINVAL;
1837 ASSERT(res != NULL);
1839 cmd->nc_sqid = 0;
1840 cmd->nc_callback = nvme_wakeup_cmd;
1841 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1842 cmd->nc_sqe.sqe_cdw10 = feature;
1843 cmd->nc_sqe.sqe_cdw11 = val;
1845 if (user)
1846 cmd->nc_dontpanic = B_TRUE;
1848 switch (feature) {
1849 case NVME_FEAT_WRITE_CACHE:
1850 if (!nvme->n_write_cache_present)
1851 goto fail;
1852 break;
1854 case NVME_FEAT_NQUEUES:
1855 break;
1857 default:
1858 goto fail;
1861 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1863 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1864 dev_err(nvme->n_dip, CE_WARN,
1865 "!SET FEATURES %d failed with sct = %x, sc = %x",
1866 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1867 cmd->nc_cqe.cqe_sf.sf_sc);
1868 goto fail;
1871 *res = cmd->nc_cqe.cqe_dw0;
1873 fail:
1874 nvme_free_cmd(cmd);
1875 return (ret);
1878 static int
1879 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
1880 uint32_t *res, void **buf, size_t *bufsize)
1882 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1883 int ret = EINVAL;
1885 ASSERT(res != NULL);
1887 if (bufsize != NULL)
1888 *bufsize = 0;
1890 cmd->nc_sqid = 0;
1891 cmd->nc_callback = nvme_wakeup_cmd;
1892 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1893 cmd->nc_sqe.sqe_cdw10 = feature;
1894 cmd->nc_sqe.sqe_cdw11 = *res;
1897 * For some of the optional features there doesn't seem to be a method
1898 * of detecting whether it is supported other than using it. This will
1899 * cause "Invalid Field in Command" error, which is normally considered
1900 * a programming error. Set the nc_dontpanic flag to override the panic
1901 * in nvme_check_generic_cmd_status().
1903 switch (feature) {
1904 case NVME_FEAT_ARBITRATION:
1905 case NVME_FEAT_POWER_MGMT:
1906 case NVME_FEAT_TEMPERATURE:
1907 case NVME_FEAT_ERROR:
1908 case NVME_FEAT_NQUEUES:
1909 case NVME_FEAT_INTR_COAL:
1910 case NVME_FEAT_INTR_VECT:
1911 case NVME_FEAT_WRITE_ATOM:
1912 case NVME_FEAT_ASYNC_EVENT:
1913 break;
1915 case NVME_FEAT_WRITE_CACHE:
1916 if (!nvme->n_write_cache_present)
1917 goto fail;
1918 break;
1920 case NVME_FEAT_LBA_RANGE:
1921 if (!nvme->n_lba_range_supported)
1922 goto fail;
1924 cmd->nc_dontpanic = B_TRUE;
1925 cmd->nc_sqe.sqe_nsid = nsid;
1926 ASSERT(bufsize != NULL);
1927 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1928 break;
1930 case NVME_FEAT_AUTO_PST:
1931 if (!nvme->n_auto_pst_supported)
1932 goto fail;
1934 ASSERT(bufsize != NULL);
1935 *bufsize = NVME_AUTO_PST_BUFSIZE;
1936 break;
1938 case NVME_FEAT_PROGRESS:
1939 if (!nvme->n_progress_supported)
1940 goto fail;
1942 cmd->nc_dontpanic = B_TRUE;
1943 break;
1945 default:
1946 goto fail;
1949 if (user)
1950 cmd->nc_dontpanic = B_TRUE;
1952 if (bufsize != NULL && *bufsize != 0) {
1953 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1954 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1955 dev_err(nvme->n_dip, CE_WARN,
1956 "!nvme_zalloc_dma failed for GET FEATURES");
1957 ret = ENOMEM;
1958 goto fail;
1961 if (cmd->nc_dma->nd_ncookie > 2) {
1962 dev_err(nvme->n_dip, CE_WARN,
1963 "!too many DMA cookies for GET FEATURES");
1964 atomic_inc_32(&nvme->n_too_many_cookies);
1965 ret = ENOMEM;
1966 goto fail;
1969 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1970 cmd->nc_dma->nd_cookie.dmac_laddress;
1971 if (cmd->nc_dma->nd_ncookie > 1) {
1972 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1973 &cmd->nc_dma->nd_cookie);
1974 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1975 cmd->nc_dma->nd_cookie.dmac_laddress;
1979 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1981 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1982 boolean_t known = B_TRUE;
1984 /* Check if this is unsupported optional feature */
1985 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1986 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
1987 switch (feature) {
1988 case NVME_FEAT_LBA_RANGE:
1989 nvme->n_lba_range_supported = B_FALSE;
1990 break;
1991 case NVME_FEAT_PROGRESS:
1992 nvme->n_progress_supported = B_FALSE;
1993 break;
1994 default:
1995 known = B_FALSE;
1996 break;
1998 } else {
1999 known = B_FALSE;
2002 /* Report the error otherwise */
2003 if (!known) {
2004 dev_err(nvme->n_dip, CE_WARN,
2005 "!GET FEATURES %d failed with sct = %x, sc = %x",
2006 feature, cmd->nc_cqe.cqe_sf.sf_sct,
2007 cmd->nc_cqe.cqe_sf.sf_sc);
2010 goto fail;
2013 if (bufsize != NULL && *bufsize != 0) {
2014 ASSERT(buf != NULL);
2015 *buf = kmem_alloc(*bufsize, KM_SLEEP);
2016 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2019 *res = cmd->nc_cqe.cqe_dw0;
2021 fail:
2022 nvme_free_cmd(cmd);
2023 return (ret);
2026 static int
2027 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2029 nvme_write_cache_t nwc = { 0 };
2031 if (enable)
2032 nwc.b.wc_wce = 1;
2034 return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2035 nwc.r, &nwc.r));
2038 static int
2039 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
2041 nvme_nqueues_t nq = { 0 };
2042 int ret;
2044 nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
2046 ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2047 &nq.r);
2049 if (ret == 0) {
2051 * Always use the same number of submission and completion
2052 * queues, and never use more than the requested number of
2053 * queues.
