Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / io / signalfd.c
blob86b205aa0a5d8349a0275e1da857e3c6f6086347
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2017 Joyent, Inc.
17 * Support for the signalfd facility, a Linux-borne facility for
18 * file descriptor-based synchronous signal consumption.
20 * As described on the signalfd(3C) man page, the general idea behind these
21 * file descriptors is that they can be used to synchronously consume signals
22 * via the read(2) syscall. While that capability already exists with the
23 * sigwaitinfo(3C) function, signalfd holds an advantage since it is file
24 * descriptor based: It is able use the event facilities (poll(2), /dev/poll,
25 * event ports) to notify interested parties when consumable signals arrive.
27 * The signalfd lifecycle begins When a process opens /dev/signalfd. A minor
28 * will be allocated for them along with an associated signalfd_state_t struct.
29 * It is there where the mask of desired signals resides.
31 * Reading from the signalfd is straightforward and mimics the kernel behavior
32 * for sigtimedwait(). Signals continue to live on either the proc's p_sig, or
33 * thread's t_sig, member. During a read operation, those which match the mask
34 * are consumed so they are no longer pending.
36 * The poll side is more complex. Every time a signal is delivered, all of the
37 * signalfds on the process need to be examined in order to pollwake threads
38 * waiting for signal arrival.
40 * When a thread polling on a signalfd requires a pollhead, several steps must
41 * be taken to safely ensure the proper result. A sigfd_proc_state_t is
42 * created for the calling process if it does not yet exist. It is there where
43 * a list of sigfd_poll_waiter_t structures reside which associate pollheads to
44 * signalfd_state_t entries. The sigfd_proc_state_t list is walked to find a
45 * sigfd_poll_waiter_t matching the signalfd_state_t which corresponds to the
46 * polled resource. If one is found, it is reused. Otherwise a new one is
47 * created, incrementing the refcount on the signalfd_state_t, and it is added
48 * to the sigfd_poll_waiter_t list.
50 * The complications imposed by fork(2) are why the pollhead is stored in the
51 * associated sigfd_poll_waiter_t instead of directly in the signalfd_state_t.
52 * More than one process can hold a reference to the signalfd at a time but
53 * arriving signals should wake only process-local pollers. Additionally,
54 * signalfd_close is called only when the last referencing fd is closed, hiding
55 * occurrences of preceeding threads which released their references. This
56 * necessitates reference counting on the signalfd_state_t so it is able to
57 * persist after close until all poll references have been cleansed. Doing so
58 * ensures that blocked pollers which hold references to the signalfd_state_t
59 * will be able to do clean-up after the descriptor itself has been closed.
61 * When a signal arrives in a process polling on signalfd, signalfd_pollwake_cb
62 * is called via the pointer in sigfd_proc_state_t. It will walk over the
63 * sigfd_poll_waiter_t entries present in the list, searching for any
64 * associated with a signalfd_state_t with a matching signal mask. The
65 * approach of keeping the poller list in p_sigfd was chosen because a process
66 * is likely to use few signalfds relative to its total file descriptors. It
67 * reduces the work required for each received signal.
69 * When matching sigfd_poll_waiter_t entries are encountered in the poller list
70 * during signalfd_pollwake_cb, they are dispatched into signalfd_wakeq to
71 * perform the pollwake. This is due to a lock ordering conflict between
72 * signalfd_poll and signalfd_pollwake_cb. The former acquires
73 * pollcache_t`pc_lock before proc_t`p_lock. The latter (via sigtoproc)
74 * reverses the order. Defering the pollwake into a taskq means it can be
75 * performed without proc_t`p_lock held, avoiding the deadlock.
77 * The sigfd_list is self-cleaning; as signalfd_pollwake_cb is called, the list
78 * will clear out on its own. Any remaining per-process state which remains
79 * will be cleaned up by the exit helper (signalfd_exit_helper).
81 * The structures associated with signalfd state are designed to operate
82 * correctly across fork, but there is one caveat that applies. Using
83 * fork-shared signalfd descriptors in conjuction with fork-shared caching poll
84 * descriptors (such as /dev/poll or event ports) will result in missed poll
85 * wake-ups. This is caused by the pollhead identity of signalfd descriptors
86 * being dependent on the process they are polled from. Because it has a
87 * thread-local cache, poll(2) is unaffected by this limitation.
