4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * This file contains global data and code shared between master and slave parts
28 * of the pseudo-terminal driver.
30 * Pseudo terminals (or pt's for short) are allocated dynamically.
31 * pt's are put in the global ptms_slots array indexed by minor numbers.
33 * The slots array is initially small (of the size NPTY_MIN). When more pt's are
34 * needed than the slot array size, the larger slot array is allocated and all
35 * opened pt's move to the new one.
37 * Resource allocation:
39 * pt_ttys structures are allocated via pt_ttys_alloc, which uses
41 * Minor number space is allocated via vmem_alloc() interface.
42 * ptms_slots arrays are allocated via kmem_alloc().
44 * Minors are started from 1 instead of 0 because vmem_alloc returns 0 in case
45 * of failure. Also, in anticipation of removing clone device interface to
46 * pseudo-terminal subsystem, minor 0 should not be used. (Potential future
49 * After the table slot size reaches pt_maxdelta, we stop 2^N extension
50 * algorithm and start extending the slot table size by pt_maxdelta.
52 * Device entries /dev/pts directory are created dynamically by the
53 * /dev filesystem. We no longer call ddi_create_minor_node() on
54 * behalf of the slave driver. The /dev filesystem creates /dev/pts
55 * nodes based on the pt_ttys array.
59 * All global data synchronization between ptm/pts is done via global
60 * ptms_lock mutex which is implicitly initialized by declaring it global.
62 * Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
63 * pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
65 * PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
66 * which allow reader locks to be reacquired by the same thread (usual
67 * reader/writer locks can't be used for that purpose since it is illegal for
68 * a thread to acquire a lock it already holds, even as a reader). The sole
69 * purpose of these macros is to guarantee that the peer queue will not
70 * disappear (due to closing peer) while it is used. It is safe to use
71 * PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
72 * they are not real locks but reference counts).
74 * PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
75 * open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
76 * be set to appropriate queues *after* qprocson() is called during open (to
77 * prevent peer from accessing the queue with incomplete plumbing) and set to
78 * NULL before qprocsoff() is called during close. Put and service procedures
79 * use PT_ENTER_READ/PT_EXIT_READ to prevent peer closes.
81 * The pt_nullmsg field is only used in open/close routines and is also
82 * protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
87 * If both ptms_lock and per-pty lock should be held, ptms_lock should always
88 * be entered first, followed by per-pty lock.
92 * void ptms_init(void);
94 * Called by pts/ptm _init entry points. It performes one-time
95 * initialization needed for both pts and ptm. This initialization is done
96 * here and not in ptms_initspace because all these data structures are not
97 * needed if pseudo-terminals are not used in the system.
99 * struct pt_ttys *pt_ttys_alloc(void);
101 * Allocate new minor number and pseudo-terminal entry. May sleep.
102 * New minor number is recorded in pt_minor field of the entry returned.
103 * This routine also initializes pt_minor and pt_state fields of the new
104 * pseudo-terminal and puts a pointer to it into ptms_slots array.
106 * struct pt_ttys *ptms_minor2ptty(minor_t minor)
108 * Find pt_ttys structure by minor number.
109 * Returns NULL when minor is out of range.
111 * int ptms_minor_valid(minor_t minor, uid_t *ruid, gid_t *rgid)
113 * Check if minor refers to an allocated pty in the current zone.
115 * 0 if not allocated or not for this zone.
116 * 1 if an allocated pty in the current zone.
117 * Also returns owner of pty.
119 * int ptms_minor_exists(minor_t minor)
120 * Check if minor refers to an allocated pty (in any zone)
122 * 0 if not an allocated pty
123 * 1 if an allocated pty
125 * void ptms_set_owner(minor_t minor, uid_t ruid, gid_t rgid)
127 * Sets the owner associated with a pty.
129 * void ptms_close(struct pt_ttys *pt, uint_t flags_to_clear);
131 * Clear flags_to_clear in pt and if no one owns it (PTMOPEN/PTSOPEN not
132 * set) free pt entry and corresponding slot.
134 * Tuneables and configuration:
136 * pt_cnt: minimum number of pseudo-terminals in the system. The system
137 * should provide at least this number of ptys (provided sufficient
138 * memory is available). It is different from the older semantics
139 * of pt_cnt meaning maximum number of ptys.
140 * Set to 0 by default.
142 * pt_max_pty: Maximum number of pseudo-terminals in the system. The system
143 * should not allocate more ptys than pt_max_pty (although, it may
144 * impose stricter maximum). Zero value means no user-defined
145 * maximum. This is intended to be used as "denial-of-service"
147 * Set to 0 by default.
149 * Both pt_cnt and pt_max_pty may be modified during system lifetime
150 * with their semantics preserved.
152 * pt_init_cnt: Initial size of ptms_slots array. Set to NPTY_INITIAL.