2055 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
2058 return (ret);
2061 static int
2062 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2064 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2065 nvme_create_queue_dw10_t dw10 = { 0 };
2066 nvme_create_cq_dw11_t c_dw11 = { 0 };
2067 nvme_create_sq_dw11_t s_dw11 = { 0 };
2068 int ret;
2070 dw10.b.q_qid = idx;
2071 dw10.b.q_qsize = qp->nq_nentry - 1;
2073 c_dw11.b.cq_pc = 1;
2074 c_dw11.b.cq_ien = 1;
2075 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2077 cmd->nc_sqid = 0;
2078 cmd->nc_callback = nvme_wakeup_cmd;
2079 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2080 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2081 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2082 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2084 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2086 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2087 dev_err(nvme->n_dip, CE_WARN,
2088 "!CREATE CQUEUE failed with sct = %x, sc = %x",
2089 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2090 goto fail;
2093 nvme_free_cmd(cmd);
2095 s_dw11.b.sq_pc = 1;
2096 s_dw11.b.sq_cqid = idx;
2098 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2099 cmd->nc_sqid = 0;
2100 cmd->nc_callback = nvme_wakeup_cmd;
2101 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2102 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2103 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2104 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2106 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2108 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2109 dev_err(nvme->n_dip, CE_WARN,
2110 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2111 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2112 goto fail;
2115 fail:
2116 nvme_free_cmd(cmd);
2118 return (ret);
2121 static boolean_t
2122 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2124 nvme_reg_csts_t csts;
2125 int i;
2127 nvme_put32(nvme, NVME_REG_CC, 0);
2129 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2130 if (csts.b.csts_rdy == 1) {
2131 nvme_put32(nvme, NVME_REG_CC, 0);
2132 for (i = 0; i != nvme->n_timeout * 10; i++) {
2133 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2134 if (csts.b.csts_rdy == 0)
2135 break;
2137 if (quiesce)
2138 drv_usecwait(50000);
2139 else
2140 delay(drv_usectohz(50000));
2144 nvme_put32(nvme, NVME_REG_AQA, 0);
2145 nvme_put32(nvme, NVME_REG_ASQ, 0);
2146 nvme_put32(nvme, NVME_REG_ACQ, 0);
2148 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2149 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2152 static void
2153 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2155 nvme_reg_cc_t cc;
2156 nvme_reg_csts_t csts;
2157 int i;
2159 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2161 cc.r = nvme_get32(nvme, NVME_REG_CC);
2162 cc.b.cc_shn = mode & 0x3;
2163 nvme_put32(nvme, NVME_REG_CC, cc.r);
2165 for (i = 0; i != 10; i++) {
2166 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2167 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2168 break;
2170 if (quiesce)
2171 drv_usecwait(100000);
2172 else
2173 delay(drv_usectohz(100000));
2178 static void
2179 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2182 * Section 7.7 of the spec describes how to get a unique ID for
2183 * the controller: the vendor ID, the model name and the serial
2184 * number shall be unique when combined.
2186 * If a namespace has no EUI64 we use the above and add the hex
2187 * namespace ID to get a unique ID for the namespace.
2189 char model[sizeof (nvme->n_idctl->id_model) + 1];
2190 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2192 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2193 bcopy(nvme->n_idctl->id_serial, serial,
2194 sizeof (nvme->n_idctl->id_serial));
2196 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2197 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2199 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2200 nvme->n_idctl->id_vid, model, serial, nsid);
2203 static int
2204 nvme_init_ns(nvme_t *nvme, int nsid)
2206 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2207 nvme_identify_nsid_t *idns;
2208 int last_rp;
2210 ns->ns_nvme = nvme;
2212 if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2213 dev_err(nvme->n_dip, CE_WARN,
2214 "!failed to identify namespace %d", nsid);
2215 return (DDI_FAILURE);
2218 ns->ns_idns = idns;
2219 ns->ns_id = nsid;
2220 ns->ns_block_count = idns->id_nsize;
2221 ns->ns_block_size =
2222 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2223 ns->ns_best_block_size = ns->ns_block_size;
2226 * Get the EUI64 if present. Use it for devid and device node names.
2228 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2229 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2231 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2232 if (*(uint64_t *)ns->ns_eui64 != 0) {
2233 uint8_t *eui64 = ns->ns_eui64;
2235 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2236 "%02x%02x%02x%02x%02x%02x%02x%02x",
2237 eui64[0], eui64[1], eui64[2], eui64[3],
2238 eui64[4], eui64[5], eui64[6], eui64[7]);
2239 } else {
2240 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2241 ns->ns_id);
2243 nvme_prepare_devid(nvme, ns->ns_id);
2247 * Find the LBA format with no metadata and the best relative
2248 * performance. A value of 3 means "degraded", 0 is best.
2250 last_rp = 3;
2251 for (int j = 0; j <= idns->id_nlbaf; j++) {
2252 if (idns->id_lbaf[j].lbaf_lbads == 0)
2253 break;
2254 if (idns->id_lbaf[j].lbaf_ms != 0)
2255 continue;
2256 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2257 continue;
2258 last_rp = idns->id_lbaf[j].lbaf_rp;
2259 ns->ns_best_block_size =
2260 1 << idns->id_lbaf[j].lbaf_lbads;
2263 if (ns->ns_best_block_size < nvme->n_min_block_size)
2264 ns->ns_best_block_size = nvme->n_min_block_size;
2267 * We currently don't support namespaces that use either:
2268 * - protection information
2269 * - illegal block size (< 512)
2271 if (idns->id_dps.dp_pinfo) {
2272 dev_err(nvme->n_dip, CE_WARN,
2273 "!ignoring namespace %d, unsupported feature: "
2274 "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2275 ns->ns_ignore = B_TRUE;
2276 } else if (ns->ns_block_size < 512) {
2277 dev_err(nvme->n_dip, CE_WARN,
2278 "!ignoring namespace %d, unsupported block size %"PRIu64,
2279 nsid, (uint64_t)ns->ns_block_size);
2280 ns->ns_ignore = B_TRUE;
2281 } else {
2282 ns->ns_ignore = B_FALSE;
2285 return (DDI_SUCCESS);
2288 static int
2289 nvme_init(nvme_t *nvme)
2291 nvme_reg_cc_t cc = { 0 };
2292 nvme_reg_aqa_t aqa = { 0 };
2293 nvme_reg_asq_t asq = { 0 };
2294 nvme_reg_acq_t acq = { 0 };
2295 nvme_reg_cap_t cap;
2296 nvme_reg_vs_t vs;
2297 nvme_reg_csts_t csts;
2298 int i = 0;
2299 uint16_t nqueues;
2300 char model[sizeof (nvme->n_idctl->id_model) + 1];
2301 char *vendor, *product;
2303 /* Check controller version */
2304 vs.r = nvme_get32(nvme, NVME_REG_VS);
2305 nvme->n_version.v_major = vs.b.vs_mjr;
2306 nvme->n_version.v_minor = vs.b.vs_mnr;
2307 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2308 nvme->n_version.v_major, nvme->n_version.v_minor);
2310 if (nvme->n_version.v_major > nvme_version_major) {
2311 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2312 nvme_version_major);
2313 if (nvme->n_strict_version)
2314 goto fail;
2317 /* retrieve controller configuration */
2318 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2320 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2321 dev_err(nvme->n_dip, CE_WARN,
2322 "!NVM command set not supported by hardware");
2323 goto fail;
2326 nvme->n_nssr_supported = cap.b.cap_nssrs;
2327 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2328 nvme->n_timeout = cap.b.cap_to;
2329 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2330 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2331 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2334 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2335 * the base page size of 4k (1<<12), so add 12 here to get the real
2336 * page size value.