89 * Lock ordering:
91 * 1. signalfd_lock
92 * 2. signalfd_state_t`sfd_lock
94 * 1. proc_t`p_lock (to walk p_sigfd)
95 * 2. signalfd_state_t`sfd_lock
96 * 2a. signalfd_lock (after sfd_lock is dropped, when sfd_count falls to 0)
99 #include <sys/ddi.h>
100 #include <sys/sunddi.h>
101 #include <sys/signalfd.h>
102 #include <sys/conf.h>
103 #include <sys/sysmacros.h>
104 #include <sys/filio.h>
105 #include <sys/stat.h>
106 #include <sys/file.h>
107 #include <sys/schedctl.h>
108 #include <sys/id_space.h>
109 #include <sys/sdt.h>
110 #include <sys/disp.h>
111 #include <sys/taskq_impl.h>
113 typedef struct signalfd_state signalfd_state_t;
115 struct signalfd_state {
116 list_node_t sfd_list; /* node in global list */
117 kmutex_t sfd_lock; /* protects fields below */
118 uint_t sfd_count; /* ref count */
119 boolean_t sfd_valid; /* valid while open */
120 k_sigset_t sfd_set; /* signals for this fd */
123 typedef struct sigfd_poll_waiter {
124 list_node_t spw_list;
125 signalfd_state_t *spw_state;
126 pollhead_t spw_pollhd;
127 taskq_ent_t spw_taskent;
128 short spw_pollev;
129 } sigfd_poll_waiter_t;
132 * Protects global state in signalfd_devi, signalfd_minor, signalfd_softstate,
133 * and signalfd_state (including sfd_list field of members)
135 static kmutex_t signalfd_lock;
136 static dev_info_t *signalfd_devi; /* device info */
137 static id_space_t *signalfd_minor; /* minor number arena */
138 static void *signalfd_softstate; /* softstate pointer */
139 static list_t signalfd_state; /* global list of state */
140 static taskq_t *signalfd_wakeq; /* pollwake event taskq */
143 static void
144 signalfd_state_enter_locked(signalfd_state_t *state)
146 ASSERT(MUTEX_HELD(&state->sfd_lock));
147 ASSERT(state->sfd_count > 0);
148 VERIFY(state->sfd_valid == B_TRUE);
150 state->sfd_count++;
153 static void
154 signalfd_state_release(signalfd_state_t *state, boolean_t force_invalidate)
156 mutex_enter(&state->sfd_lock);
158 if (force_invalidate) {
159 state->sfd_valid = B_FALSE;
162 ASSERT(state->sfd_count > 0);
163 if (state->sfd_count == 1) {
164 VERIFY(state->sfd_valid == B_FALSE);
165 mutex_exit(&state->sfd_lock);
166 if (force_invalidate) {
168 * The invalidation performed in signalfd_close is done
169 * while signalfd_lock is held.