154 * pt_ptyofmem: Approximate percentage of system memory that may be
155 * occupied by pty data structures. Initially set to NPTY_PERCENT.
156 * This variable is used once during initialization to estimate
157 * maximum number of ptys in the system. The actual maximum is
158 * determined as minimum of pt_max_pty and calculated value.
160 * pt_maxdelta: Maximum extension chunk of the slot table.
165 #include <sys/types.h>
166 #include <sys/param.h>
167 #include <sys/termios.h>
168 #include <sys/stream.h>
169 #include <sys/stropts.h>
170 #include <sys/kmem.h>
171 #include <sys/ptms.h>
172 #include <sys/stat.h>
173 #include <sys/sunddi.h>
175 #include <sys/bitmap.h>
176 #include <sys/sysmacros.h>
177 #include <sys/ddi_impldefs.h>
178 #include <sys/zone.h>
180 #include <sys/strlog.h>
184 /* Initial number of ptms slots */
185 #define NPTY_INITIAL 16
187 #define NPTY_PERCENT 5
189 /* Maximum increment of the slot table size */
190 #define PTY_MAXDELTA 128
193 * Tuneable variables.
195 uint_t pt_cnt
= 0; /* Minimum number of ptys */
196 size_t pt_max_pty
= 0; /* Maximum number of ptys */
197 uint_t pt_init_cnt
= NPTY_INITIAL
; /* Initial number of ptms slots */
198 uint_t pt_pctofmem
= NPTY_PERCENT
; /* Percent of memory to use for ptys */
199 uint_t pt_maxdelta
= PTY_MAXDELTA
; /* Max increment for slot table size */
201 /* Other global variables */
203 kmutex_t ptms_lock
; /* Global data access lock */
206 * Slot array and its management variables
208 static struct pt_ttys
**ptms_slots
= NULL
; /* Slots for actual pt structures */
209 static size_t ptms_nslots
= 0; /* Size of slot array */
210 static size_t ptms_ptymax
= 0; /* Maximum number of ptys */
211 static size_t ptms_inuse
= 0; /* # of ptys currently allocated */
213 dev_info_t
*pts_dip
= NULL
; /* set if slave is attached */
215 static struct kmem_cache
*ptms_cache
= NULL
; /* pty cache */
217 static vmem_t
*ptms_minor_arena
= NULL
; /* Arena for device minors */
219 static uint_t
ptms_roundup(uint_t
);
220 static int ptms_constructor(void *, void *, int);
221 static void ptms_destructor(void *, void *);
222 static minor_t
ptms_grow(void);
225 * Total size occupied by one pty. Each pty master/slave pair consumes one
226 * pointer for ptms_slots array, one pt_ttys structure and one empty message
227 * preallocated for pts close.
230 #define PTY_SIZE (sizeof (struct pt_ttys) + \
231 sizeof (struct pt_ttys *) + \
240 * Clear all bits of x except the highest bit
242 #define truncate(x) ((x) <= 2 ? (x) : (1 << (highbit(x) - 1)))
245 * Roundup the number to the nearest power of 2
248 ptms_roundup(uint_t x
)
250 uint_t p
= truncate(x
); /* x with non-high bits stripped */
253 * If x is a power of 2, return x, otherwise roundup.
255 return (p
== x
? p
: (p
* 2));
259 * Allocate ptms_slots array and kmem cache for pt_ttys. This initialization is
260 * only called once during system lifetime. Called from ptm or pts _init
266 mutex_enter(&ptms_lock
);
268 if (ptms_slots
== NULL
) {
269 ptms_slots
= kmem_zalloc(pt_init_cnt
*
270 sizeof (struct pt_ttys
*), KM_SLEEP
);
272 ptms_cache
= kmem_cache_create("pty_map",
273 sizeof (struct pt_ttys
), 0, ptms_constructor
,
274 ptms_destructor
, NULL
, NULL
, NULL
, 0);
276 ptms_nslots
= pt_init_cnt
;
278 /* Allocate integer space for minor numbers */
279 ptms_minor_arena
= vmem_create("ptms_minor", (void *)1,
280 ptms_nslots
, 1, NULL
, NULL
, NULL
, 0,
281 VM_SLEEP
| VMC_IDENTIFIER
);
284 * Calculate available number of ptys - how many ptys can we
285 * allocate in pt_pctofmem % of available memory. The value is
286 * rounded up to the nearest power of 2.
288 ptms_ptymax
= ptms_roundup((pt_pctofmem
* kmem_maxavail()) /
291 mutex_exit(&ptms_lock
);
295 * This routine attaches the pts dip.
298 ptms_attach_slave(void)
300 if (pts_dip
== NULL
&& i_ddi_attach_pseudo_node("pts") == NULL
)
308 * Called from /dev fs. Checks if dip is attached,
309 * and if it is, returns its major number.