2338 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2339 cap.b.cap_mpsmax + 12);
2340 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2343 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2345 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2346 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2349 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2350 * Maxxfer may be increased after we identified the controller limits.
2352 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2353 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2354 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2355 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2358 * Reset controller if it's still in ready state.
2360 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2361 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2362 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2363 nvme->n_dead = B_TRUE;
2364 goto fail;
2368 * Create the admin queue pair.
2370 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2371 != DDI_SUCCESS) {
2372 dev_err(nvme->n_dip, CE_WARN,
2373 "!unable to allocate admin qpair");
2374 goto fail;
2376 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2377 nvme->n_ioq[0] = nvme->n_adminq;
2379 nvme->n_progress |= NVME_ADMIN_QUEUE;
2381 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2382 "admin-queue-len", nvme->n_admin_queue_len);
2384 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2385 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2386 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2388 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2389 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2391 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2392 nvme_put64(nvme, NVME_REG_ASQ, asq);
2393 nvme_put64(nvme, NVME_REG_ACQ, acq);
2395 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2396 cc.b.cc_css = 0; /* use NVM command set */
2397 cc.b.cc_mps = nvme->n_pageshift - 12;
2398 cc.b.cc_shn = 0; /* no shutdown in progress */
2399 cc.b.cc_en = 1; /* enable controller */
2400 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2401 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2403 nvme_put32(nvme, NVME_REG_CC, cc.r);
2406 * Wait for the controller to become ready.
2408 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2409 if (csts.b.csts_rdy == 0) {
2410 for (i = 0; i != nvme->n_timeout * 10; i++) {
2411 delay(drv_usectohz(50000));
2412 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2414 if (csts.b.csts_cfs == 1) {
2415 dev_err(nvme->n_dip, CE_WARN,
2416 "!controller fatal status at init");
2417 ddi_fm_service_impact(nvme->n_dip,
2418 DDI_SERVICE_LOST);
2419 nvme->n_dead = B_TRUE;
2420 goto fail;
2423 if (csts.b.csts_rdy == 1)
2424 break;
2428 if (csts.b.csts_rdy == 0) {
2429 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2430 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2431 nvme->n_dead = B_TRUE;
2432 goto fail;
2436 * Assume an abort command limit of 1. We'll destroy and re-init
2437 * that later when we know the true abort command limit.
2439 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2442 * Setup initial interrupt for admin queue.
2444 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2445 != DDI_SUCCESS) &&
2446 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2447 != DDI_SUCCESS) &&
2448 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2449 != DDI_SUCCESS)) {
2450 dev_err(nvme->n_dip, CE_WARN,
2451 "!failed to setup initial interrupt");
2452 goto fail;
2456 * Post an asynchronous event command to catch errors.
2457 * We assume the asynchronous events are supported as required by
2458 * specification (Figure 40 in section 5 of NVMe 1.2).
2459 * However, since at least qemu does not follow the specification,
2460 * we need a mechanism to protect ourselves.
2462 nvme->n_async_event_supported = B_TRUE;
2463 nvme_async_event(nvme);
2466 * Identify Controller
2468 if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2469 dev_err(nvme->n_dip, CE_WARN,
2470 "!failed to identify controller");
2471 goto fail;
2475 * Get Vendor & Product ID
2477 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2478 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2479 sata_split_model(model, &vendor, &product);
2481 if (vendor == NULL)
2482 nvme->n_vendor = strdup("NVMe");
2483 else
2484 nvme->n_vendor = strdup(vendor);
2486 nvme->n_product = strdup(product);
2489 * Get controller limits.
2491 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2492 MIN(nvme->n_admin_queue_len / 10,
2493 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2495 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2496 "async-event-limit", nvme->n_async_event_limit);
2498 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2501 * Reinitialize the semaphore with the true abort command limit
2502 * supported by the hardware. It's not necessary to disable interrupts
2503 * as only command aborts use the semaphore, and no commands are
2504 * executed or aborted while we're here.
2506 sema_destroy(&nvme->n_abort_sema);
2507 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2508 SEMA_DRIVER, NULL);
2510 nvme->n_progress |= NVME_CTRL_LIMITS;
2512 if (nvme->n_idctl->id_mdts == 0)
2513 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2514 else
2515 nvme->n_max_data_transfer_size =
2516 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2518 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2521 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2522 * Chained PRPs are currently unsupported.
2524 * This is a no-op on hardware which doesn't support a transfer size
2525 * big enough to require chained PRPs.
2527 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2528 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2530 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2533 * Make sure the minimum/maximum queue entry sizes are not
2534 * larger/smaller than the default.
2537 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2538 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2539 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2540 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2541 goto fail;
2544 * Check for the presence of a Volatile Write Cache. If present,
2545 * enable or disable based on the value of the property
2546 * volatile-write-cache-enable (default is enabled).
2548 nvme->n_write_cache_present =
2549 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2551 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2552 "volatile-write-cache-present",
2553 nvme->n_write_cache_present ? 1 : 0);
2555 if (!nvme->n_write_cache_present) {
2556 nvme->n_write_cache_enabled = B_FALSE;
2557 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2558 != 0) {
2559 dev_err(nvme->n_dip, CE_WARN,
2560 "!failed to %sable volatile write cache",
2561 nvme->n_write_cache_enabled ? "en" : "dis");
2563 * Assume the cache is (still) enabled.
2565 nvme->n_write_cache_enabled = B_TRUE;
2568 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2569 "volatile-write-cache-enable",
2570 nvme->n_write_cache_enabled ? 1 : 0);
2573 * Assume LBA Range Type feature is supported. If it isn't this
2574 * will be set to B_FALSE by nvme_get_features().
2576 nvme->n_lba_range_supported = B_TRUE;
2579 * Check support for Autonomous Power State Transition.
2581 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2582 nvme->n_auto_pst_supported =
2583 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2586 * Assume Software Progress Marker feature is supported. If it isn't
2587 * this will be set to B_FALSE by nvme_get_features().