171 ASSERT(MUTEX_HELD(&signalfd_lock));
172 list_remove(&signalfd_state, state);
173 } else {
174 ASSERT(MUTEX_NOT_HELD(&signalfd_lock));
175 mutex_enter(&signalfd_lock);
176 list_remove(&signalfd_state, state);
177 mutex_exit(&signalfd_lock);
179 kmem_free(state, sizeof (*state));
180 return;
182 state->sfd_count--;
183 mutex_exit(&state->sfd_lock);
186 static sigfd_poll_waiter_t *
187 signalfd_wake_list_add(sigfd_proc_state_t *pstate, signalfd_state_t *state)
189 list_t *lst = &pstate->sigfd_list;
190 sigfd_poll_waiter_t *pw;
192 for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
193 if (pw->spw_state == state)
194 break;
197 if (pw == NULL) {
198 pw = kmem_zalloc(sizeof (*pw), KM_SLEEP);
200 mutex_enter(&state->sfd_lock);
201 signalfd_state_enter_locked(state);
202 pw->spw_state = state;
203 mutex_exit(&state->sfd_lock);
204 list_insert_head(lst, pw);
206 return (pw);
209 static sigfd_poll_waiter_t *
210 signalfd_wake_list_rm(sigfd_proc_state_t *pstate, signalfd_state_t *state)
212 list_t *lst = &pstate->sigfd_list;
213 sigfd_poll_waiter_t *pw;
215 for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
216 if (pw->spw_state == state) {
217 break;
221 if (pw != NULL) {
222 list_remove(lst, pw);
223 pw->spw_state = NULL;
224 signalfd_state_release(state, B_FALSE);
227 return (pw);
230 static void
231 signalfd_wake_list_cleanup(proc_t *p)
233 sigfd_proc_state_t *pstate = p->p_sigfd;
234 sigfd_poll_waiter_t *pw;
235 list_t *lst;
237 ASSERT(MUTEX_HELD(&p->p_lock));
238 ASSERT(pstate != NULL);
240 lst = &pstate->sigfd_list;
241 while ((pw = list_remove_head(lst)) != NULL) {
242 signalfd_state_t *state = pw->spw_state;
244 pw->spw_state = NULL;
245 signalfd_state_release(state, B_FALSE);
247 pollwakeup(&pw->spw_pollhd, POLLERR);
248 pollhead_clean(&pw->spw_pollhd);
249 kmem_free(pw, sizeof (*pw));
251 list_destroy(lst);
253 p->p_sigfd = NULL;
254 kmem_free(pstate, sizeof (*pstate));
257 static void
258 signalfd_exit_helper(void)
260 proc_t *p = curproc;
262 mutex_enter(&p->p_lock);
263 signalfd_wake_list_cleanup(p);
264 mutex_exit(&p->p_lock);
268 * Perform pollwake for a sigfd_poll_waiter_t entry.
269 * Thanks to the strict and conflicting lock orders required for signalfd_poll
270 * (pc_lock before p_lock) and signalfd_pollwake_cb (p_lock before pc_lock),
271 * this is relegated to a taskq to avoid deadlock.
273 static void
274 signalfd_wake_task(void *arg)
276 sigfd_poll_waiter_t *pw = arg;
277 signalfd_state_t *state = pw->spw_state;
279 pw->spw_state = NULL;
280 signalfd_state_release(state, B_FALSE);
281 pollwakeup(&pw->spw_pollhd, pw->spw_pollev);
282 pollhead_clean(&pw->spw_pollhd);
283 kmem_free(pw, sizeof (*pw));
287 * Called every time a signal is delivered to the process so that we can
288 * see if any signal stream needs a pollwakeup. We maintain a list of
289 * signal state elements so that we don't have to look at every file descriptor
290 * on the process. If necessary, a further optimization would be to maintain a
291 * signal set mask that is a union of all of the sets in the list so that
292 * we don't even traverse the list if the signal is not in one of the elements.
293 * However, since the list is likely to be very short, this is not currently
294 * being done. A more complex data structure might also be used, but it is
295 * unclear what that would be since each signal set needs to be checked for a
296 * match.
298 static void
299 signalfd_pollwake_cb(void *arg0, int sig)
301 proc_t *p = (proc_t *)arg0;
302 sigfd_proc_state_t *pstate = (sigfd_proc_state_t *)p->p_sigfd;
303 list_t *lst;
304 sigfd_poll_waiter_t *pw;
306 ASSERT(MUTEX_HELD(&p->p_lock));
307 ASSERT(pstate != NULL);
309 lst = &pstate->sigfd_list;
310 pw = list_head(lst);
311 while (pw != NULL) {
312 signalfd_state_t *state = pw->spw_state;
313 sigfd_poll_waiter_t *next;
315 mutex_enter(&state->sfd_lock);
316 if (!state->sfd_valid) {
317 pw->spw_pollev = POLLERR;
318 } else if (sigismember(&state->sfd_set, sig)) {
319 pw->spw_pollev = POLLRDNORM | POLLIN;
320 } else {
321 mutex_exit(&state->sfd_lock);
322 pw = list_next(lst, pw);
323 continue;
325 mutex_exit(&state->sfd_lock);
328 * Pull the sigfd_poll_waiter_t out of the list and dispatch it
329 * to perform a pollwake. This cannot be done synchronously
330 * since signalfd_poll and signalfd_pollwake_cb have
331 * conflicting lock orders which can deadlock.