312 ptms_slave_attached(void)
314 major_t maj
= DDI_MAJOR_T_NONE
;
316 mutex_enter(&ptms_lock
);
318 maj
= ddi_driver_major(pts_dip
);
319 mutex_exit(&ptms_lock
);
325 * Allocate new minor number and pseudo-terminal entry. Returns the new entry or
326 * NULL if no memory or maximum number of entries reached.
332 struct pt_ttys
*pt
= NULL
;
334 mutex_enter(&ptms_lock
);
337 * Always try to allocate new pty when pt_cnt minimum limit is not
338 * achieved. If it is achieved, the maximum is determined by either
339 * user-specified value (if it is non-zero) or our memory estimations -
342 if (ptms_inuse
>= pt_cnt
) {
344 * When system achieved required minimum of ptys, check for the
345 * denial of service limits.
347 * Since pt_max_pty may be zero, the formula below is used to
348 * avoid conditional expression. It will equal to pt_max_pty if
349 * it is not zero and ptms_ptymax otherwise.
351 size_t user_max
= (pt_max_pty
== 0 ? ptms_ptymax
: pt_max_pty
);
353 /* Do not try to allocate more than allowed */
354 if (ptms_inuse
>= min(ptms_ptymax
, user_max
)) {
355 mutex_exit(&ptms_lock
);
362 * Allocate new minor number. If this fails, all slots are busy and
363 * we need to grow the hash.
365 dminor
= (minor_t
)(uintptr_t)
366 vmem_alloc(ptms_minor_arena
, 1, VM_NOSLEEP
);
369 /* Grow the cache and retry allocation */
370 dminor
= ptms_grow();
374 /* Not enough memory now */
376 mutex_exit(&ptms_lock
);
380 pt
= kmem_cache_alloc(ptms_cache
, KM_NOSLEEP
);
382 /* Not enough memory - this entry can't be used now. */
383 vmem_free(ptms_minor_arena
, (void *)(uintptr_t)dminor
, 1);
386 pt
->pt_minor
= dminor
;
387 pt
->pt_pid
= curproc
->p_pid
; /* For debugging */
388 pt
->pt_state
= (PTMOPEN
| PTLOCK
);
389 pt
->pt_zoneid
= getzoneid();
390 pt
->pt_ruid
= 0; /* we don't know uid/gid yet. Report as root */
392 ASSERT(ptms_slots
[dminor
- 1] == NULL
);
393 ptms_slots
[dminor
- 1] = pt
;
396 mutex_exit(&ptms_lock
);
401 * Get pt_ttys structure by minor number.
402 * Returns NULL when minor is out of range.
405 ptms_minor2ptty(minor_t dminor
)
407 struct pt_ttys
*pt
= NULL
;
409 ASSERT(mutex_owned(&ptms_lock
));
410 if ((dminor
>= 1) && (dminor
<= ptms_nslots
) && ptms_slots
!= NULL
)
411 pt
= ptms_slots
[dminor
- 1];
417 * Invoked in response to chown on /dev/pts nodes to change the
418 * permission on a pty
421 ptms_set_owner(minor_t dminor
, uid_t ruid
, gid_t rgid
)
428 if (ruid
< 0 || rgid
< 0)
432 * /dev/pts/0 is not used, but some applications may check it. There
433 * is no pty backing it - so we have nothing to do.
438 mutex_enter(&ptms_lock
);
439 pt
= ptms_minor2ptty(dminor
);
440 if (pt
!= NULL
&& pt
->pt_zoneid
== getzoneid()) {
444 mutex_exit(&ptms_lock
);
448 * Given a ptm/pts minor number
450 * 1 if the pty is allocated to the current zone.
453 * If the pty is allocated to the current zone, it also returns the owner.
456 ptms_minor_valid(minor_t dminor
, uid_t
*ruid
, gid_t
*rgid
)
468 * /dev/pts/0 is not used, but some applications may check it, so create
469 * it also. Report the owner as root. It belongs to all zones.
478 mutex_enter(&ptms_lock
);
479 pt
= ptms_minor2ptty(dminor
);
481 ASSERT(pt
->pt_ruid
>= 0);
482 ASSERT(pt
->pt_rgid
>= 0);
483 if (pt
->pt_zoneid
== getzoneid()) {
489 mutex_exit(&ptms_lock
);
495 * Given a ptm/pts minor number
497 * 0 if the pty is not allocated
498 * 1 if the pty is allocated
501 ptms_minor_exists(minor_t dminor
)
505 mutex_enter(&ptms_lock
);
506 ret
= ptms_minor2ptty(dminor
) ? 1 : 0;
507 mutex_exit(&ptms_lock
);
513 * Close the pt and clear flags_to_clear.