2589 nvme->n_progress_supported = B_TRUE;
2592 * Identify Namespaces
2594 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2596 if (nvme->n_namespace_count == 0) {
2597 dev_err(nvme->n_dip, CE_WARN,
2598 "!controllers without namespaces are not supported");
2599 goto fail;
2602 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2603 dev_err(nvme->n_dip, CE_WARN,
2604 "!too many namespaces: %d, limiting to %d\n",
2605 nvme->n_namespace_count, NVME_MINOR_MAX);
2606 nvme->n_namespace_count = NVME_MINOR_MAX;
2609 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2610 nvme->n_namespace_count, KM_SLEEP);
2612 for (i = 0; i != nvme->n_namespace_count; i++) {
2613 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2614 NULL);
2615 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2616 goto fail;
2620 * Try to set up MSI/MSI-X interrupts.
2622 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2623 != 0) {
2624 nvme_release_interrupts(nvme);
2626 nqueues = MIN(UINT16_MAX, ncpus);
2628 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2629 nqueues) != DDI_SUCCESS) &&
2630 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2631 nqueues) != DDI_SUCCESS)) {
2632 dev_err(nvme->n_dip, CE_WARN,
2633 "!failed to setup MSI/MSI-X interrupts");
2634 goto fail;
2638 nqueues = nvme->n_intr_cnt;
2641 * Create I/O queue pairs.
2644 if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2645 dev_err(nvme->n_dip, CE_WARN,
2646 "!failed to set number of I/O queues to %d",
2647 nvme->n_intr_cnt);
2648 goto fail;
2652 * Reallocate I/O queue array
2654 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2655 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2656 (nqueues + 1), KM_SLEEP);
2657 nvme->n_ioq[0] = nvme->n_adminq;
2659 nvme->n_ioq_count = nqueues;
2662 * If we got less queues than we asked for we might as well give
2663 * some of the interrupt vectors back to the system.
2665 if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2666 nvme_release_interrupts(nvme);
2668 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2669 nvme->n_ioq_count) != DDI_SUCCESS) {
2670 dev_err(nvme->n_dip, CE_WARN,
2671 "!failed to reduce number of interrupts");
2672 goto fail;
2677 * Alloc & register I/O queue pairs
2679 nvme->n_io_queue_len =
2680 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2681 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2682 nvme->n_io_queue_len);
2684 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2685 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2686 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2687 dev_err(nvme->n_dip, CE_WARN,
2688 "!unable to allocate I/O qpair %d", i);
2689 goto fail;
2692 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2693 dev_err(nvme->n_dip, CE_WARN,
2694 "!unable to create I/O qpair %d", i);
2695 goto fail;
2700 * Post more asynchronous events commands to reduce event reporting
2701 * latency as suggested by the spec.
2703 if (nvme->n_async_event_supported) {
2704 for (i = 1; i != nvme->n_async_event_limit; i++)
2705 nvme_async_event(nvme);
2708 return (DDI_SUCCESS);
2710 fail:
2711 (void) nvme_reset(nvme, B_FALSE);
2712 return (DDI_FAILURE);
2715 static uint_t
2716 nvme_intr(caddr_t arg1, caddr_t arg2)
2718 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2719 nvme_t *nvme = (nvme_t *)arg1;
2720 int inum = (int)(uintptr_t)arg2;
2721 int ccnt = 0;
2722 int qnum;
2723 nvme_cmd_t *cmd;
2725 if (inum >= nvme->n_intr_cnt)
2726 return (DDI_INTR_UNCLAIMED);
2728 if (nvme->n_dead)
2729 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2730 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2733 * The interrupt vector a queue uses is calculated as queue_idx %
2734 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2735 * in steps of n_intr_cnt to process all queues using this vector.
2737 for (qnum = inum;
2738 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2739 qnum += nvme->n_intr_cnt) {
2740 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2741 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2742 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2743 ccnt++;
2747 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2750 static void
2751 nvme_release_interrupts(nvme_t *nvme)
2753 int i;
2755 for (i = 0; i < nvme->n_intr_cnt; i++) {
2756 if (nvme->n_inth[i] == NULL)
2757 break;
2759 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2760 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2761 else
2762 (void) ddi_intr_disable(nvme->n_inth[i]);
2764 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2765 (void) ddi_intr_free(nvme->n_inth[i]);
2768 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2769 nvme->n_inth = NULL;
2770 nvme->n_inth_sz = 0;
2772 nvme->n_progress &= ~NVME_INTERRUPTS;
2775 static int
2776 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2778 int nintrs, navail, count;
2779 int ret;
2780 int i;
2782 if (nvme->n_intr_types == 0) {
2783 ret = ddi_intr_get_supported_types(nvme->n_dip,
2784 &nvme->n_intr_types);
2785 if (ret != DDI_SUCCESS) {
2786 dev_err(nvme->n_dip, CE_WARN,
2787 "!%s: ddi_intr_get_supported types failed",
2788 __func__);
2789 return (ret);
2791 #ifdef __x86
2792 if (get_hwenv() == HW_VMWARE)
2793 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2794 #endif
2797 if ((nvme->n_intr_types & intr_type) == 0)
2798 return (DDI_FAILURE);
2800 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2801 if (ret != DDI_SUCCESS) {
2802 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2803 __func__);
2804 return (ret);
2807 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2808 if (ret != DDI_SUCCESS) {
2809 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2810 __func__);
2811 return (ret);
2814 /* We want at most one interrupt per queue pair. */
2815 if (navail > nqpairs)
2816 navail = nqpairs;
2818 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2819 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2821 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2822 &count, 0);
2823 if (ret != DDI_SUCCESS) {
2824 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2825 __func__);
2826 goto fail;
2829 nvme->n_intr_cnt = count;
2831 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2832 if (ret != DDI_SUCCESS) {
2833 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2834 __func__);
2835 goto fail;
2838 for (i = 0; i < count; i++) {
2839 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2840 (void *)nvme, (void *)(uintptr_t)i);
2841 if (ret != DDI_SUCCESS) {
2842 dev_err(nvme->n_dip, CE_WARN,
2843 "!%s: ddi_intr_add_handler failed", __func__);
2844 goto fail;
2848 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2850 for (i = 0; i < count; i++) {
2851 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2852 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2853 else
2854 ret = ddi_intr_enable(nvme->n_inth[i]);
2856 if (ret != DDI_SUCCESS) {
2857 dev_err(nvme->n_dip, CE_WARN,
2858 "!%s: enabling interrupt %d failed", __func__, i);
2859 goto fail;
2863 nvme->n_intr_type = intr_type;
2865 nvme->n_progress |= NVME_INTERRUPTS;
2867 return (DDI_SUCCESS);
2869 fail:
2870 nvme_release_interrupts(nvme);
2872 return (ret);
2875 static int
2876 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2878 _NOTE(ARGUNUSED(arg));
2880 pci_ereport_post(dip, fm_error, NULL);
2881 return (fm_error->fme_status);
2884 static int
2885 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2887 nvme_t *nvme;
2888 int instance;
2889 int nregs;
2890 off_t regsize;
2891 int i;
2892 char name[32];
2894 if (cmd != DDI_ATTACH)
2895 return (DDI_FAILURE);
2897 instance = ddi_get_instance(dip);
2899 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2900 return (DDI_FAILURE);
2902 nvme = ddi_get_soft_state(nvme_state, instance);
2903 ddi_set_driver_private(dip, nvme);
2904 nvme->n_dip = dip;
2906 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2908 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2909 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2910 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2911 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2912 B_TRUE : B_FALSE;
2913 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2914 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2915 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2916 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2917 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2918 DDI_PROP_DONTPASS, "async-event-limit",
2919 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2920 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2921 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2922 B_TRUE : B_FALSE;
2923 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2924 DDI_PROP_DONTPASS, "min-phys-block-size",
2925 NVME_DEFAULT_MIN_BLOCK_SIZE);
2927 if (!ISP2(nvme->n_min_block_size) ||
2928 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2929 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2930 "using default %d", ISP2(nvme->n_min_block_size) ?