333 next = list_next(lst, pw);
334 list_remove(lst, pw);
335 taskq_dispatch_ent(signalfd_wakeq, signalfd_wake_task, pw, 0,
336 &pw->spw_taskent);
337 pw = next;
341 _NOTE(ARGSUSED(1))
342 static int
343 signalfd_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
345 signalfd_state_t *state, **sstate;
346 major_t major = getemajor(*devp);
347 minor_t minor = getminor(*devp);
349 if (minor != SIGNALFDMNRN_SIGNALFD)
350 return (ENXIO);
352 mutex_enter(&signalfd_lock);
354 minor = (minor_t)id_allocff(signalfd_minor);
355 if (ddi_soft_state_zalloc(signalfd_softstate, minor) != DDI_SUCCESS) {
356 id_free(signalfd_minor, minor);
357 mutex_exit(&signalfd_lock);
358 return (ENODEV);
361 state = kmem_zalloc(sizeof (*state), KM_SLEEP);
362 state->sfd_valid = B_TRUE;
363 state->sfd_count = 1;
364 list_insert_head(&signalfd_state, (void *)state);
366 sstate = ddi_get_soft_state(signalfd_softstate, minor);
367 *sstate = state;
368 *devp = makedevice(major, minor);
370 mutex_exit(&signalfd_lock);
372 return (0);
376 * Consume one signal from our set in a manner similar to sigtimedwait().
377 * The block parameter is used to control whether we wait for a signal or
378 * return immediately if no signal is pending. We use the thread's t_sigwait
379 * member in the same way that it is used by sigtimedwait.
381 * Return 0 if we successfully consumed a signal or an errno if not.
383 static int
384 consume_signal(k_sigset_t set, uio_t *uio, boolean_t block)
386 k_sigset_t oldmask;
387 kthread_t *t = curthread;
388 klwp_t *lwp = ttolwp(t);
389 proc_t *p = ttoproc(t);
390 timespec_t now;
391 timespec_t *rqtp = NULL; /* null means blocking */
392 int timecheck = 0;
393 int ret = 0;
394 k_siginfo_t info, *infop;
395 signalfd_siginfo_t ssi, *ssp = &ssi;
397 if (block == B_FALSE) {
398 timecheck = timechanged;
399 gethrestime(&now);
400 rqtp = &now; /* non-blocking check for pending signals */
403 t->t_sigwait = set;
405 mutex_enter(&p->p_lock);
407 * set the thread's signal mask to unmask those signals in the
408 * specified set.
410 schedctl_finish_sigblock(t);
411 oldmask = t->t_hold;
412 sigdiffset(&t->t_hold, &t->t_sigwait);
415 * Based on rqtp, wait indefinitely until we take a signal in our set
416 * or return immediately if there are no signals pending from our set.
418 while ((ret = cv_waituntil_sig(&t->t_delay_cv, &p->p_lock, rqtp,
419 timecheck)) > 0)
420 continue;
422 /* Restore thread's signal mask to its previous value. */
423 t->t_hold = oldmask;
424 t->t_sig_check = 1; /* so post_syscall sees new t_hold mask */
426 if (ret == -1) {
427 /* no signals pending */
428 mutex_exit(&p->p_lock);
429 sigemptyset(&t->t_sigwait);
430 return (EAGAIN); /* no signals pending */
433 /* Don't bother with signal if it is not in request set. */
434 if (lwp->lwp_cursig == 0 ||
435 !sigismember(&t->t_sigwait, lwp->lwp_cursig)) {
436 mutex_exit(&p->p_lock);
438 * lwp_cursig is zero if pokelwps() awakened cv_wait_sig().
439 * This happens if some other thread in this process called
440 * forkall() or exit().