514 * If pt device is not opened by someone else, free it and clear its slot.
517 ptms_close(struct pt_ttys
*pt
, uint_t flags_to_clear
)
521 ASSERT(MUTEX_NOT_HELD(&ptms_lock
));
524 mutex_enter(&ptms_lock
);
526 mutex_enter(&pt
->pt_lock
);
527 pt
->pt_state
&= ~flags_to_clear
;
528 flags
= pt
->pt_state
;
529 mutex_exit(&pt
->pt_lock
);
531 if (! (flags
& (PTMOPEN
| PTSOPEN
))) {
532 /* No one owns the entry - free it */
534 ASSERT(pt
->ptm_rdq
== NULL
);
535 ASSERT(pt
->pts_rdq
== NULL
);
536 ASSERT(pt
->pt_nullmsg
== NULL
);
537 ASSERT(pt
->pt_refcnt
== 0);
538 ASSERT(pt
->pt_minor
<= ptms_nslots
);
539 ASSERT(ptms_slots
[pt
->pt_minor
- 1] == pt
);
540 ASSERT(ptms_inuse
> 0);
546 ptms_slots
[pt
->pt_minor
- 1] = NULL
;
547 /* Return minor number to the pool of minors */
548 vmem_free(ptms_minor_arena
, (void *)(uintptr_t)pt
->pt_minor
, 1);
549 /* Return pt to the cache */
550 kmem_cache_free(ptms_cache
, pt
);
552 mutex_exit(&ptms_lock
);
556 * Allocate another slot table twice as large as the original one (limited to
557 * global maximum). Migrate all pt to the new slot table and free the original
558 * one. Create more /devices entries for new devices.
563 minor_t old_size
= ptms_nslots
;
564 minor_t delta
= MIN(pt_maxdelta
, old_size
);
565 minor_t new_size
= old_size
+ delta
;
566 struct pt_ttys
**ptms_old
= ptms_slots
;
567 struct pt_ttys
**ptms_new
;
568 void *vaddr
; /* vmem_add return value */
570 ASSERT(MUTEX_HELD(&ptms_lock
));
572 DDBG("ptmopen(%d): need to grow\n", (int)ptms_inuse
);
574 /* Allocate new ptms array */
575 ptms_new
= kmem_zalloc(new_size
* sizeof (struct pt_ttys
*),
577 if (ptms_new
== NULL
)
580 /* Increase clone index space */
581 vaddr
= vmem_add(ptms_minor_arena
, (void *)(uintptr_t)(old_size
+ 1),
582 new_size
- old_size
, VM_NOSLEEP
);
585 kmem_free(ptms_new
, new_size
* sizeof (struct pt_ttys
*));
589 /* Migrate pt entries to a new location */
590 ptms_nslots
= new_size
;
591 bcopy(ptms_old
, ptms_new
, old_size
* sizeof (struct pt_ttys
*));
592 ptms_slots
= ptms_new
;
593 kmem_free(ptms_old
, old_size
* sizeof (struct pt_ttys
*));
595 /* Allocate minor number and return it */
596 return ((minor_t
)(uintptr_t)
597 vmem_alloc(ptms_minor_arena
, 1, VM_NOSLEEP
));
602 ptms_constructor(void *maddr
, void *arg
, int kmflags
)
604 struct pt_ttys
*pt
= maddr
;
608 pt
->pt_nullmsg
= NULL
;
613 pt
->pt_zoneid
= GLOBAL_ZONEID
;
615 cv_init(&pt
->pt_cv
, NULL
, CV_DEFAULT
, NULL
);
616 mutex_init(&pt
->pt_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
622 ptms_destructor(void *maddr
, void *arg
)
624 struct pt_ttys
*pt
= maddr
;
626 ASSERT(pt
->pt_refcnt
== 0);
627 ASSERT(pt
->pt_state
== 0);
628 ASSERT(pt
->ptm_rdq
== NULL
);
629 ASSERT(pt
->pts_rdq
== NULL
);
631 mutex_destroy(&pt
->pt_lock
);
632 cv_destroy(&pt
->pt_cv
);
637 ptms_log(char *str
, uint_t arg
)
641 cmn_err(CE_CONT
, str
, arg
);
643 (void) strlog(PTMOD_ID
, -1, 0, SL_TRACE
| SL_ERROR
,
646 (void) strlog(PTMOD_ID
, -1, 0, SL_TRACE
, str
, arg
);
651 ptms_logp(char *str
, uintptr_t arg
)
655 cmn_err(CE_CONT
, str
, arg
);
657 (void) strlog(PTMOD_ID
, -1, 0, SL_TRACE
| SL_ERROR
,
660 (void) strlog(PTMOD_ID
, -1, 0, SL_TRACE
, str
, arg
);