2931 "too low" : "not a power of 2",
2932 NVME_DEFAULT_MIN_BLOCK_SIZE);
2933 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2936 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2937 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2938 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2939 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2941 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2942 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2944 if (nvme->n_async_event_limit < 1)
2945 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2947 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2948 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2949 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2950 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2953 * Setup FMA support.
2955 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2956 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2957 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2958 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2960 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2962 if (nvme->n_fm_cap) {
2963 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2964 nvme->n_reg_acc_attr.devacc_attr_access =
2965 DDI_FLAGERR_ACC;
2967 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2968 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2969 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2972 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2973 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2974 pci_ereport_setup(dip);
2976 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2977 ddi_fm_handler_register(dip, nvme_fm_errcb,
2978 (void *)nvme);
2981 nvme->n_progress |= NVME_FMA_INIT;
2984 * The spec defines several register sets. Only the controller
2985 * registers (set 1) are currently used.
2987 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2988 nregs < 2 ||
2989 ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2990 goto fail;
2992 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2993 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2994 dev_err(dip, CE_WARN, "!failed to map regset 1");
2995 goto fail;
2998 nvme->n_progress |= NVME_REGS_MAPPED;
3001 * Create taskq for command completion.
3003 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
3004 ddi_driver_name(dip), ddi_get_instance(dip));
3005 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
3006 TASKQ_DEFAULTPRI, 0);
3007 if (nvme->n_cmd_taskq == NULL) {
3008 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
3009 goto fail;
3013 * Create PRP DMA cache
3015 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3016 ddi_driver_name(dip), ddi_get_instance(dip));
3017 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3018 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3019 NULL, (void *)nvme, NULL, 0);
3021 if (nvme_init(nvme) != DDI_SUCCESS)
3022 goto fail;
3025 * Attach the blkdev driver for each namespace.
3027 for (i = 0; i != nvme->n_namespace_count; i++) {
3028 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3029 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3030 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3031 dev_err(dip, CE_WARN,
3032 "!failed to create minor node for namespace %d", i);
3033 goto fail;
3036 if (nvme->n_ns[i].ns_ignore)
3037 continue;
3039 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3040 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3042 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3043 dev_err(dip, CE_WARN,
3044 "!failed to get blkdev handle for namespace %d", i);
3045 goto fail;
3048 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3049 != DDI_SUCCESS) {
3050 dev_err(dip, CE_WARN,
3051 "!failed to attach blkdev handle for namespace %d",
3053 goto fail;
3057 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3058 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3059 != DDI_SUCCESS) {
3060 dev_err(dip, CE_WARN, "nvme_attach: "
3061 "cannot create devctl minor node");
3062 goto fail;
3065 return (DDI_SUCCESS);
3067 fail:
3068 /* attach successful anyway so that FMA can retire the device */
3069 if (nvme->n_dead)
3070 return (DDI_SUCCESS);
3072 (void) nvme_detach(dip, DDI_DETACH);
3074 return (DDI_FAILURE);
3077 static int
3078 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3080 int instance, i;
3081 nvme_t *nvme;
3083 if (cmd != DDI_DETACH)
3084 return (DDI_FAILURE);
3086 instance = ddi_get_instance(dip);
3088 nvme = ddi_get_soft_state(nvme_state, instance);
3090 if (nvme == NULL)
3091 return (DDI_FAILURE);
3093 ddi_remove_minor_node(dip, "devctl");
3094 mutex_destroy(&nvme->n_minor.nm_mutex);
3096 if (nvme->n_ns) {
3097 for (i = 0; i != nvme->n_namespace_count; i++) {
3098 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3099 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3101 if (nvme->n_ns[i].ns_bd_hdl) {
3102 (void) bd_detach_handle(
3103 nvme->n_ns[i].ns_bd_hdl);
3104 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3107 if (nvme->n_ns[i].ns_idns)
3108 kmem_free(nvme->n_ns[i].ns_idns,
3109 sizeof (nvme_identify_nsid_t));
3110 if (nvme->n_ns[i].ns_devid)
3111 strfree(nvme->n_ns[i].ns_devid);
3114 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3115 nvme->n_namespace_count);
3118 if (nvme->n_progress & NVME_INTERRUPTS)
3119 nvme_release_interrupts(nvme);
3121 if (nvme->n_cmd_taskq)
3122 ddi_taskq_wait(nvme->n_cmd_taskq);
3124 if (nvme->n_ioq_count > 0) {
3125 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3126 if (nvme->n_ioq[i] != NULL) {
3127 /* TODO: send destroy queue commands */
3128 nvme_free_qpair(nvme->n_ioq[i]);
3132 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3133 (nvme->n_ioq_count + 1));
3136 if (nvme->n_prp_cache != NULL) {
3137 kmem_cache_destroy(nvme->n_prp_cache);
3140 if (nvme->n_progress & NVME_REGS_MAPPED) {
3141 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3142 (void) nvme_reset(nvme, B_FALSE);
3145 if (nvme->n_cmd_taskq)
3146 ddi_taskq_destroy(nvme->n_cmd_taskq);
3148 if (nvme->n_progress & NVME_CTRL_LIMITS)
3149 sema_destroy(&nvme->n_abort_sema);
3151 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3152 nvme_free_qpair(nvme->n_adminq);
3154 if (nvme->n_idctl)
3155 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3157 if (nvme->n_progress & NVME_REGS_MAPPED)
3158 ddi_regs_map_free(&nvme->n_regh);
3160 if (nvme->n_progress & NVME_FMA_INIT) {
3161 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3162 ddi_fm_handler_unregister(nvme->n_dip);
3164 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3165 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3166 pci_ereport_teardown(nvme->n_dip);