442 sigemptyset(&t->t_sigwait);
443 return (EINTR);
446 if (lwp->lwp_curinfo) {
447 infop = &lwp->lwp_curinfo->sq_info;
448 } else {
449 infop = &info;
450 bzero(infop, sizeof (info));
451 infop->si_signo = lwp->lwp_cursig;
452 infop->si_code = SI_NOINFO;
455 lwp->lwp_ru.nsignals++;
457 DTRACE_PROC2(signal__clear, int, ret, ksiginfo_t *, infop);
458 lwp->lwp_cursig = 0;
459 lwp->lwp_extsig = 0;
460 mutex_exit(&p->p_lock);
462 /* Convert k_siginfo into external, datamodel independent, struct. */
463 bzero(ssp, sizeof (*ssp));
464 ssp->ssi_signo = infop->si_signo;
465 ssp->ssi_errno = infop->si_errno;
466 ssp->ssi_code = infop->si_code;
467 ssp->ssi_pid = infop->si_pid;
468 ssp->ssi_uid = infop->si_uid;
469 ssp->ssi_fd = infop->si_fd;
470 ssp->ssi_band = infop->si_band;
471 ssp->ssi_trapno = infop->si_trapno;
472 ssp->ssi_status = infop->si_status;
473 ssp->ssi_utime = infop->si_utime;
474 ssp->ssi_stime = infop->si_stime;
475 ssp->ssi_addr = (uint64_t)(intptr_t)infop->si_addr;
477 ret = uiomove(ssp, sizeof (*ssp), UIO_READ, uio);
479 if (lwp->lwp_curinfo) {
480 siginfofree(lwp->lwp_curinfo);
481 lwp->lwp_curinfo = NULL;
483 sigemptyset(&t->t_sigwait);
484 return (ret);
488 * This is similar to sigtimedwait. Based on the fd mode we may wait until a
489 * signal within our specified set is posted. We consume as many available
490 * signals within our set as we can.
492 _NOTE(ARGSUSED(2))
493 static int
494 signalfd_read(dev_t dev, uio_t *uio, cred_t *cr)
496 signalfd_state_t *state, **sstate;
497 minor_t minor = getminor(dev);
498 boolean_t block = B_TRUE;
499 k_sigset_t set;
500 boolean_t got_one = B_FALSE;
501 int res;
503 if (uio->uio_resid < sizeof (signalfd_siginfo_t))
504 return (EINVAL);
506 sstate = ddi_get_soft_state(signalfd_softstate, minor);
507 state = *sstate;
509 if (uio->uio_fmode & (FNDELAY|FNONBLOCK))
510 block = B_FALSE;
512 mutex_enter(&state->sfd_lock);
513 set = state->sfd_set;
514 mutex_exit(&state->sfd_lock);
516 if (sigisempty(&set))
517 return (set_errno(EINVAL));
519 do {
520 res = consume_signal(set, uio, block);
522 if (res == 0) {
524 * After consuming one signal, do not block while
525 * trying to consume more.
527 got_one = B_TRUE;
528 block = B_FALSE;
531 * Refresh the matching signal set in case it was
532 * updated during the wait.
534 mutex_enter(&state->sfd_lock);
535 set = state->sfd_set;
536 mutex_exit(&state->sfd_lock);
537 if (sigisempty(&set))
538 break;
540 } while (res == 0 && uio->uio_resid >= sizeof (signalfd_siginfo_t));
542 if (got_one)
543 res = 0;
545 return (res);
549 * If ksigset_t's were a single word, we would do:
550 * return (((p->p_sig | t->t_sig) & set) & fillset);
552 static int
553 signalfd_sig_pending(proc_t *p, kthread_t *t, k_sigset_t set)
555 return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
556 set.__sigbits[0]) |
557 ((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
558 set.__sigbits[1]) |
559 (((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
560 set.__sigbits[2]) & FILLSET2));
563 static int
564 signalfd_poll(dev_t dev, short events, int anyyet, short *reventsp,
565 struct pollhead **phpp)
567 signalfd_state_t *state, **sstate;
568 minor_t minor = getminor(dev);
569 kthread_t *t = curthread;
570 proc_t *p = ttoproc(t);
571 short revents = 0;
573 sstate = ddi_get_soft_state(signalfd_softstate, minor);
574 state = *sstate;
576 mutex_enter(&state->sfd_lock);
578 if (signalfd_sig_pending(p, t, state->sfd_set) != 0)
579 revents |= POLLRDNORM | POLLIN;
581 mutex_exit(&state->sfd_lock);
583 *reventsp = revents & events;
584 if ((*reventsp == 0 && !anyyet) || (events & POLLET)) {
585 sigfd_proc_state_t *pstate;
586 sigfd_poll_waiter_t *pw;
589 * Enable pollwakeup handling.
591 mutex_enter(&p->p_lock);
592 if ((pstate = (sigfd_proc_state_t *)p->p_sigfd) == NULL) {
594 mutex_exit(&p->p_lock);
595 pstate = kmem_zalloc(sizeof (*pstate), KM_SLEEP);
596 list_create(&pstate->sigfd_list,
597 sizeof (sigfd_poll_waiter_t),
598 offsetof(sigfd_poll_waiter_t, spw_list));
599 pstate->sigfd_pollwake_cb = signalfd_pollwake_cb;
601 /* Check again, after blocking for the alloc. */
602 mutex_enter(&p->p_lock);
603 if (p->p_sigfd == NULL) {
604 p->p_sigfd = pstate;
605 } else {
606 /* someone beat us to it */
607 list_destroy(&pstate->sigfd_list);
608 kmem_free(pstate, sizeof (*pstate));
609 pstate = p->p_sigfd;
613 pw = signalfd_wake_list_add(pstate, state);
614 *phpp = &pw->spw_pollhd;
615 mutex_exit(&p->p_lock);
618 return (0);
621 _NOTE(ARGSUSED(4))
622 static int
623 signalfd_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
625 signalfd_state_t *state, **sstate;
626 minor_t minor = getminor(dev);
627 sigset_t mask;
629 sstate = ddi_get_soft_state(signalfd_softstate, minor);
630 state = *sstate;
632 switch (cmd) {
633 case SIGNALFDIOC_MASK:
634 if (ddi_copyin((caddr_t)arg, (caddr_t)&mask, sizeof (sigset_t),
635 md) != 0)
636 return (set_errno(EFAULT));
638 mutex_enter(&state->sfd_lock);
639 sigutok(&mask, &state->sfd_set);
640 mutex_exit(&state->sfd_lock);
642 return (0);
644 default:
645 break;
648 return (ENOTTY);
651 _NOTE(ARGSUSED(1))
652 static int
653 signalfd_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
655 signalfd_state_t *state, **sstate;
656 sigfd_poll_waiter_t *pw = NULL;
657 minor_t minor = getminor(dev);
658 proc_t *p = curproc;
660 sstate = ddi_get_soft_state(signalfd_softstate, minor);
661 state = *sstate;
663 /* Make sure state is removed from this proc's pollwake list. */
664 mutex_enter(&p->p_lock);
665 if (p->p_sigfd != NULL) {
666 sigfd_proc_state_t *pstate = p->p_sigfd;
668 pw = signalfd_wake_list_rm(pstate, state);
669 if (list_is_empty(&pstate->sigfd_list)) {
670 signalfd_wake_list_cleanup(p);
673 mutex_exit(&p->p_lock);
675 if (pw != NULL) {
676 pollwakeup(&pw->spw_pollhd, POLLERR);
677 pollhead_clean(&pw->spw_pollhd);
678 kmem_free(pw, sizeof (*pw));
681 mutex_enter(&signalfd_lock);
683 *sstate = NULL;
684 ddi_soft_state_free(signalfd_softstate, minor);
685 id_free(signalfd_minor, minor);
687 signalfd_state_release(state, B_TRUE);
689 mutex_exit(&signalfd_lock);
691 return (0);
694 static int
695 signalfd_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
697 if (cmd != DDI_ATTACH || signalfd_devi != NULL)
698 return (DDI_FAILURE);
700 mutex_enter(&signalfd_lock);
702 signalfd_minor = id_space_create("signalfd_minor", 1, L_MAXMIN32 + 1);
703 if (signalfd_minor == NULL) {
704 cmn_err(CE_WARN, "signalfd couldn't create id space");
705 mutex_exit(&signalfd_lock);
706 return (DDI_FAILURE);
709 if (ddi_soft_state_init(&signalfd_softstate,
710 sizeof (signalfd_state_t *), 0) != 0) {
711 cmn_err(CE_WARN, "signalfd failed to create soft state");
712 id_space_destroy(signalfd_minor);
713 mutex_exit(&signalfd_lock);
714 return (DDI_FAILURE);
717 if (ddi_create_minor_node(devi, "signalfd", S_IFCHR,
718 SIGNALFDMNRN_SIGNALFD, DDI_PSEUDO, 0) == DDI_FAILURE) {
719 cmn_err(CE_NOTE, "/dev/signalfd couldn't create minor node");