3168 ddi_fm_fini(nvme->n_dip);
3171 if (nvme->n_vendor != NULL)
3172 strfree(nvme->n_vendor);
3174 if (nvme->n_product != NULL)
3175 strfree(nvme->n_product);
3177 ddi_soft_state_free(nvme_state, instance);
3179 return (DDI_SUCCESS);
3182 static int
3183 nvme_quiesce(dev_info_t *dip)
3185 int instance;
3186 nvme_t *nvme;
3188 instance = ddi_get_instance(dip);
3190 nvme = ddi_get_soft_state(nvme_state, instance);
3192 if (nvme == NULL)
3193 return (DDI_FAILURE);
3195 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3197 (void) nvme_reset(nvme, B_TRUE);
3199 return (DDI_FAILURE);
3202 static int
3203 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3205 nvme_t *nvme = cmd->nc_nvme;
3206 int nprp_page, nprp;
3207 uint64_t *prp;
3209 if (xfer->x_ndmac == 0)
3210 return (DDI_FAILURE);
3212 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3213 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3215 if (xfer->x_ndmac == 1) {
3216 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3217 return (DDI_SUCCESS);
3218 } else if (xfer->x_ndmac == 2) {
3219 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3220 return (DDI_SUCCESS);
3223 xfer->x_ndmac--;
3225 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3226 ASSERT(nprp_page > 0);
3227 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3230 * We currently don't support chained PRPs and set up our DMA
3231 * attributes to reflect that. If we still get an I/O request
3232 * that needs a chained PRP something is very wrong.
3234 VERIFY(nprp == 1);
3236 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3237 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3239 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3241 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3242 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3243 xfer->x_ndmac > 0;
3244 prp++, xfer->x_ndmac--) {
3245 *prp = xfer->x_dmac.dmac_laddress;
3246 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3249 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3250 DDI_DMA_SYNC_FORDEV);
3251 return (DDI_SUCCESS);
3254 static nvme_cmd_t *
3255 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3257 nvme_t *nvme = ns->ns_nvme;
3258 nvme_cmd_t *cmd;
3261 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3263 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3264 KM_NOSLEEP : KM_SLEEP);
3266 if (cmd == NULL)
3267 return (NULL);
3269 cmd->nc_sqe.sqe_opc = opc;
3270 cmd->nc_callback = nvme_bd_xfer_done;
3271 cmd->nc_xfer = xfer;
3273 switch (opc) {
3274 case NVME_OPC_NVM_WRITE:
3275 case NVME_OPC_NVM_READ:
3276 VERIFY(xfer->x_nblks <= 0x10000);
3278 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3280 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3281 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3282 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3284 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3285 goto fail;
3286 break;
3288 case NVME_OPC_NVM_FLUSH:
3289 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3290 break;
3292 default:
3293 goto fail;
3296 return (cmd);
3298 fail:
3299 nvme_free_cmd(cmd);
3300 return (NULL);
3303 static void
3304 nvme_bd_xfer_done(void *arg)
3306 nvme_cmd_t *cmd = arg;
3307 bd_xfer_t *xfer = cmd->nc_xfer;
3308 int error = 0;
3310 error = nvme_check_cmd_status(cmd);
3311 nvme_free_cmd(cmd);
3313 bd_xfer_done(xfer, error);
3316 static void
3317 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3319 nvme_namespace_t *ns = arg;
3320 nvme_t *nvme = ns->ns_nvme;
3323 * blkdev maintains one queue size per instance (namespace),
3324 * but all namespace share the I/O queues.
3325 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3326 * or change blkdev to handle EAGAIN
3328 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3329 / nvme->n_namespace_count;
3332 * d_maxxfer is not set, which means the value is taken from the DMA
3333 * attributes specified to bd_alloc_handle.
3336 drive->d_removable = B_FALSE;
3337 drive->d_hotpluggable = B_FALSE;
3339 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3340 drive->d_target = ns->ns_id;
3341 drive->d_lun = 0;
3343 drive->d_model = nvme->n_idctl->id_model;
3344 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3345 drive->d_vendor = nvme->n_vendor;
3346 drive->d_vendor_len = strlen(nvme->n_vendor);
3347 drive->d_product = nvme->n_product;
3348 drive->d_product_len = strlen(nvme->n_product);
3349 drive->d_serial = nvme->n_idctl->id_serial;
3350 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3351 drive->d_revision = nvme->n_idctl->id_fwrev;
3352 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3355 static int
3356 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3358 nvme_namespace_t *ns = arg;
3360 media->m_nblks = ns->ns_block_count;
3361 media->m_blksize = ns->ns_block_size;
3362 media->m_readonly = B_FALSE;
3363 media->m_solidstate = B_TRUE;
3365 media->m_pblksize = ns->ns_best_block_size;
3367 return (0);
3370 static int
3371 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3373 nvme_t *nvme = ns->ns_nvme;
3374 nvme_cmd_t *cmd;
3375 nvme_qpair_t *ioq;
3376 boolean_t poll;
3377 int ret;
3379 if (nvme->n_dead)
3380 return (EIO);
3382 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3383 if (cmd == NULL)
3384 return (ENOMEM);
3386 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3387 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3388 ioq = nvme->n_ioq[cmd->nc_sqid];
3391 * Get the polling flag before submitting the command. The command may
3392 * complete immediately after it was submitted, which means we must
3393 * treat both cmd and xfer as if they have been freed already.
3395 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3397 ret = nvme_submit_io_cmd(ioq, cmd);
3399 if (ret != 0)
3400 return (ret);
3402 if (!poll)
3403 return (0);
3405 do {
3406 cmd = nvme_retrieve_cmd(nvme, ioq);
3407 if (cmd != NULL)
3408 nvme_bd_xfer_done(cmd);
3409 else
3410 drv_usecwait(10);
3411 } while (ioq->nq_active_cmds != 0);
3413 return (0);
3416 static int
3417 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3419 nvme_namespace_t *ns = arg;
3421 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3424 static int
3425 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3427 nvme_namespace_t *ns = arg;
3429 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3432 static int
3433 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3435 nvme_namespace_t *ns = arg;
3437 if (ns->ns_nvme->n_dead)
3438 return (EIO);
3441 * If the volatile write cache is not present or not enabled the FLUSH
3442 * command is a no-op, so we can take a shortcut here.