720 ddi_soft_state_fini(&signalfd_softstate);
721 id_space_destroy(signalfd_minor);
722 mutex_exit(&signalfd_lock);
723 return (DDI_FAILURE);
726 ddi_report_dev(devi);
727 signalfd_devi = devi;
729 sigfd_exit_helper = signalfd_exit_helper;
731 list_create(&signalfd_state, sizeof (signalfd_state_t),
732 offsetof(signalfd_state_t, sfd_list));
734 signalfd_wakeq = taskq_create("signalfd_wake", 1, minclsyspri,
735 0, INT_MAX, TASKQ_PREPOPULATE);
737 mutex_exit(&signalfd_lock);
739 return (DDI_SUCCESS);
742 _NOTE(ARGSUSED(0))
743 static int
744 signalfd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
746 switch (cmd) {
747 case DDI_DETACH:
748 break;
750 default:
751 return (DDI_FAILURE);
754 mutex_enter(&signalfd_lock);
756 if (!list_is_empty(&signalfd_state)) {
758 * There are dangling poll waiters holding signalfd_state_t
759 * entries on the global list. Detach is not possible until
760 * they purge themselves.
762 mutex_exit(&signalfd_lock);
763 return (DDI_FAILURE);
765 list_destroy(&signalfd_state);
768 * With no remaining entries in the signalfd_state list, the wake taskq
769 * should be empty with no possibility for new entries.
771 taskq_destroy(signalfd_wakeq);
773 id_space_destroy(signalfd_minor);
775 ddi_remove_minor_node(signalfd_devi, NULL);
776 signalfd_devi = NULL;
777 sigfd_exit_helper = NULL;
779 ddi_soft_state_fini(&signalfd_softstate);
780 mutex_exit(&signalfd_lock);
782 return (DDI_SUCCESS);
785 _NOTE(ARGSUSED(0))
786 static int
787 signalfd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
789 int error;
791 switch (infocmd) {
792 case DDI_INFO_DEVT2DEVINFO:
793 *result = (void *)signalfd_devi;
794 error = DDI_SUCCESS;
795 break;
796 case DDI_INFO_DEVT2INSTANCE:
797 *result = NULL;
798 error = DDI_SUCCESS;
799 break;
800 default:
801 error = DDI_FAILURE;
803 return (error);
806 static struct cb_ops signalfd_cb_ops = {
807 signalfd_open, /* open */
808 signalfd_close, /* close */
809 nulldev, /* strategy */
810 nulldev, /* print */
811 nodev, /* dump */
812 signalfd_read, /* read */
813 nodev, /* write */
814 signalfd_ioctl, /* ioctl */
815 nodev, /* devmap */
816 nodev, /* mmap */
817 nodev, /* segmap */
818 signalfd_poll, /* poll */
819 ddi_prop_op, /* cb_prop_op */
820 0, /* streamtab */
821 D_NEW | D_MP /* Driver compatibility flag */
824 static struct dev_ops signalfd_ops = {
825 DEVO_REV, /* devo_rev */
826 0, /* refcnt */
827 signalfd_info, /* get_dev_info */
828 nulldev, /* identify */
829 nulldev, /* probe */
830 signalfd_attach, /* attach */
831 signalfd_detach, /* detach */
832 nodev, /* reset */
833 &signalfd_cb_ops, /* driver operations */
834 NULL, /* bus operations */
835 nodev, /* dev power */
836 ddi_quiesce_not_needed, /* quiesce */
839 static struct modldrv modldrv = {
840 &mod_driverops, /* module type (this is a pseudo driver) */
841 "signalfd support", /* name of module */
842 &signalfd_ops, /* driver ops */
845 static struct modlinkage modlinkage = {
846 MODREV_1,
847 (void *)&modldrv,
848 NULL
852 _init(void)
854 return (mod_install(&modlinkage));
858 _info(struct modinfo *modinfop)
860 return (mod_info(&modlinkage, modinfop));
864 _fini(void)
866 return (mod_remove(&modlinkage));