3444 if (!ns->ns_nvme->n_write_cache_present) {
3445 bd_xfer_done(xfer, ENOTSUP);
3446 return (0);
3449 if (!ns->ns_nvme->n_write_cache_enabled) {
3450 bd_xfer_done(xfer, 0);
3451 return (0);
3454 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3457 static int
3458 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3460 nvme_namespace_t *ns = arg;
3462 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3463 if (*(uint64_t *)ns->ns_eui64 != 0) {
3464 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3465 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3466 } else {
3467 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3468 strlen(ns->ns_devid), ns->ns_devid, devid));
3472 static int
3473 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3475 #ifndef __lock_lint
3476 _NOTE(ARGUNUSED(cred_p));
3477 #endif
3478 minor_t minor = getminor(*devp);
3479 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3480 int nsid = NVME_MINOR_NSID(minor);
3481 nvme_minor_state_t *nm;
3482 int rv = 0;
3484 if (otyp != OTYP_CHR)
3485 return (EINVAL);
3487 if (nvme == NULL)
3488 return (ENXIO);
3490 if (nsid > nvme->n_namespace_count)
3491 return (ENXIO);
3493 if (nvme->n_dead)
3494 return (EIO);
3496 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3498 mutex_enter(&nm->nm_mutex);
3499 if (nm->nm_oexcl) {
3500 rv = EBUSY;
3501 goto out;
3504 if (flag & FEXCL) {
3505 if (nm->nm_ocnt != 0) {
3506 rv = EBUSY;
3507 goto out;
3509 nm->nm_oexcl = B_TRUE;
3512 nm->nm_ocnt++;
3514 out:
3515 mutex_exit(&nm->nm_mutex);
3516 return (rv);
3520 static int
3521 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3523 #ifndef __lock_lint
3524 _NOTE(ARGUNUSED(cred_p));
3525 _NOTE(ARGUNUSED(flag));
3526 #endif
3527 minor_t minor = getminor(dev);
3528 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3529 int nsid = NVME_MINOR_NSID(minor);
3530 nvme_minor_state_t *nm;
3532 if (otyp != OTYP_CHR)
3533 return (ENXIO);
3535 if (nvme == NULL)
3536 return (ENXIO);
3538 if (nsid > nvme->n_namespace_count)
3539 return (ENXIO);
3541 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3543 mutex_enter(&nm->nm_mutex);
3544 if (nm->nm_oexcl)
3545 nm->nm_oexcl = B_FALSE;
3547 ASSERT(nm->nm_ocnt > 0);
3548 nm->nm_ocnt--;
3549 mutex_exit(&nm->nm_mutex);
3551 return (0);
3554 static int
3555 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3556 cred_t *cred_p)
3558 _NOTE(ARGUNUSED(cred_p));
3559 int rv = 0;
3560 void *idctl;
3562 if ((mode & FREAD) == 0)
3563 return (EPERM);
3565 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3566 return (EINVAL);
3568 if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
3569 return (rv);
3571 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3572 != 0)
3573 rv = EFAULT;
3575 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3577 return (rv);
3580 static int
3581 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3582 int mode, cred_t *cred_p)
3584 _NOTE(ARGUNUSED(nsid, cred_p));
3585 int rv = 0;
3586 nvme_reg_cap_t cap = { 0 };
3587 nvme_capabilities_t nc;
3589 if ((mode & FREAD) == 0)
3590 return (EPERM);
3592 if (nioc->n_len < sizeof (nc))
3593 return (EINVAL);
3595 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3598 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3599 * specify the base page size of 4k (1<<12), so add 12 here to
3600 * get the real page size value.
3602 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3603 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3605 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3606 rv = EFAULT;
3608 return (rv);
3611 static int
3612 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3613 int mode, cred_t *cred_p)
3615 _NOTE(ARGUNUSED(cred_p));
3616 void *log = NULL;
3617 size_t bufsize = 0;
3618 int rv = 0;
3620 if ((mode & FREAD) == 0)
3621 return (EPERM);
3623 switch (nioc->n_arg) {
3624 case NVME_LOGPAGE_ERROR:
3625 if (nsid != 0)
3626 return (EINVAL);
3627 break;
3628 case NVME_LOGPAGE_HEALTH:
3629 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3630 return (EINVAL);
3632 if (nsid == 0)
3633 nsid = (uint32_t)-1;
3635 break;
3636 case NVME_LOGPAGE_FWSLOT:
3637 if (nsid != 0)
3638 return (EINVAL);
3639 break;
3640 default:
3641 return (EINVAL);
3644 if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
3645 != DDI_SUCCESS)
3646 return (EIO);
3648 if (nioc->n_len < bufsize) {
3649 kmem_free(log, bufsize);
3650 return (EINVAL);
3653 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3654 rv = EFAULT;
3656 nioc->n_len = bufsize;
3657 kmem_free(log, bufsize);
3659 return (rv);
3662 static int
3663 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3664 int mode, cred_t *cred_p)
3666 _NOTE(ARGUNUSED(cred_p));
3667 void *buf = NULL;
3668 size_t bufsize = 0;
3669 uint32_t res = 0;
3670 uint8_t feature;
3671 int rv = 0;
3673 if ((mode & FREAD) == 0)
3674 return (EPERM);
3676 if ((nioc->n_arg >> 32) > 0xff)
3677 return (EINVAL);
3679 feature = (uint8_t)(nioc->n_arg >> 32);
3681 switch (feature) {
3682 case NVME_FEAT_ARBITRATION:
3683 case NVME_FEAT_POWER_MGMT:
3684 case NVME_FEAT_TEMPERATURE:
3685 case NVME_FEAT_ERROR:
3686 case NVME_FEAT_NQUEUES:
3687 case NVME_FEAT_INTR_COAL:
3688 case NVME_FEAT_WRITE_ATOM:
3689 case NVME_FEAT_ASYNC_EVENT:
3690 case NVME_FEAT_PROGRESS:
3691 if (nsid != 0)
3692 return (EINVAL);
3693 break;
3695 case NVME_FEAT_INTR_VECT:
3696 if (nsid != 0)
3697 return (EINVAL);
3699 res = nioc->n_arg & 0xffffffffUL;
3700 if (res >= nvme->n_intr_cnt)
3701 return (EINVAL);
3702 break;
3704 case NVME_FEAT_LBA_RANGE:
3705 if (nvme->n_lba_range_supported == B_FALSE)
3706 return (EINVAL);
3708 if (nsid == 0 ||
3709 nsid > nvme->n_namespace_count)
3710 return (EINVAL);
3712 break;
3714 case NVME_FEAT_WRITE_CACHE:
3715 if (nsid != 0)
3716 return (EINVAL);
3718 if (!nvme->n_write_cache_present)
3719 return (EINVAL);
3721 break;
3723 case NVME_FEAT_AUTO_PST:
3724 if (nsid != 0)
3725 return (EINVAL);
3727 if (!nvme->n_auto_pst_supported)
3728 return (EINVAL);
3730 break;
3732 default:
3733 return (EINVAL);
3736 rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
3737 &bufsize);
3738 if (rv != 0)
3739 return (rv);
3741 if (nioc->n_len < bufsize) {
3742 kmem_free(buf, bufsize);
3743 return (EINVAL);
3746 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3747 rv = EFAULT;
3749 kmem_free(buf, bufsize);
3750 nioc->n_arg = res;
3751 nioc->n_len = bufsize;
3753 return (rv);
3756 static int
3757 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3758 cred_t *cred_p)
3760 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3762 if ((mode & FREAD) == 0)
3763 return (EPERM);
3765 nioc->n_arg = nvme->n_intr_cnt;
3766 return (0);
3769 static int
3770 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771 cred_t *cred_p)
3773 _NOTE(ARGUNUSED(nsid, cred_p));
3774 int rv = 0;
3776 if ((mode & FREAD) == 0)
3777 return (EPERM);
3779 if (nioc->n_len < sizeof (nvme->n_version))
3780 return (ENOMEM);
3782 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3783 sizeof (nvme->n_version), mode) != 0)
3784 rv = EFAULT;
3786 return (rv);
3789 static int
3790 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3791 cred_t *cred_p)
3793 _NOTE(ARGUNUSED(mode));
3794 nvme_format_nvm_t frmt = { 0 };
3795 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3797 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3798 return (EPERM);
3800 frmt.r = nioc->n_arg & 0xffffffff;
3803 * Check whether the FORMAT NVM command is supported.
3805 if (nvme->n_idctl->id_oacs.oa_format == 0)
3806 return (EINVAL);
3809 * Don't allow format or secure erase of individual namespace if that
3810 * would cause a format or secure erase of all namespaces.
3812 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3813 return (EINVAL);
3815 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3816 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3817 return (EINVAL);
3820 * Don't allow formatting with Protection Information.
3822 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3823 return (EINVAL);
3826 * Don't allow formatting using an illegal LBA format, or any LBA format
3827 * that uses metadata.
3829 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3830 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3831 return (EINVAL);
3834 * Don't allow formatting using an illegal Secure Erase setting.
3836 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3837 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3838 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3839 return (EINVAL);
3841 if (nsid == 0)
3842 nsid = (uint32_t)-1;
3844 return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
3845 B_FALSE, frmt.b.fm_ses));
3848 static int
3849 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3850 cred_t *cred_p)
3852 _NOTE(ARGUNUSED(nioc, mode));
3853 int rv = 0;
3855 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3856 return (EPERM);
3858 if (nsid == 0)
3859 return (EINVAL);
3861 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3862 if (rv != DDI_SUCCESS)
3863 rv = EBUSY;
3865 return (rv);
3868 static int
3869 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3870 cred_t *cred_p)
3872 _NOTE(ARGUNUSED(nioc, mode));
3873 nvme_identify_nsid_t *idns;
3874 int rv = 0;
3876 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3877 return (EPERM);
3879 if (nsid == 0)
3880 return (EINVAL);
3883 * Identify namespace again, free old identify data.
3885 idns = nvme->n_ns[nsid - 1].ns_idns;
3886 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3887 return (EIO);
3889 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3891 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3892 if (rv != DDI_SUCCESS)
3893 rv = EBUSY;
3895 return (rv);
3898 static int
3899 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3900 int *rval_p)
3902 #ifndef __lock_lint
3903 _NOTE(ARGUNUSED(rval_p));
3904 #endif
3905 minor_t minor = getminor(dev);
3906 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3907 int nsid = NVME_MINOR_NSID(minor);
3908 int rv = 0;
3909 nvme_ioctl_t nioc;
3911 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3912 NULL,
3913 nvme_ioctl_identify,
3914 nvme_ioctl_identify,
3915 nvme_ioctl_capabilities,
3916 nvme_ioctl_get_logpage,
3917 nvme_ioctl_get_features,
3918 nvme_ioctl_intr_cnt,
3919 nvme_ioctl_version,
3920 nvme_ioctl_format,
3921 nvme_ioctl_detach,
3922 nvme_ioctl_attach
3925 if (nvme == NULL)
3926 return (ENXIO);
3928 if (nsid > nvme->n_namespace_count)
3929 return (ENXIO);
3931 if (IS_DEVCTL(cmd))
3932 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3934 #ifdef _MULTI_DATAMODEL
3935 switch (ddi_model_convert_from(mode & FMODELS)) {
3936 case DDI_MODEL_ILP32: {
3937 nvme_ioctl32_t nioc32;
3938 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3939 mode) != 0)
3940 return (EFAULT);
3941 nioc.n_len = nioc32.n_len;
3942 nioc.n_buf = nioc32.n_buf;
3943 nioc.n_arg = nioc32.n_arg;
3944 break;
3946 case DDI_MODEL_NONE:
3947 #endif
3948 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3949 != 0)
3950 return (EFAULT);
3951 #ifdef _MULTI_DATAMODEL
3952 break;
3954 #endif
3956 if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3957 return (EIO);
3960 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3962 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3963 * attachment point nodes.
3965 nsid = 0;
3966 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3968 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3969 * will always return identify data for namespace 1.
3971 nsid = 1;
3974 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3975 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3976 cred_p);
3977 else
3978 rv = EINVAL;
3980 #ifdef _MULTI_DATAMODEL
3981 switch (ddi_model_convert_from(mode & FMODELS)) {
3982 case DDI_MODEL_ILP32: {
3983 nvme_ioctl32_t nioc32;
3985 nioc32.n_len = (size32_t)nioc.n_len;
3986 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3987 nioc32.n_arg = nioc.n_arg;
3989 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3990 mode) != 0)
3991 return (EFAULT);
3992 break;
3994 case DDI_MODEL_NONE:
3995 #endif
3996 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3997 != 0)
3998 return (EFAULT);
3999 #ifdef _MULTI_DATAMODEL
4000 break;
4002 #endif
4004 return (rv);